CN110690485A - 一种用于燃料电池的复合型高温质子交换膜及其制备方法 - Google Patents

一种用于燃料电池的复合型高温质子交换膜及其制备方法 Download PDF

Info

Publication number
CN110690485A
CN110690485A CN201910890822.4A CN201910890822A CN110690485A CN 110690485 A CN110690485 A CN 110690485A CN 201910890822 A CN201910890822 A CN 201910890822A CN 110690485 A CN110690485 A CN 110690485A
Authority
CN
China
Prior art keywords
ionic liquid
polybenzimidazole
exchange membrane
block
phosphotungstic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910890822.4A
Other languages
English (en)
Inventor
王双
王笛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun University of Technology
Original Assignee
Changchun University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun University of Technology filed Critical Changchun University of Technology
Priority to CN201910890822.4A priority Critical patent/CN110690485A/zh
Publication of CN110690485A publication Critical patent/CN110690485A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1044Mixtures of polymers, of which at least one is ionically conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1081Polymeric electrolyte materials characterised by the manufacturing processes starting from solutions, dispersions or slurries exclusively of polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Fuel Cell (AREA)

Abstract

本发明涉及一种高温复合型质子交换膜的制备方法,用于燃料电池,属于高分子化学和燃料电池领域。本发明首先分别制备嵌段聚苯并咪唑和磷钨酸型离子液体,再按质量百分比80%嵌段聚苯并咪唑和20%磷钨酸型离子液体进行混合,最后通过吸附磷酸制得磷酸掺杂型质子交换膜;嵌段聚苯并咪唑和磷钨酸型离子液体结构式如式Ⅰ和式Ⅱ所示。本发明的质子交换膜厚度在180℃高温条件下质子传导率为35mS/cm。

Description

一种用于燃料电池的复合型高温质子交换膜及其制备方法
技术领域
本发明属于高分子化学和质子交换膜燃料电池领域,涉及一种用于高温燃料电池的复合型质子交换膜及其制备方法。
背景技术
质子交换膜(PEM)是质子交换膜燃料电池燃料电池(PEMFC)的核心部件,它起着隔绝燃料和传递质子的重要作用。近些年来,燃料电池技术已成为新能源技术研究的一个重点和热点领域,燃料电池被认为是21世纪首选的清洁环保、高效方便的发电技术,已应用于新能源汽车等领域。
发明内容
本发明的目的是提供一种高温燃料电池用的复合型质子交换膜及其制备方法,该复合膜尺寸稳定性强,在吸收较少的磷酸情况下,可保持一定的质子传导率,并且具有良好的机械性能和热稳定性。
本发明首先提供了一种高温燃料电池用复合型质子交换膜,该质子交换膜按质量百分比包括如下组分:
嵌段型聚苯并咪唑:90-70%;
磷钨酸型离子液体:10-30%;
所述的嵌段型聚苯并咪唑和磷钨酸离子液体,结构式分别如式Ⅰ和式Ⅱ所示:
Figure 990504DEST_PATH_IMAGE001
式Ⅰ
Figure 127087DEST_PATH_IMAGE002
式Ⅱ
式Ⅰ中,m,n为重复单元数。
本发明还提供了一种用于高温燃料电池的质子交换膜的制备方法,包括如下:
步骤一:将嵌段聚苯并咪唑和磷钨酸型离子液体分别溶于有机溶剂,然后将上述两种溶液混合,得到混合溶液;
步骤二:将步骤一得到的混合溶液进一步混合搅拌,得到铸膜液,其中嵌段聚苯并咪唑和磷钨酸型离子液体的质量百分比为(80%):(20%);
步骤三:将步骤二得到的铸膜液用流延法铺膜,得到用于高温燃料电池的复合型质子交换膜。
优选的是所述的嵌段聚苯并咪唑的制备方法为:用溶液聚合法,通过控制投料浓度和投料比,分别制备羧基封端的聚醚型苯并咪唑和氨基封端的对位型聚苯并咪唑两种齐聚物,然后将两种齐聚物直接混合,进一步缩聚得到嵌段聚苯并咪唑。
优选的是所述的用于高温燃料电池的质子交换膜的制备方法,控制两种齐聚物的分子量相近,且嵌段比例为1:1。
优选的是,所述的磷钨酸型离子液体的制备方法为:将磷钨酸和1-乙基,3-甲基咪唑双三氟甲基黄酰亚胺离子液体混合,研磨四个小时,得到磷钨酸型离子液体。
所述的磷钨酸和1-乙基,3-甲基咪唑双三氟甲基黄酰亚胺离子液体的摩尔比为1:3。
有益效果
本发明首先提供一种高温燃料电池用复合质子交换膜,该质子交换膜按质量百分比包括:嵌段型聚苯并咪唑:80%;磷钨酸型离子液体:20%;该质子交换膜中咪唑环上的氮既可以充当质子受体又能充当质子给体,可以与磷酸基团形成质子传输通道,对为聚苯并咪唑具有良好的机械性能和热稳定性,但刚性强,加工性差。聚醚型苯并咪唑柔性强;由于在分子主链中含有醚键,促进磷酸吸收和质子传导;了在较低的磷酸掺杂水平下获得较高的质子传导率,使用聚醚型苯并咪唑和对位聚苯并咪唑合成了一系列具有相近分子量和嵌段比例的嵌段PBI,嵌段膜可以形成纳米通道,提高质子传输能力,在较低的磷酸掺杂水平下达到一定的质子传导率;钨酸离子液体的加入,由于磷钨酸具有吸水性,提高保水能力;1-甲基咪唑能为质子传输提供位点。
本发明还提供了一种高温燃料电池用复合型质子交换膜的制备方法,该方法利用两锅法溶液聚合,制备嵌段型聚苯并咪唑,利用研磨法制备磷钨酸型离子液体。再利用两者溶解共混,制备复合型高温质子交换膜;发明制备的复合型质子交换膜结构简单,力学强度高,成本可控,有生产前景,可应用于燃料电池领域。

