CN112028168B - 二硫化锡/碳纳米纤维复合材料在降解有机污染物中的应用 - Google Patents

二硫化锡/碳纳米纤维复合材料在降解有机污染物中的应用 Download PDF

Info

Publication number
CN112028168B
CN112028168B CN202010815126.XA CN202010815126A CN112028168B CN 112028168 B CN112028168 B CN 112028168B CN 202010815126 A CN202010815126 A CN 202010815126A CN 112028168 B CN112028168 B CN 112028168B
Authority
CN
China
Prior art keywords
carbon nanofiber
composite material
organic pollutants
sns
tin disulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010815126.XA
Other languages
English (en)
Other versions
CN112028168A (zh
Inventor
路建美
李娜君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University filed Critical Suzhou University
Priority to CN202010815126.XA priority Critical patent/CN112028168B/zh
Publication of CN112028168A publication Critical patent/CN112028168A/zh
Application granted granted Critical
Publication of CN112028168B publication Critical patent/CN112028168B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/342Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electric, magnetic or electromagnetic fields, e.g. for magnetic separation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Catalysts (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了二硫化锡/碳纳米纤维复合材料在降解有机污染物中的应用,将碳纳米纤维膜置于含有锡源与硫源的前驱体溶液中,反应后干燥,得到二硫化锡/碳纳米纤维复合材料,将二硫化锡/碳纳米纤维复合材料置入含有有机污染物的水中,然后超声处理,完成水中有机污染物的去除。本发明通过利用不同的技术思路,实现单纯SnS2的催化降解有机污染物双酚A的目的,在催化过程,SnS2在超声波刺激下可高效去除有机污染物。

