CN112029126A - 一种Co-MOF@磷钨酸/PVDF骨架的磺化聚醚砜质子交换膜及其制备方法 - Google Patents
一种Co-MOF@磷钨酸/PVDF骨架的磺化聚醚砜质子交换膜及其制备方法 Download PDFInfo
- Publication number
- CN112029126A CN112029126A CN202010932381.2A CN202010932381A CN112029126A CN 112029126 A CN112029126 A CN 112029126A CN 202010932381 A CN202010932381 A CN 202010932381A CN 112029126 A CN112029126 A CN 112029126A
- Authority
- CN
- China
- Prior art keywords
- pvdf
- solution
- mof
- phosphotungstic acid
- polyether sulfone
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/20—Manufacture of shaped structures of ion-exchange resins
- C08J5/22—Films, membranes or diaphragms
- C08J5/2206—Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
- C08J5/2275—Heterogeneous membranes
- C08J5/2281—Heterogeneous membranes fluorine containing heterogeneous membranes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G83/00—Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
- C08G83/008—Supramolecular polymers
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/0007—Electro-spinning
- D01D5/0015—Electro-spinning characterised by the initial state of the material
- D01D5/003—Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/70—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
- D04H1/72—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
- D04H1/728—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H3/00—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
- D04H3/02—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1067—Polymeric electrolyte materials characterised by their physical properties, e.g. porosity, ionic conductivity or thickness
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1069—Polymeric electrolyte materials characterised by the manufacturing processes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1069—Polymeric electrolyte materials characterised by the manufacturing processes
- H01M8/1086—After-treatment of the membrane other than by polymerisation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2381/00—Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