Claims (6)

1.一种用于高温燃料电池的质子交换膜,其特征在于,由嵌段型聚苯并咪唑和磷钨酸型离子液体组成,组分如下;
嵌段型聚苯并咪唑:90-70%;
磷钨酸型离子液体:10-30%;
所述的嵌段型聚苯并咪唑和磷钨酸离子液体,结构式分别如式Ⅰ和式Ⅱ所示:
Figure 138831DEST_PATH_IMAGE001
式Ⅰ
式Ⅱ
式Ⅰ中,m,n为重复单元数。
2.根据权利要求1所述的一种用于高温燃料电池的质子交换膜的制备方法,其特征在于,包括如下:
步骤一:将嵌段聚苯并咪唑和磷钨酸型离子液体分别溶于有机溶剂,然后将上述两种溶液混合,得到混合溶液;
步骤二:将步骤一得到的混合溶液进一步混合搅拌,得到铸膜液,其中嵌段聚苯并咪唑和磷钨酸型离子液体的质量百分比为(80%):(20%);
步骤三:将步骤二得到的铸膜液用流延法铺膜,得到用于高温燃料电池的复合型质子交换膜。
3.根据权利要求2所述的一种用于高温燃料电池的质子交换膜的制备方法,其特征在于,所述的嵌段聚苯并咪唑的制备方法为:用溶液聚合法,通过控制投料浓度和投料比,分别制备羧基封端的聚醚型苯并咪唑和氨基封端的对位型聚苯并咪唑两种齐聚物,然后将两种齐聚物直接混合,进一步缩聚得到嵌段聚苯并咪唑。
4.根据权利要求3所述的一种用于高温燃料电池的质子交换膜的制备方法,其特征在于,控制两种齐聚物的分子量相近,且嵌段比例为1:1。
5.根据权利要求2所述的一种用于高温燃料电池的质子交换膜的制备方法,其特征在于,所述的磷钨酸型离子液体的制备方法为:将磷钨酸和1-乙基,3-甲基咪唑双三氟甲基黄酰亚胺离子液体混合,研磨四个小时,得到磷钨酸型离子液体。
6.根据权利要求5所述的一种用于高温燃料电池的质子交换膜的制备方法,其特征在于,所述的磷钨酸和1-乙基,3-甲基咪唑双三氟甲基黄酰亚胺离子液体的摩尔比为1:3。
CN201910890822.4A 2019-09-20 2019-09-20 一种用于燃料电池的复合型高温质子交换膜及其制备方法 Pending CN110690485A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910890822.4A CN110690485A (zh) 2019-09-20 2019-09-20 一种用于燃料电池的复合型高温质子交换膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910890822.4A CN110690485A (zh) 2019-09-20 2019-09-20 一种用于燃料电池的复合型高温质子交换膜及其制备方法

Publications (1)

Publication Number Publication Date
CN110690485A true CN110690485A (zh) 2020-01-14

Family

ID=69109654

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910890822.4A Pending CN110690485A (zh) 2019-09-20 2019-09-20 一种用于燃料电池的复合型高温质子交换膜及其制备方法

Country Status (1)