Description

二硫化锡/碳纳米纤维复合材料在降解有机污染物中的应用
技术领域
本发明涉及纳米复合材料及压电催化技术领域,具体涉及一种一维碳纳米纤维与二维二硫化锡纳米片复合材料的制备方法及其在压电催化去除水体污染物中的应用。
背景技术
全球工业化迅速发展的同时带来严峻的环境污染和资源短缺问题。特别是一些有毒的有机化合物的积累,导致水、空气和土壤的质量下降,这些有毒化合物的危险特性已经严重影响了生态系统,危害到人类健康。太阳能的存储和利用被认为是缓解当前环境污染和资源短缺的有效策略。半导体光催化通常包括三个基本步骤:(1)吸收光子并在半导体中生成电子-空穴对,(2)电荷分离并迁移到催化剂表面,(3)表面氧化还原反应。半导体光催化剂的性能基本上取决于电荷分离和转移动力学。然而,目前大多数光催化剂面临光生电子-空穴快速复合的问题,因此极大地限制了光催化的活性。
发明内容
本发明提供一种一维碳纳米纤维与二维二硫化锡(SnS2)纳米片的复合材料(SnS2/CNFs)及其制备方法,在无需光照的条件下,通过超声处理,实现了催化降解水体污染物的目的。
为了达到上述目的,本发明采用如下具体技术方案:
二硫化锡/碳纳米纤维复合材料在降解有机污染物中的应用。
二硫化锡/碳纳米纤维复合材料去除水中有机污染物的方法,包括以下步骤:将二硫化锡/碳纳米纤维复合材料置入含有有机污染物的水中,然后超声处理,完成水中有机污染物的去除。
本发明所述二硫化锡/碳纳米纤维复合材料(SnS2/CNFs)的制备方法,包括以下步骤:将碳纳米纤维膜置于含有锡源与硫源的前驱体溶液中,反应后干燥,得到二硫化锡/碳纳米纤维复合材料。
本发明中,通过静电纺丝的方法得到聚丙烯腈(PAN)纳米纤维膜;然后通过高温煅烧处理,使得PAN纳米纤维膜碳化得到碳纳米纤维膜(CNFs);再通过溶剂热法在碳纳米纤维膜表面负载一层SnS2纳米片,得到所述纳米复合材料(SnS2/CNFs)。
本发明中,静电纺丝方法中,配制质量分数为8%~12%的聚丙烯腈(PAN)溶液,溶剂为DMF,使用注射器进行静电纺丝。静电纺丝的条件是:滚筒接收器施加负压-8~-2KV,注射器针头施加正压+12~+18KV;针头与接收器之间的距离为15~20 cm;注射器推注速率为0.1~0.3 mm/min;滚筒接收器转速为50~100r/min。优选的,静电纺丝的条件如下:PAN溶液的质量分数为10%,滚筒接收器施加负压-5KV,注射器针头施加正压+15KV;针头与接收器距离为20 cm;纺丝速率为0.2 mm/min;滚筒接收器转速为70 r/min。
本发明中,静电纺丝后得到PAN纳米纤维膜,随后将其在氩气气氛下以2oC/min的速率从室温升温至500oC再保持2~5小时。优选的,在500oC下保持4小时后得到碳纳米纤维膜(CNFs)。
本发明中,为得到SnS2/CNFs纳米复合材料,将一片碳纳米纤维膜(比如2×4cm2)置于含有锡源与硫源的前驱体溶液中,然后溶剂热反应,之后用去离子水和乙醇分别洗涤三次,60oC下鼓风干燥12小时,得到SnS2/CNFs纳米复合材料。
进一步的,使用五水合四氯化锡(SnCl4·5H2O)作为锡源,使用硫代乙酰胺(CH3CSNH2)作为硫源,溶解于无水乙醇得到含有锡源与硫源的前驱体溶液;SnCl4·5H2O与CH3CSNH2的摩尔比为1~3:8,优选的,SnCl4·5H2O与CH3CSNH2的摩尔比为2:8;溶剂热反应在反应釜中120~160oC下反应6~24小时,优选的条件为120oC下12小时。
本发明中,水体中的有机污染物为双酚A;超声处理的功率为300 W。进一步的,超声处理前避光处理;超声处理时不进行光照,可以理解的,所述光照为本领域常识,为了实现光催化而进行的光照,而非常规环境下的照明,不过本发明的超声处理可以在完全避光下进行。
本发明将上述SnS2/CNFs纳米复合材料(2×4 cm2,SnS2的质量为8 mg)放入双酚A水溶液中,黑暗条件下吸附1小时后提供超声波振动开始降解,实现水体中有机污染物的去除。