- C08J2381/06—Polysulfones; Polyethersulfones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2427/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
- C08J2427/02—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
- C08J2427/12—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
- C08J2427/16—Homopolymers or copolymers of vinylidene fluoride
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2487/00—Characterised by the use of unspecified macromolecular compounds, obtained otherwise than by polymerisation reactions only involving unsaturated carbon-to-carbon bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/32—Phosphorus-containing compounds
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Textile Engineering (AREA)
- Sustainable Energy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Medicinal Chemistry (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Polymers & Plastics (AREA)
- Dispersion Chemistry (AREA)
- Mechanical Engineering (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Fuel Cell (AREA)
Abstract
本发明属于质子交换膜燃料电池技术领域,具体涉及一种Co‑MOF@磷钨酸/PVDF骨架的磺化聚醚砜质子交换膜及其制备方法。该制备方法的步骤包括:将PVDF和聚乙二醇混合后溶于溶剂中制得纺丝液并静电纺丝后去除纤维中的聚乙二醇得到多孔PVDF纤维膜,然后将纤维膜和Co(NO3)2·6H2O、对苯二甲酸、磷钨酸混合,用水热法制得Co‑MOF@磷钨酸/PVDF;随后以Co‑MOF@磷钨酸/PVDF为骨架使磺化聚醚砜的N‑甲基‑2‑吡咯烷酮溶液填充在其中得到质子交换膜。本发明所述质子交换膜在具备高的质子传导率的同时,还有极低的燃料的渗透率和溶胀率。
Description
技术领域
本发明属于质子交换膜燃料电池技术领域,具体涉及一种Co-MOF@磷钨酸/PVDF骨架的磺化聚醚砜质子交换膜及其制备方法。
背景技术
燃料电池是一种可以将氢气、甲醇、沼气等可再生资源高效转换为电能的能量转化技术;它可以与目前的电网联用,亦或是和太阳能、风能发电等综合利用,有利于构建更全面的氢能源利用体系。而且相比于太阳能、风能等其它新能源,燃料电池所受到的制约条件更少,易于小型化、轻量化,便于移动。近年来随着新能源汽车的不断升温,作为一种优质动力源的燃料电池也得到了更大的关注。
质子交换膜是燃料电池的核心部件之一,在燃料电池中起传导质子、阻隔气体和绝缘内部电子的作用。它性能的好坏直接关系到燃料电池能量输出效率的高低,而质子交换膜除了高的质子传导率为,还必须做到良好化学稳定性和选择透过性,以及在燃料中的低的溶胀率。
发明内容
针对现有技术中质子交换膜对燃料的渗透率和燃料中的溶胀率高的技术缺陷,本发明提供一种Co-MOF@磷钨酸/PVDF骨架的磺化聚醚砜质子交换膜及其制备方法。
为实现上述目的,本发明采用以下技术方案:
一种Co-MOF@磷钨酸/PVDF骨架的磺化聚醚砜质子交换膜的制备方法,包括以下步骤:
步骤一:取一定量的PVDF粉末加入N,N-二甲基乙酰胺(DMAc)-丙酮混合液中,超声2-3min,再向溶液中加入适量的聚乙二醇(PEG),将混合溶液在55-58℃的水浴下搅拌15-18h,搅拌结束后将溶液静置7-8h脱泡得到纺丝液,然后将纺丝液加入注射器中,在静电纺丝装置上以采用水平方式纺制纤维;纺丝结束后将纤维膜浸于300ml的NaClO溶液中超声3-4h,然后将其放入500ml无水乙醇-去离子水溶液中静置16-20h,随后将其取出并置于无水乙醇中超声5-7h,超声结束后置于真空冷冻干燥箱中冻干得到多孔PVDF纤维膜。