Country Link
CN (1) CN110690485A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112018418A (zh) * 2020-07-28 2020-12-01 深圳欧陆通电子股份有限公司 高温型改性聚苯并咪唑质子交换膜及其制备方法
CN114824394A (zh) * 2021-01-29 2022-07-29 武汉氢阳能源有限公司 一种改性无机杂多酸复合高温质子交换膜及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140004432A1 (en) * 2012-05-08 2014-01-02 Basf Se Membrane electrode assemblies and fuel cells with long lifetime
CN104559213A (zh) * 2015-01-06 2015-04-29 山东理工大学 一种聚三亚甲基碳酸酯与聚乙二醇改进聚肽膜亲水性与柔顺性的方法
CN106252696A (zh) * 2016-10-21 2016-12-21 长春工业大学 燃料电池用无机‑有机复合型质子交换膜及其制备方法
CN109286033A (zh) * 2018-08-20 2019-01-29 深圳大学 用于质子交换膜的支化嵌段型聚合物及制备方法与应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140004432A1 (en) * 2012-05-08 2014-01-02 Basf Se Membrane electrode assemblies and fuel cells with long lifetime
CN104559213A (zh) * 2015-01-06 2015-04-29 山东理工大学 一种聚三亚甲基碳酸酯与聚乙二醇改进聚肽膜亲水性与柔顺性的方法
CN106252696A (zh) * 2016-10-21 2016-12-21 长春工业大学 燃料电池用无机‑有机复合型质子交换膜及其制备方法
CN109286033A (zh) * 2018-08-20 2019-01-29 深圳大学 用于质子交换膜的支化嵌段型聚合物及制备方法与应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JINSHENG LI,ET AL.: ""Flame-retardant AEMs based on organic-inorganic composite polybenzimidazole membranes with enhanced hydroxide conductivity"", 《JOURNAL OF MEMBRANE SCIENCE》 *
LI WANG,ET AL.: ""Preparation and investigation of block polybenzimidazole membranes with high battery performance and low phosphoric acid doping for use in high-temperature fuel cells"", 《JOURNAL OF MEMBRANE SCIENCE》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112018418A (zh) * 2020-07-28 2020-12-01 深圳欧陆通电子股份有限公司 高温型改性聚苯并咪唑质子交换膜及其制备方法
CN114824394A (zh) * 2021-01-29 2022-07-29 武汉氢阳能源有限公司 一种改性无机杂多酸复合高温质子交换膜及其制备方法
CN114824394B (zh) * 2021-01-29 2024-01-26 武汉氢阳能源有限公司 一种改性无机杂多酸复合高温质子交换膜及其制备方法

Similar Documents

Publication Publication Date Title
Yu et al. Aliphatic/aromatic sulfonated polyimide membranes with cross-linked structures for vanadium flow batteries
Subianto Recent advances in polybenzimidazole/phosphoric acid membranes for high‐temperature fuel cells
CN105255188B (zh) 磺化聚芳醚酮砜/氧化石墨烯复合材料、制备方法及质子交换膜
CN109810435B (zh) 一种磷酸掺杂氧化石墨烯及聚偏氟乙烯复合膜的制备方法
CN110041552B (zh) 基于磺化芳醚型聚苯并咪唑与磺化聚倍半硅氧烷的复合型高温质子交换膜及其制备方法
CN101071873A (zh) 聚合物超短纤维增强燃料电池质子交换膜及其制备方法
Zhao et al. Design and application of covalent organic frameworks for ionic conduction
CN104098896A (zh) 一种燃料电池用芳香族磺化聚苯并咪唑质子交换膜及其制备方法
CN110690485A (zh) 一种用于燃料电池的复合型高温质子交换膜及其制备方法
CN110993998A (zh) 一种含萘环聚苯并咪唑型质子交换膜及其制备方法和应用
CN108878933B (zh) 一种Nafion/lignin复合质子交换膜的制备方法
CN103236557B (zh) 一种质子交换膜及其制备方法
Liu et al. Semi-interpenetrating polymer networks toward sulfonated poly (ether ether ketone) membranes for high concentration direct methanol fuel cell
CN102637891A (zh) 钒电池全氟磺酸质子膜及其制备方法
CN109830725B (zh) 一种长侧链型聚苯并咪唑阴离子膜及其制备方法
CN112803051B (zh) 一种新型木质素磺酸/Nafion复合质子交换膜的制备方法
CN112029126A (zh) 一种Co-MOF@磷钨酸/PVDF骨架的磺化聚醚砜质子交换膜及其制备方法
CN115224333A (zh) 具有高质子传导率与稳定性的季铵化聚苯并咪唑凝胶型质子交换膜及其制备方法
CN111718505B (zh) 全钒液流电池用磺化聚醚醚酮/聚偏氟乙烯复合离子交换膜及其制备方法
CN111916806B (zh) 一种咪唑型侧链聚苯并咪唑膜及其制备方法和应用
CN108649244B (zh) 一种SPEEK/lignin复合隔膜的制备方法
CN114188583A (zh) 一种复合质子交换膜及其制备方法和应用
CN113527685A (zh) 一种聚苯并咪唑离子溶剂膜及其制备方法与应用
CN111342094A (zh) 一种稀土掺杂全氟磺酸膜的制备方法
KR100925913B1 (ko) 음이온 고정화 물질이 코팅된 무가습 고분자 전해질 막 및 이를 포함하는 연료전지

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200114