本发明与现有技术不同之处在于催化降解的目标污染物不同,而且催化过程提供的条件以及机理不同。SnS2作为过渡金属二硫化物,其导带位置较负,现有技术在催化领域通常用于分解水产氢、CO2还原以及还原Cr(VI),未见到用于光催化降解有机污染物方面的文献报道,更没有利用单纯的SnS2可实现光催化去除有机污染物,若要通过能带调控或贵金属等的修饰,不仅制备过程繁琐,而且成本增加。本发明通过利用不同的技术思路,实现单纯SnS2的催化降解有机污染物双酚A的目的,在催化过程,SnS2在超声波刺激下可高效去除有机污染物。
本发明的优点
(1) 本发明采用静电纺丝的方法得到碳纳米纤维膜作为粉末催化剂的载体,便于催化剂的回收利用,不易造成二次污染。在制备方法上简单方便,同时得到的纳米纤维膜具有一级孔道,较大的比表面积利于粉末催化剂的分散,也提高纳米复合材料对有机污染物的吸附能力,实现吸附—降解一体化。
(2) 本发明采用溶剂热法制备的二维二硫化锡纳米片具有丰富的活性边缘,均匀分散在碳纳米纤维的表面进一步增大比表面积,不仅提高材料的吸附性,还可以提供更多的活性位点进而提高催化活性。
(3) 本发明首次将二硫化锡应用于催化降解有机污染物体系中,在无需光照的条件下,通过提供超声振动,促使SnS2弯曲变形,提高催化活性。
附图说明
图1为碳纳米纤维(CNFs)的扫描电镜图;
图2为碳纳米纤维负载二硫化锡纳米片(SnS2/CNFs)的扫描电镜图;
图3为碳纳米纤维负载二硫化锡纳米片(SnS2/CNFs)的透射电镜图;
图4为碳纳米纤维负载二硫化锡纳米片(SnS2/CNFs)降解双酚A的效果图。
具体实施方式
本发明通过简便的静电纺丝的方法得到一维碳纳米纤维,然后采用简单的溶剂热的方法在碳纳米纤维表面负载二维SnS2纳米片,在无需光照的条件下,实现降解水体污染物的目的。
实施例一
碳纳米纤维的制备,具体步骤如下:
1.0 g PAN溶解于10 mL DMF中,搅拌12小时得到透明溶液。转移至5 mL 注射器中进行静电纺丝。静电纺丝的条件设置为滚筒接收器施加负压-5KV,注射器针头施加正压+15KV;针头与接收器距离为20 cm;纺丝速率为0.2 mm/min;滚筒接收器转速为50 r/min。得到的PAN纳米纤维膜在管式炉中氩气气氛下500oC碳化4小时得到碳纳米纤维膜(CNFs),升温速率为2oC/min(室温至500oC)。得到的碳纳米纤维用于实施例二到例六。
附图1为上述碳纳米纤维(CNFs)的扫描电镜图。从图中可以看到纤维的直径均匀分布(大约500nm)。
实施例二
SnS2/CNFs纳米复合材料(0.25-SnS2/CNFs)的制备,具体步骤如下:
称取87.7 mg(0.25 mol)SnCl4·5H2O溶解于20 mL无水乙醇中,记为A溶液。称取150 mg(2 mol)CH3CSNH2溶解于20 mL无水乙醇中,记为B溶液。将A和B两种溶液混合均匀之后,倒入体积为50mL反应釜内胆中,将一片碳纳米纤维膜(2×4cm2)倾斜浸入其中,在120oC下反应12小时,得到的产物依次用去离子水和乙醇洗涤三次,最后在60oC下干燥12小时得到0.25-SnS2/CNFs纳米复合材料。
实施例三
SnS2/CNFs纳米复合材料(0. 5-SnS2/CNFs)的制备,具体步骤如下:
称取175.3 mg(0.5mol)SnCl4·5H2O溶解于20 mL无水乙醇中,记为A溶液。称取150mg(2 mol)CH3CSNH2溶解于20 mL无水乙醇中,记为B溶液。将A和B两种溶液混合均匀之后,倒入体积为50 mL反应釜内胆中,将一片碳纳米纤维膜(2×4cm2)倾斜浸入其中,在120oC下反应12小时,得到的产物依次用去离子水和乙醇洗涤三次,最后在60oC下干燥12小时得到0.5-SnS2/CNFs纳米复合材料,SnS2的负载质量为8 mg。附图2为上述0.5-SnS2/CNFs纳米复合材料的扫描电镜图,附图3为上述0.5-SnS2/CNFs纳米复合材料的透射电镜照片;从图中可以看到,SnS2纳米片均匀地负载在碳纳米纤维表面。
实施例四
SnS2/CNFs纳米复合材料(0.75-SnS2/CNFs)的制备,具体步骤如下:
称取263.0 mg(0.75mol)SnCl4·5H2O溶解于20mL无水乙醇中,记为A溶液。称取150mg(2 mol)CH3CSNH2溶解于20 mL无水乙醇中,记为B溶液。将A和B两种溶液混合均匀之后,倒入体积为50mL反应釜内胆中,将一片碳纳米纤维膜(2×4cm2)倾斜浸入其中,在120oC下反应12小时,得到的产物依次用去离子水和乙醇洗涤三次,最后在60oC下干燥12小时得到0.75-SnS2/CNFs纳米复合材料。