步骤二:将步骤一制备的多孔PVDF纤维膜切成2*2cm大小的正方形,将其浸于DMF-乙醇混合液中,超声10-12min,然后向溶液中加入适量的Co(NO3)2·6H2O和对苯二甲酸,搅拌5-7min,再向溶液中加入适量的磷钨酸,然后将混合溶液转移到反应釜中,在110-120℃下反应24-30h,反应结束后用DMF和无水乙醇交替洗涤5次,并置于60-70℃的真空干燥箱中12-15h得到Co-MOF@磷钨酸/PVDF。
步骤三:将适量的磺化聚醚砜加入N-甲基-2-吡咯烷酮中,在50-60℃的水浴下搅拌2-3h,静置3-4h脱泡得到铸膜液;将步骤二制得的Co-MOF@磷钨酸/PVDF垫在玻璃板上延伸,然后将磺化聚醚砜铸膜液倒在上面,随后在室温下放置4-5天,再将样品置于50-60℃的真空干燥箱中干燥30-35h,得到Co-MOF@磷钨酸/PVDF骨架的磺化聚醚砜膜。
所述步骤一中PVDF的添加量为2-2.5g,DMAc-丙酮混合液中两者的体积比为2:1-3:1,PVDF和PEG的质量比为1:0.11-1:0.15,无水乙醇-去离子水混合液中两者的体积比为1:2.5-1:3。
所述步骤二中DMF-乙醇混合液中两者体积比为4:1-5:1,Co(NO3)2·6H2O的添加量为1.2-1.5g,Co(NO3)2·6H2O和对苯二甲酸的质量比为1.7:1-1.9:1,Co(NO3)2·6H2O和磷钨酸的物质的量之比为1.9:1-2.3:1。
优选地,所述步骤一中PVDF在DMAc中的浓度为0.25g/ml,PEG的分子量为6000,NaClO溶液的浓度为500ppm。
优选地,所述步骤一中静电纺丝时的操作电压为18kV,供料的流速为5ml/h,环境湿度为50-60%RH,针头直径为0.9mm,纺丝接收距离为12cm。
优选地,所述步骤二中Co(NO3)2·6H2O在DMF-乙醇混合液中的浓度为0.02g/ml。
优选地,所述步骤三中磺化聚醚砜的磺化度为15.5-18.7%,磺化聚醚砜的添加量为0.8-1g,磺化聚醚砜在N-甲基-2-吡咯烷酮中的质量分数为3wt%。
本发明还提供另一技术方案,上述方法制备得到的Co-MOF@磷钨酸/PVDF骨架的磺化聚醚砜膜,其中质子交换膜的厚度为120-150μm。
有益效果:本发明制备的复合质子交换膜以负载了Co-MOF@磷钨酸的PVDF纤维膜作为骨架,作为用作磺化聚醚砜的机械增强支持和互连的三维质子传输网络,极大的提高了质子交换膜的拉伸强度,伸长率和抗机械损伤性;结构上的交联结构更是可以显著地提高膜材料的尺寸稳定性及对燃料的阻隔能力。而且为质子的传输提供了“轨道”,提高了质子传输效率。骨架中的PVDF是多孔结构,一方面可以更好的负载Co-MOF,使其分布更加均匀,提高Co-MOF材料和作为基底的PVDF纤维的质子交换;另一方面为质子交换膜在工作过程中Co-MOF对于膜的溶胀的阻碍提供了更大的空间;同时多孔的PVDF还可以使磺化聚醚砜和骨架结合的更加紧密。磷钨酸是在MOF的制备过程中同步负载包裹的,它在质子交换膜中一方面在高温下仍提供极佳的质子传输通道,使质子交换膜在高温下也显示出最高的质子传导率;另一方面,磺化聚醚砜和磷钨酸有良好的相容性,分子间相互作用很强,能够形成很强的共价界面保证制得质子交换膜的致密光滑。
附图说明
图1为实施例1和对比例1-2在不同温度下的质子传导率;
图2为实施例1和对比例1-2在80℃下对燃料的吸收率和膜的溶胀率。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
实施例1
步骤一:取2g的PVDF粉末加入8ml的DMAc和4ml丙酮混合液中,超声2min,再向溶液中加入0.3g的PEG,将混合溶液在55℃的水浴下搅拌18h,搅拌结束后将溶液静置8h脱泡得到纺丝液,然后将纺丝液加入注射器中,在静电纺丝装置上以采用水平方式纺制纤维;纺丝结束后将纤维膜浸于300ml的NaClO溶液中超声4h,然后将其放入142.9ml无水乙醇和357.1ml去离子水溶液中静置16h,随后将其取出并置于无水乙醇中超声7h,超声结束后置于真空冷冻干燥箱中冻干得到多孔PVDF纤维膜。
步骤二:将步骤一制备的多孔PVDF纤维膜切成2*2cm大小的正方形,将其浸于48ml的DMF和12ml乙醇的混合液中,超声12min,然后向溶液中加入1.2g的Co(NO3)2·6H2O和0.71g对苯二甲酸,搅拌7min,再向溶液中加入0.63g磷钨酸,然后将混合溶液转移到反应釜中,在110℃下反应30h,反应结束后用DMF和无水乙醇交替洗涤5次,并置于70℃的真空干燥箱中12h得到Co-MOF@磷钨酸/PVDF。
步骤三:将1g的磺化聚醚砜加入32.5ml的N-甲基-2-吡咯烷酮中,在60℃的水浴下搅拌3h,静置4h脱泡得到铸膜液;将步骤二制得的Co-MOF@磷钨酸/PVDF垫在玻璃板上延伸,然后将磺化聚醚砜铸膜液倒在上面,随后在室温下放置5天,再将样品置于60℃的真空干燥箱中干燥35h,得到Co-MOF@磷钨酸/PVDF骨架的磺化聚醚砜膜。
实施例2