实施例五
0.5-SnS2/CNFs对双酚A的光降解实验:取一片根据实施例三方法制备的0.5-SnS2/CNFs(2×4cm2)复合材料置于含10 mL浓度为10 mg/L的双酚A水溶液小烧杯中,避光吸附1小时达到吸附平衡,期间每30 分钟取样800 μL,经滤头(0.22 μm)过滤后注入高效液相样品瓶中。吸附平衡之后,用300 W的氙灯照射催化剂(不进行超声、搅拌等处理),每20 分钟取样800 μL,经滤头(0.22 μm)过滤除去催化剂后注入高效液相样品瓶中,使用高效液相色谱仪在去离子水:甲醇= 30:70 的流动相中测试样品在290 nm 紫外波长下的吸收曲线,记录在6 分钟 左右的双酚A 出峰面积,并把初始双酚A 的浓度记为100 %,得到双酚A 的光降解曲线。
实施例六
0.5-SnS2/CNFs对双酚A的压电催化降解实验:取一片根据实施例三方法制备的0.5-SnS2/CNFs(2×4 cm2)复合材料置于含10 mL浓度为10 mg/L的双酚A水溶液小烧杯中,避光吸附1小时,期间每30 分钟取样800 μL,经滤头(0.22 μm)过滤后注入高效液相样品瓶中。吸附平衡之后,将样品转移至玻璃试管中,将试管斜置于超声清洁器中,避光下打开超声,功率调至300 W,每20 分钟取样800 μL,经滤头(0.22 μm)过滤除去催化剂后注入高效液相样品瓶中,使用高效液相色谱仪在去离子水:甲醇= 30:70 的流动相中测试样品在290nm 紫外波长下的吸收曲线,记录在6 分钟 左右的双酚A 出峰面积,并把初始双酚A 的浓度记为100 %,得到双酚A 的压电催化降解曲线。
附图4是碳纳米纤维负载二硫化锡纳米片(0.5-SnS2/CNFs)降解双酚A的效果图。从图中可以看到,在光照条件下,0.5-SnS2/CNFs对双酚A无降解能力,但在超声条件下,0.5-SnS2/CNFs对双酚A的降解率为100%。
采用上述同样的测试方法(避光超声),测试0.25-SnS2/CNFs纳米复合材料、0.75-SnS2/CNFs纳米阵列复合材料对含10 mL浓度为10 mg/L的双酚A 水溶液的降解效果,降解120 分钟时,双酚A 的残留率分别为5.38%和0%。
称取175.3 mg(0.5 mol)SnCl4·5H2O溶解于20 mL无水乙醇中,记为A溶液。称取150 mg(2 mol)CH3CSNH2溶解于20 mL无水乙醇中,记为B溶液。将A和B两种溶液混合均匀之后,倒入体积为50mL反应釜内胆中,在120oC下反应12小时,得到的产物依次用去离子水和乙醇洗涤三次,最后在60oC下干燥12小时得到SnS2纳米花。采用实施例六同样的测试方法(硫化锡用量为8mg),降解120分钟后,双酚A的残留率为88.5%,去除率很低。
将实施例一的碳纳米纤维(2×4cm2)采用实施例六同样的测试方法,对双酚A无降解能力。将实施例六中超声更换为磁力搅拌(200rpm),其余不变,降解120分钟后,双酚A的残留率为75.1%;如果超声更换为磁力搅拌(200rpm)加上300 W的氙灯照射,降解120分钟后,双酚A的残留率为73.92%。
根据实施例三制备的0.5-SnS2/CNFs(2×4 cm2)复合材料置于管式炉中,400℃煅烧15分钟,得到复合催化剂,采用实施例五的测试方法,降解120 分钟后,双酚A的残留率为64.7%;采用实施例六的测试方法,降解120 分钟后,双酚A的残留率为68.5%。
本发明公开了一种无需光照、利用机械能刺激进行水体有机污染物降解的纳米复合材料的制备方法,实现了催化双酚A的有效降解。首先通过静电纺丝得到聚丙烯腈纳米纤维,然后在氩气气氛下高温碳化转化为碳纳米纤维,最后通过简单的溶剂热法在碳纳米纤维表面负载一层二硫化锡纳米片。二硫化锡由于其合适的带隙(2.08~2.44eV)和对可见光较大范围的吸收而作为常见的光催化剂,但其通常用作还原重金属离子Cr(VI)、还原二氧化碳等,很少用于有机污染物的去除。本发明首次将其应用到水体有机污染物的催化降解体系中,降解过程提供的超声波实现有效去除有机污染物的目的,另外,将其分散负载于碳纳米纤维表面,有利于回收利用,减少造成二次污染的可能。

Claims (2)

1.二硫化锡/碳纳米纤维复合材料去除水中有机污染物的方法,包括以下步骤:将二硫化锡/碳纳米纤维复合材料置入含有有机污染物的水中,然后超声处理,完成水中有机污染物的去除;有机污染物为双酚A;超声处理时不进行光照,超声处理的功率为200~500 W;所述二硫化锡/碳纳米纤维复合材料的制备方法为,将碳纳米纤维膜置于含有锡源与硫源的前驱体溶液中,反应后干燥,得到二硫化锡/碳纳米纤维复合材料;锡源与硫源的摩尔比为1~3∶8。
2.根据权利要求1所述二硫化锡/碳纳米纤维复合材料去除水中有机污染物的方法,其特征在于,二硫化锡负载于碳纳米纤维表面。
CN202010815126.XA 2020-08-13 2020-08-13 二硫化锡/碳纳米纤维复合材料在降解有机污染物中的应用 Active CN112028168B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010815126.XA CN112028168B (zh) 2020-08-13 2020-08-13 二硫化锡/碳纳米纤维复合材料在降解有机污染物中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010815126.XA CN112028168B (zh) 2020-08-13 2020-08-13 二硫化锡/碳纳米纤维复合材料在降解有机污染物中的应用

Publications (2)

Publication Number Publication Date
CN112028168A CN112028168A (zh) 2020-12-04
CN112028168B true CN112028168B (zh) 2023-03-24

Family

ID=73577265

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010815126.XA Active CN112028168B (zh) 2020-08-13 2020-08-13 二硫化锡/碳纳米纤维复合材料在降解有机污染物中的应用

Country Status (1)

Country Link
CN (1) CN112028168B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112624040B (zh) * 2020-12-22 2022-09-06 佛山(华南)新材料研究院 一种制备氢气的方法
CN113387326B (zh) * 2021-06-27 2023-11-10 苏州大学 二硫化锡纳米催化剂在压电催化分解水产氢中的应用
CN113385194B (zh) * 2021-06-27 2023-03-17 苏州大学 金属离子掺杂二硫化锡纳米花及其在压电催化降解污染物中的应用
CN114381822B (zh) * 2022-01-24 2023-12-22 南通大学 具有光热功能的SnS微米花掺杂静电纺丝纤维的制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101818817B1 (ko) * 2015-10-08 2018-01-16 한국과학기술원 2차원 층상 구조를 갖는 금속 황화물이 중공 구조의 탄소나노섬유에 결착된 수소 발생 촉매 및 이의 제조 방법
US10319994B2 (en) * 2016-06-01 2019-06-11 Board Of Regents Of The University Of Texas System Method and use of ceramic/carbon composite nanofibers as an anode for lithium-ion and sodium-ion batteries
CN106753695A (zh) * 2016-12-14 2017-05-31 刘兴旺 一种润滑油添加剂
CN107570180B (zh) * 2017-09-22 2020-04-21 陕西科技大学 一种溶剂热法制备二硫化锡/碘氧化铋复合光催化剂的方法
CN107768620B (zh) * 2017-09-26 2020-05-05 哈尔滨工业大学 一种具有异质结结构的碳纳米纤维、二硫化锡、二氧化锡和硫复合材料的制备方法及应用
CN107890876A (zh) * 2017-10-27 2018-04-10 苏州大学 一种可见光响应CC@SnS2/SnO2复合催化剂的制备方法及其应用
CN108745384A (zh) * 2018-05-31 2018-11-06 苏州大学 功能化杂化纳米管C@MoS2/SnS2及其制备方法与应用
CN109174128B (zh) * 2018-09-13 2020-06-19 浙江大学 一种二硫化钨的改性方法及其应用
CN110180579B (zh) * 2019-07-03 2022-04-01 河北工业大学 多级SnS2纳米花与C3N4量子点复合材料及其制备方法与应用
CN111354929A (zh) * 2019-12-30 2020-06-30 中国计量大学 一种多层核壳结构的碳纤维-二硫化锡电极材料的制备
CN111375427A (zh) * 2020-04-16 2020-07-07 安徽理工大学 一种二维SnS2@TiO2光催化复合材料的制备