步骤一:取2.5g的PVDF粉末加入10ml的DMAc和3.3ml丙酮混合液中,超声3min,再向溶液中加入0.275g的PEG,将混合溶液在56℃的水浴下搅拌15h,搅拌结束后将溶液静置8h脱泡得到纺丝液,然后将纺丝液加入注射器中,在静电纺丝装置上以采用水平方式纺制纤维;纺丝结束后将纤维膜浸于300ml的NaClO溶液中超声3h,然后将其放入125ml无水乙醇和375ml去离子水溶液中静置20h,随后将其取出并置于无水乙醇中超声5h,超声结束后置于真空冷冻干燥箱中冻干得到多孔PVDF纤维膜。
步骤二:将步骤一制备的多孔PVDF纤维膜切成2*2cm大小的正方形,将其浸于62.5ml的DMF和12.5ml乙醇的混合液中,超声10min,然后向溶液中加入1.5g的Co(NO3)2·6H2O和0.79g对苯二甲酸,搅拌5min,再向溶液中加入0.65g磷钨酸,然后将混合溶液转移到反应釜中,在120℃下反应24h,反应结束后用DMF和无水乙醇交替洗涤5次,并置于60℃的真空干燥箱中13h得到Co-MOF@磷钨酸/PVDF。
步骤三:将0.8g的磺化聚醚砜加入26.0ml的N-甲基-2-吡咯烷酮中,在50℃的水浴下搅拌2h,静置3h脱泡得到铸膜液;将步骤二制得的Co-MOF@磷钨酸/PVDF垫在玻璃板上延伸,然后将磺化聚醚砜铸膜液倒在上面,随后在室温下放置4天,再将样品置于50℃的真空干燥箱中干燥34h,得到Co-MOF@磷钨酸/PVDF骨架的磺化聚醚砜膜。
实施例3
步骤一:取2.24g的PVDF粉末加入9.0ml的DMAc和3.6ml丙酮混合液中,超声2min,再向溶液中加入0.32g的PEG,将混合溶液在58℃的水浴下搅拌17h,搅拌结束后将溶液静置7h脱泡得到纺丝液,然后将纺丝液加入注射器中,在静电纺丝装置上以采用水平方式纺制纤维;纺丝结束后将纤维膜浸于300ml的NaClO溶液中超声3h,然后将其放入132ml无水乙醇和368ml去离子水溶液中静置17h,随后将其取出并置于无水乙醇中超声6h,超声结束后置于真空冷冻干燥箱中冻干得到多孔PVDF纤维膜。
步骤二:将步骤一制备的多孔PVDF纤维膜切成2*2cm大小的正方形,将其浸于57.7ml的DMF和12.8ml乙醇的混合液中,超声11min,然后向溶液中加入1.41g的Co(NO3)2·6H2O和0.81g对苯二甲酸,搅拌6min,再向溶液中加入0.72g磷钨酸,然后将混合溶液转移到反应釜中,在117℃下反应26h,反应结束后用DMF和无水乙醇交替洗涤5次,并置于63℃的真空干燥箱中14h得到Co-MOF@磷钨酸/PVDF。
步骤三:将0.88g的磺化聚醚砜加入28.6ml的N-甲基-2-吡咯烷酮中,在52℃的水浴下搅拌3h,静置4h脱泡得到铸膜液;将步骤二制得的Co-MOF@磷钨酸/PVDF垫在玻璃板上延伸,然后将磺化聚醚砜铸膜液倒在上面,随后在室温下放置4天,再将样品置于52℃的真空干燥箱中干燥32h,得到Co-MOF@磷钨酸/PVDF骨架的磺化聚醚砜膜。
实施例4
步骤一:取2.38g的PVDF粉末加入9.5ml的DMAc和4.2ml丙酮混合液中,超声3min,再向溶液中加入0.34g的PEG,将混合溶液在57℃的水浴下搅拌16h,搅拌结束后将溶液静置7h脱泡得到纺丝液,然后将纺丝液加入注射器中,在静电纺丝装置上以采用水平方式纺制纤维;纺丝结束后将纤维膜浸于300ml的NaClO溶液中超声3.5h,然后将其放入138ml无水乙醇和362ml去离子水溶液中静置19h,随后将其取出并置于无水乙醇中超声6.5h,超声结束后置于真空冷冻干燥箱中冻干得到多孔PVDF纤维膜。
步骤二:将步骤一制备的多孔PVDF纤维膜切成2*2cm大小的正方形,将其浸于55.8ml的DMF和11.2ml乙醇的混合液中,超声10min,然后向溶液中加入1.34Co(NO3)2·6H2O和0.74g对苯二甲酸,搅拌5.5min,再向溶液中加入0.61g磷钨酸,然后将混合溶液转移到反应釜中,在115℃下反应27h,反应结束后用DMF和无水乙醇交替洗涤5次,并置于66℃的真空干燥箱中15h得到Co-MOF@磷钨酸/PVDF。
步骤三:将0.96g的磺化聚醚砜加入31.2ml的N-甲基-2-吡咯烷酮中,在57℃的水浴下搅拌2h,静置3.5h脱泡得到铸膜液;将步骤二制得的Co-MOF@磷钨酸/PVDF垫在玻璃板上延伸,然后将磺化聚醚砜铸膜液倒在上面,随后在室温下放置5天,再将样品置于57℃的真空干燥箱中干燥30h,得到Co-MOF@磷钨酸/PVDF骨架的磺化聚醚砜膜。
对比例1
从上海某公司购得全氟磺酸型树脂基的Nafion115质子交换膜作为对比例1。
对比例2
以磺化度为16.3%的磺化聚醚砜为原料制得铸膜液后涂抹成膜,制得的质子交换膜作为对比例2。
图1是实施例1和对比例1-2在不同温度下的质子传导率;可以发现随着温度的上升,三者的质子传导率都有所提高,而在相同的温度下,实施例1的质子交换膜有着远高于对比例1-2的质子传导率。图2是实施例1和对比例1-2在80℃下对燃料的吸收率和膜的溶胀率;可以发现实施例1的质子交换膜对于燃料的吸收率和膜吸收后的溶胀率均低于对比例1-2。图1和图2说明本发明所述方法制得的质子交换膜具备更好的质子传导率、对燃料的阻隔能力和低的溶胀率。
以上所述,仅为本发明的较佳实施例,并非对本发明任何形式上和实质上的限制,应当指出,对于本技术领域的普通技术人员,在不脱离本发明方法的前提下,还将可以做出若干改进和补充,这些改进和补充也应视为本发明的保护范围。
Claims (7)
1.一种Co-MOF@磷钨酸/PVDF骨架的磺化聚醚砜质子交换膜的制备方法,其特征在于,包括以下步骤:
步骤一:取PVDF粉末加入N,N-二甲基乙酰胺(DMAc)-丙酮混合液中,超声2-3min,再向溶液中加入的聚乙二醇(PEG),将混合溶液在55-58℃的水浴下搅拌15-18h,搅拌结束后将溶液静置7-8h脱泡得到纺丝液,然后将纺丝液加入注射器中,在静电纺丝装置上以采用水平方式纺制纤维;纺丝结束后将纤维膜浸于300ml的NaClO溶液中超声3-4h,然后将其放入500ml无水乙醇-去离子水溶液中静置16-20h,随后将其取出并置于无水乙醇中超声5-7h,超声结束后置于真空冷冻干燥箱中冻干得到多孔PVDF纤维膜;
步骤二:将步骤一制备的多孔PVDF纤维膜切成2*2cm大小的正方形,将其浸于二甲基甲酰胺(DMF)-乙醇混合液中,超声10-12min,然后向溶液中加入Co(NO3)2·6H2O和对苯二甲酸,搅拌5-7min,再向溶液中加入磷钨酸,然后将混合溶液转移到反应釜中,在110-120℃下反应24-30h,反应结束后用DMF和无水乙醇交替洗涤5次,并置于60-70℃的真空干燥箱中12-15h得到Co-MOF@磷钨酸/PVDF;
步骤三:将磺化聚醚砜加入N-甲基-2-吡咯烷酮中,在50-60℃的水浴下搅拌2-3h,静置3-4h脱泡得到铸膜液;将步骤二制得的Co-MOF@磷钨酸/PVDF垫在玻璃板上延伸,然后将磺化聚醚砜铸膜液倒在上面,随后在室温下放置4-5天,再将样品置于50-60℃的真空干燥箱中干燥30-35h,得到Co-MOF@磷钨酸/PVDF骨架的磺化聚醚砜膜;
所述步骤一中DMAc-丙酮混合液中两者的体积比为2:1-3:1,PVDF和PEG的质量比为1:0.11-1:0.15,无水乙醇-去离子水混合液中两者的体积比为1:2.5-1:3;所述步骤二中DMF-乙醇混合液中两者体积比为4:1-5:1,Co(NO3)2·6H2O和对苯二甲酸的质量比为1.7:1-1.9:1,Co(NO3)2·6H2O和磷钨酸的物质的量之比为1.9:1-2.3:1。
2.根据权利要求1所述的一种Co-MOF@磷钨酸/PVDF骨架的磺化聚醚砜质子交换膜的制备方法,其特征在于,所述步骤一中PVDF的添加量为2-2.5g,所述步骤二中Co(NO3)2·6H2O的添加量为1.2-1.5g,所述步骤三中磺化聚醚砜的添加量为0.8-1g。
3.根据权利要求1所述的一种Co-MOF@磷钨酸/PVDF骨架的磺化聚醚砜质子交换膜的制备方法,其特征在于,所述步骤一中PVDF在DMAc中的浓度为0.25g/ml,PEG的分子量为6000,NaClO溶液的浓度为500ppm。
4.根据权利要求1所述的一种Co-MOF@磷钨酸/PVDF骨架的磺化聚醚砜质子交换膜的制备方法,其特征在于,所述步骤一中静电纺丝时的操作电压为18kV,供料的流速为5ml/h,环境湿度为50-60%RH,针头直径为0.9mm,纺丝接收距离为12cm。
5.根据权利要求1所述的一种Co-MOF@磷钨酸/PVDF骨架的磺化聚醚砜质子交换膜的制备方法,其特征在于,所述步骤二中Co(NO3)2·6H2O在DMF-乙醇混合液中的浓度为0.02g/ml。
6.根据权利要求1所述的一种Co-MOF@磷钨酸/PVDF骨架的磺化聚醚砜质子交换膜的制备方法,其特征在于,所述步骤三中磺化聚醚砜的磺化度为15.5-18.7%,磺化聚醚砜在N-甲基-2-吡咯烷酮中的质量分数为3wt%。
7.根据权利要求1-6任一项所述的Co-MOF@磷钨酸/PVDF骨架的磺化聚醚砜质子交换膜的制备方法制备得到的质子交换膜,其特征在于质子交换膜的厚度为120-150μm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010932381.2A CN112029126A (zh) | 2020-09-08 | 2020-09-08 | 一种Co-MOF@磷钨酸/PVDF骨架的磺化聚醚砜质子交换膜及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010932381.2A CN112029126A (zh) | 2020-09-08 | 2020-09-08 | 一种Co-MOF@磷钨酸/PVDF骨架的磺化聚醚砜质子交换膜及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN112029126A true CN112029126A (zh) | 2020-12-04 |
Family
ID=73584143
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010932381.2A Withdrawn CN112029126A (zh) | 2020-09-08 | 2020-09-08 | 一种Co-MOF@磷钨酸/PVDF骨架的磺化聚醚砜质子交换膜及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112029126A (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113078343A (zh) * | 2021-03-25 | 2021-07-06 | 郑州大学 | Mof基层状复合质子交换膜及其制备方法和应用 |
CN113193218A (zh) * | 2021-04-29 | 2021-07-30 | 深圳氢时代新能源科技有限公司 | 一种应用于燃料电池的质子交换膜及其制备方法 |
-
2020
- 2020-09-08 CN CN202010932381.2A patent/CN112029126A/zh not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113078343A (zh) * | 2021-03-25 | 2021-07-06 | 郑州大学 | Mof基层状复合质子交换膜及其制备方法和应用 |
CN113193218A (zh) * | 2021-04-29 | 2021-07-30 | 深圳氢时代新能源科技有限公司 | 一种应用于燃料电池的质子交换膜及其制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103531831B (zh) | 一种酸碱型氨基多膦酸聚硅氧烷中温质子交换膜材料及其制备方法 | |
CN101071873B (zh) | 聚合物超短纤维增强燃料电池质子交换膜及其制备方法 | |
CN109810435B (zh) | 一种磷酸掺杂氧化石墨烯及聚偏氟乙烯复合膜的制备方法 | |
CN112552524B (zh) | 一种离子型氢键有机框架材料及其制备方法和应用 | |
CN105255188A (zh) | 磺化聚芳醚酮砜/氧化石墨烯复合材料、制备方法及质子交换膜 | |
CN102949943A (zh) | 有机-无机杂化磺化聚芳醚酮质子交换膜及其制备方法 | |
CN112029126A (zh) | 一种Co-MOF@磷钨酸/PVDF骨架的磺化聚醚砜质子交换膜及其制备方法 | |
CN103408760B (zh) | 一种中温质子交换膜材料及其制备方法及使用该材料制备的燃料电池 | |
CN108878933B (zh) | 一种Nafion/lignin复合质子交换膜的制备方法 | |
CN110993998A (zh) | 一种含萘环聚苯并咪唑型质子交换膜及其制备方法和应用 | |
CN110429293B (zh) | 一种用于全钒液流电池的cof/pbi膜及其制备方法 | |
KR101085358B1 (ko) | 실란계 화합물을 포함하는 탄화수소계 고분자막, 이의 제조방법, 이를 포함하는 막-전극 어셈블리 및 연료전지 | |
CN110041519B (zh) | 一种长支链聚芳醚腈阴离子交换膜及其制备方法 | |
CN113527684A (zh) | 一种基于接枝聚苯并咪唑作为质子导体的氧还原催化层及其制备方法 | |
CN113234229A (zh) | 一种离子型氢键有机骨架材料及其制备方法和应用 | |
CN110317356B (zh) | 一种多官能化交联型聚亚芳基丁二酮阴离子交换膜及其制备方法 | |
CN108649244B (zh) | 一种SPEEK/lignin复合隔膜的制备方法 | |
CN110690485A (zh) | 一种用于燃料电池的复合型高温质子交换膜及其制备方法 | |
CN112310452A (zh) | 一种磷钨酸掺杂磺化聚芳醚腈质子交换膜及其制备方法 | |
CN115224333A (zh) | 具有高质子传导率与稳定性的季铵化聚苯并咪唑凝胶型质子交换膜及其制备方法 | |
CN108134116B (zh) | 一种聚糠基醇修饰燃料电池质子交换膜及其修饰方法 | |
CN113675450A (zh) | 一种含羧基的磺化聚芳醚酮砜/Uio-66-AS复合的质子交换膜及其制备方法 | |
CN102188913A (zh) | 一种直接甲醇燃料电池用高电导率质子交换膜的制备方法 | |
CN101864085A (zh) | 用于燃料电池的共价交联质子交换膜的制造方法 | |
CN111342094A (zh) | 一种稀土掺杂全氟磺酸膜的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20201204 |
|
WW01 | Invention patent application withdrawn after publication |