Also Published As

Publication number Publication date
CN112028168A (zh) 2020-12-04

Similar Documents

Publication Publication Date Title
CN112028168B (zh) 二硫化锡/碳纳米纤维复合材料在降解有机污染物中的应用
CN108772108B (zh) 一种可见光响应的二氧化钛纳米线/金属有机骨架/碳纳米纤维膜及其制备方法及应用
Jiang et al. Constructing graphite-like carbon nitride modified hierarchical yolk–shell TiO 2 spheres for water pollution treatment and hydrogen production
CN101574652B (zh) 负载型光催化剂的制备方法及应用
CN107297204A (zh) 一种以活性炭纤维为载体的TiO2纳米棒光催化网的制备方法
CN107321341B (zh) 一种硅藻土/(GR+TiO2)复合光催化剂的制备方法
CN108993550B (zh) 一种表面氧空位改性的溴氧铋光催化剂及其制备方法
CN113289647B (zh) 一种生物炭掺杂BiOBrxCl1-x光催化剂、制备方法及应用
CN112121821A (zh) 硫化镉/氧化锌复合材料及其制备方法与在压电-光催化去除有机污染物中的应用
Li et al. A biotemplate synthesized hierarchical Sn-doped TiO2 with superior photocatalytic capacity under simulated solar light
CN106268908A (zh) 一种去除有机污染物的石墨相C3N4掺杂TiO2负载膨胀珍珠岩的漂浮型环境修复材料及其制备方法
Gao et al. The stable and elastic graphitic carbon nitride/polyvinyl alcohol photocatalytic composite sponge: Simple synthesis and application for wastewater treatment
Wang et al. Enhanced optical absorption and pollutant adsorption for photocatalytic performance of three-dimensional porous cellulose aerogel with BiVO4 and PANI
CN111359631A (zh) 一种超高活性改性CdS材料压电催化材料的制备方法及应用
CN107511144A (zh) 一步溶剂热制备纳米颗粒/楠竹纤维复合材料
Rabin et al. A procession on photocatalyst for solar fuel production and waste treatment
CN102266764A (zh) 一种膨胀石墨/氧化锌复合光催化剂及其制备方法
Wang et al. In situ construction of BiVO4 (-) cellulose fibers@ CDs (-) polyvinyl alcohol composites for tetracycline photocatalytic degradation
CN109261156B (zh) 镍膜与氧化锌纳米棒复合材料及其制备方法与应用
Zhang et al. Construction of carbon nitride/zeolitic imidazolate framework-67 heterojunctions on carbon fiber cloth as the photocatalyst for various pollutants removal and hydrogen production
CN109174133B (zh) 一种钼氮共掺杂的二氧化钛复合纳米纤维片及其制备方法
CN115121239A (zh) 一种生物炭催化剂的制备方法及其应用
CN109772338B (zh) 一种含缺陷的Ni/NiTiO3-x/C复合纳米纤维膜光催化材料
CN110624532B (zh) 一种TiO2-BiVO4-石墨烯三元复合光催化材料及其制备方法
CN108654673B (zh) 一种新型光催化材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant