CN107511144A - 一步溶剂热制备纳米颗粒/楠竹纤维复合材料 - Google Patents

一步溶剂热制备纳米颗粒/楠竹纤维复合材料 Download PDF

Info

Publication number
CN107511144A
CN107511144A CN201710935539.XA CN201710935539A CN107511144A CN 107511144 A CN107511144 A CN 107511144A CN 201710935539 A CN201710935539 A CN 201710935539A CN 107511144 A CN107511144 A CN 107511144A
Authority
CN
China
Prior art keywords
tio
nano particle
carbonization
reactor
bamboo fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710935539.XA
Other languages
English (en)
Inventor
任保胜
王慧
陈其凤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Jinan
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Priority to CN201710935539.XA priority Critical patent/CN107511144A/zh
Publication of CN107511144A publication Critical patent/CN107511144A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • B01J35/39
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/42Materials comprising a mixture of inorganic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4806Sorbents characterised by the starting material used for their preparation the starting material being of inorganic character
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character
    • B01J2220/4825Polysaccharides or cellulose materials, e.g. starch, chitin, sawdust, wood, straw, cotton

Abstract

本发明提供了一种以碳化的植物纤维作为载体,通过一步溶剂热的方法将纳米颗粒附着于纤维表面,合成纳米颗粒‑碳化植物纤维复合光催化材料的制备方法。溶剂热法制备纳米颗粒‑碳化楠竹植物纤维光催化剂,制备过程简单,原材料处理方便,产物成分可以精确调控,均匀性好,性能优越。碳化后的楠竹植物纤维还保持原有的微结构和形貌,这不仅有增强了纳米颗粒与植物碳纤维的复合作用,产生了优异的复合效应,而且增加了有机污染物的吸附量,从而提高光催化活性。本发明表明随着钛酸异丙酯用量的增加,TiO2的负载量增加,TiO2与碳化植物纤维复合的协同作用也随之增强,光催化效果显著提高。本发明所制备的复合光催化剂不仅大大提高了光催化活性,而且工艺简单,成本低,在光催化领域有广泛的应用价值和应用前景。

Description

一步溶剂热制备纳米颗粒/楠竹纤维复合材料
技术领域
本发明涉及一种用一步溶剂热制备纳米颗粒-碳化植物纤维复合光催化剂的方法,属于光催化技术领域。
背景技术
随着社会生产力的发展,环境污染日益严重,环境成为直接影响人类生存和发展的重大问题。光催化技术可以直接利用太阳能、能够处理绝大多数水体和空气中的有害物质、价格便宜、环境友好并且有希望实现光解水制氢,因此已经成为解决环境问题最有希望的绿色清洁技术之一。光催化技术的核心是光催化剂,目前发现的具有光催化活性的物质主要是金属氧化物(TiO2、ZnO、Bi2O3、Fe2O3、WO3、SnO2等)、硫化物(ZnS、CdS等)、矾酸盐(BiVO4等)、卤氧化物(BiOX, X=Cl、Br、I等)、钨酸盐(Bi2WO6)、钛酸盐(BiTiO3等)、铁酸盐(BiFeO3等)等半导体纳米材料、。这些纳米材料光催化活性高、廉价易得、无毒无害、化学性质稳定、抗光腐蚀等优点,因此广泛应用于环境光催化。但是这些纳米材料存在以下主要的缺点:一是部分半导体材料(如TiO2、ZnO等)只能吸收紫外光,从而不能够充分利用太阳光; 二是由于光生电子-空穴对容易在半导体颗粒体相内部或表面复合,因此量子效率较低;三是回收率比较低,不能做到完全重复利用。因此,如何制备出宽的太阳光吸收范围、高的光催化量子效率以及可回收利用的光催化剂已经成为当前光催化领域的研究焦点。
在光催化反应后从水溶液中回收粉状光催化剂难度大,回收成本高,在工业上并不实用。所以Reijnders建议,关于纳米粒子作为催化剂的实际应用,可以将纳米粒子固定在具有减小的带隙和改善的污染物吸附能力的合适的载体上,诸如玻璃纤维,光纤,二氧化硅,不锈钢,植物纤维,聚合物基材和沸石的载体。科学家们得出常用的纳米粒子的载体主要作用有:载体可以固定纳米粒子,便于粉体状的固体颗粒使用后回收;某些存在微孔结构的载体能增加比表面积,实现纳米粒子负载量增多;将制成的光催化剂薄膜负载到载体上,催化剂的表面上单位面积受光照的催化剂粒子增多,可以有效提高可见光的利用率。然而,在上述选择中薄膜载体的使用使得整个材料的效率较低下。此外,良好吸附性是对有效光催化剂载体的重要考查条件之一。实验表明,碳质材料表现出非凡的吸收性能,通过碳材料吸附染料可以显着提高光催化部位附近污染物分子的浓度。所以,将大比表面积的碳材料和半导体纳米材料复合将会产生优异的光催化性能,很有希望用在光催化降解环境污染物的领域。科学家们也开始研究在各种碳材料附着纳米粒子的材料,如将活性炭与TiO2粉末充分混合,成功制备具有良好光催化性能的复合光催化剂。除此之外,人们还对C60、碳纳米管(CNT)、石墨烯和碳纤维做了相应的研究。此外,植物纤维具有独特的微结构,如果将植物纤维炭化后能够保持其独特的微观结构,然后再与半导体光催材料复合,将会产生特殊的复合效应,从而会提高复合材料的性能。此外,,植物纤维可以再生,绿色环保,易得,价廉。因此,通过一种简单、绿色的合成方法制备炭化的植物纤维与半导体纳米颗粒复合材料将会产生巨大的应用前景和经济效益,也会简化对环境污染的治理过程,提高治理效率。
发明内容
现有的C60、碳纳米管(CNT)等碳材料的合成条件比较苛刻,制造过程不仅复杂而且需要昂贵的大型仪器,所以生产成本很高。为了解决这些问题,我们提出用碳化植物纤维(优选楠竹纤维等竹纤维)作为纳米颗粒的生长载体,使用一种非常简单和直接的溶剂热法来制备纤维附着纳米颗粒的复合材料。溶剂热法制备纳米颗粒-碳化楠竹纤维光催化剂,原材料处理方便,产物成分能够准确调控,半导体纳米颗粒均匀性好。纳米颗粒-碳化楠竹纤维复合材料因为碳质材料作为载体而具有优秀的吸收性能,并且具有良好的机械强度,与光催化剂能形成良好的界面复合,得到的复合材料物理化学性能稳定;最重要的是两者具有良好的协同作用,提高了对有机污染物的降解能力;因为碳质材料具有优异的导电性能,并且纳米颗粒中的光生电子可以沿着碳纤维自由移动,提高光生电子和空穴的分离效率,从而增强光催化性能。这里,我们以二氧化钛纳米颗粒-碳化楠竹纤维复合光催化剂为例说明材料的制备。
本发明是通过以下实验步骤实现的:
(1) 称取一定量经预处理的楠竹纤维,放到管式炉中在惰性气氛下碳化。其中管式炉设定参数为:从室温20℃开始,5~10℃/min加热至200℃;5~10℃/min加热至500℃;恒温1h~2h后自然冷却至室温即可。其中氩气通气速率为0.3~1L/min;
(2) 称取一定量的碳化植物纤维到50mL反应釜内胆中,量筒称取30mL无水乙醇,移液枪取500μL乙酸加入到反应釜内胆中。为了确定最佳配比,分别在反应釜内加入不同量的钛酸异丙酯,配制成TiO2/碳化楠竹纤维不同质量比的反应体系,分别记作A-TiO2/BF、B-TiO2/BF、C-TiO2/BF、和D-TiO2/BF。做好标记后加入磁转子在磁力搅拌器上搅拌2 h;
(3) 取出反应釜内胆中的磁转子,清洗干净,干燥收藏以备下次使用。将含有反应体系的反应釜装置密封完全,放入到干燥箱内150~200℃条件下反应12 h;
(4) 打开降至室温的反应釜,无水乙醇多次洗涤反应溶液,然后将洗涤好的TiO2/BF转移至烘箱内干燥。待干燥后收集出样品即可。
在本发明中,我们通过改变TiO2/植物纤维的质量比(1/40、1/20、1/10、1/5)制备性能优良的复合材料光催化剂。
本发明的优点有:
(1) 溶剂热法制备纳米颗粒-碳化楠竹纤维光催化剂时所得产物成分精确,均匀性好;
(2) 所用的楠竹纤维不仅经济易得而且方便处理;
(3) 制备工艺简单可控,重复性好;
(4) 所制备的样品有利于回收并且可以重复使用。
附图说明
图1是实例1所制备的二氧化钛纳米颗粒-碳化楠竹纤维复合光催化剂的扫描电镜图片;
图2是实例2所制备的二氧化钛纳米颗粒-碳化楠竹纤维复合光催化剂的扫描电镜图片;
图3是实例3所制备的二氧化钛纳米颗粒-碳化楠竹纤维复合光催化剂的扫描电镜图片;
图4是实例4所制备的二氧化钛纳米颗粒-碳化楠竹纤维复合光催化剂的扫描电镜图片;
图5是实例4所制备的二氧化钛纳米颗粒-碳化楠竹纤维复合光催化剂的XRD图谱;
图6是实例1至实例4所制备的二氧化钛纳米颗粒-碳化楠竹纤维复合光催化剂催化有机染料的降解图。
具体实施方式
下面以具体实施例来对本发明做进一步说明,应该明白的是,下述说明仅是为了解释本发明,并不对其内容进行限定。
实例1
(1) 称取一定量经预处理的楠竹纤维,放入到管式炉中在惰性气氛氩气环境下碳化。其中管式炉设定参数为:从室温20℃开始,10℃/min加热至200℃;5℃/min加热至500℃;恒温1h后自然冷却至室温即可。其中氩气通气速率为0.5L/min;
(2) 称取100mg碳化楠竹纤维到50mL反应釜内胆中,量筒称取30mL无水乙醇,移液枪取500μL乙酸加入到反应釜内胆中。在反应釜内加入8.9μL钛酸异丙酯,加入磁转子在磁力搅拌器上搅拌2 h,此样品记作A-TiO2/BF;
(3) 取出反应釜内胆中的磁转子,清洗干净,干燥收藏以备下次使用。将含有反应体系的反应釜装置密封完全,放入到干燥箱内180 ℃条件下反应12 h;
(4) 打开降至室温的反应釜,无水乙醇多次洗涤反应溶液,然后将洗涤好的A-TiO2/BF转移至烘箱内干燥。待干燥后收集出样品即可。
实例2
(1) 称取一定量经预处理的楠竹纤维,放入到管式炉中在惰性气氛氩气环境下碳化。其中管式炉设定参数为:从室温20℃开始,10℃/min加热至200℃;5℃/min加热至500℃;恒温1h后自然冷却至室温即可。其中氩气通气速率为0.5L/min;
(2) 称取100mg碳化楠竹纤维到50mL反应釜内胆中,量筒称取30mL无水乙醇,移液枪取500μL乙酸加入到反应釜内胆中。在反应釜内加入17.8μL钛酸异丙酯,加入磁转子在磁力搅拌器上搅拌2 h,此样品记作B-TiO2/BF;
(3) 取出反应釜内胆中的磁转子,清洗干净,干燥收藏以备下次使用。将含有反应体系的反应釜装置密封完全,放入到干燥箱内180 ℃条件下反应12 h;
(4) 打开降至室温的反应釜,无水乙醇多次洗涤反应溶液,然后将洗涤好的B-TiO2/BF转移至烘箱内干燥。待干燥后收集出样品即可。
实例3
(1) 称取一定量经预处理的楠竹纤维,放入到管式炉中在惰性气氛氩气环境下碳化。其中管式炉设定参数为:从室温20℃开始,10℃/min加热至200℃;5℃/min加热至500℃;恒温1h后自然冷却至室温即可。其中氩气通气速率为0.5L/min;
(2) 称取100mg碳化植物纤维到50mL反应釜内胆中,量筒称取30mL无水乙醇,移液枪取500μL乙酸加入到反应釜内胆中。在反应釜内加入35.5μL钛酸异丙酯,加入磁转子在磁力搅拌器上搅拌2 h,此样品记作C-TiO2/BF;
(3) 取出反应釜内胆中的磁转子,清洗干净,干燥收藏以备下次使用。将含有反应体系的反应釜装置密封完全,放入到干燥箱内180 ℃条件下反应12 h;
(4) 打开降至室温的反应釜,无水乙醇多次洗涤反应溶液,然后将洗涤好的C-TiO2/BF转移至烘箱内干燥。待干燥后收集出样品即可。
实例4
(1) 称取一定量经预处理的楠竹纤维,放入到管式炉中在惰性气氛氩气环境下碳化。其中管式炉设定参数为:从室温20℃开始,10℃/min加热至200℃;5℃/min加热至500℃;恒温1h后自然冷却至室温即可。其中氩气通气速率为0.5L/min;
(2) 称取100mg碳化楠竹纤维到50mL反应釜内胆中,量筒称取30mL无水乙醇,移液枪取500μL乙酸加入到反应釜内胆中。在反应釜内加入71μL钛酸异丙酯,加入磁转子在磁力搅拌器上搅拌2 h,此样品记作D-TiO2/BF;
(3) 取出反应釜内胆中的磁转子,清洗干净,干燥收藏以备下次使用。将含有反应体系的反应釜装置密封完全,放入到干燥箱内180 ℃条件下反应12 h;
(4) 打开降至室温的反应釜,无水乙醇多次洗涤反应溶液,然后将洗涤好的D-TiO2/BF转移至烘箱内干燥。待干燥后收集出样品即可。
从图1至4的扫描电镜中可以看出,碳化植物纤维保持原来的微孔结构,这可以提高光催化复合材料的吸附能力,增强碳化楠竹纤维与纳米TiO2的协同作用,从而提高光催化活性;在图1至图4中可以明显看出随着碳酸异丙酯用量的增加,楠竹纤维上TiO2的附着量也在增加。在图5的XRD图谱中,第一个衍射峰的2θ为9.8°,其PDF标准卡片编号为48-1449,对应于C70的(003)晶面,后面的衍射峰的2θ为25.3°、37.8°、38.6 °和48.0°,分别对应于锐钛矿型TiO2的(101)、(004)、(112)和(200)晶面,证明本发明已成功制备出TiO2/碳化楠竹纤维复合光催化材料。在图6中的光催化降解图中也可看出复合光催化剂的活性随着TiO2的附着量增加而提高。

Claims (6)

1.一种纳米颗粒-碳化楠竹纤维复合光催化剂,其制备特征在于:用溶剂热的方法,通过控制钛酸异丙酯的用量,在预处理好的碳化楠竹纤维上附着不同量的二氧化钛颗粒,从而制备了一系列不同纳米颗粒负载量的纳米颗粒-碳化楠竹纤维复合光催化剂。
2.制备权利要求1所述,其特征在于所述方法包括以下步骤:
(a) 称取一定量经预处理的植物纤维,放入管式炉中在惰性气氛环境下碳化;
(b) 称取100mg碳化植物纤维放至50mL反应釜内胆中,然后分别量取30mL无水乙醇,500μL乙酸加入到反应釜内胆中,为了确定最佳配比,在反应釜内分别加入不同量的钛酸异丙酯,配制成不同质量比的反应体系,分别记作A-TiO2/BF、B-TiO2/BF、C-TiO2/BF、和D-TiO2/BF,加入磁转子在磁力搅拌器上搅拌1-2 h;
(c) 将反应釜装置密封完全,放入到干燥箱内反应12 h;
(d) 打开降至室温的反应釜,用无水乙醇多次洗涤反应溶液,然后将洗涤干净的TiO2/BF转移至烘箱内干燥。
3.如权利要求2所述的方法,其特征在于所述步骤(a)中,惰性气体是氮气或氩气。
4.如权利要求2所述的方法,其特征在于所述步骤(a)中, 管式炉设定参数为:从室温20℃开始,5~10℃/min加热至200℃;5~10℃/min加热至500℃;恒温1h~2h后自然冷却至室温即可,其中氩气通气速率为0.5L/min。
5.如权利要求2所述的方法,其特征在于所述步骤(b)中, 钛酸异丙酯与植物纤维的质量比分别为1/40、1/20、1/10、1/5。
6.如权利要求2所述的方法,其特征在于所述步骤(c)中, 干燥箱中的反应温度为150~180℃。
CN201710935539.XA 2017-10-10 2017-10-10 一步溶剂热制备纳米颗粒/楠竹纤维复合材料 Pending CN107511144A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710935539.XA CN107511144A (zh) 2017-10-10 2017-10-10 一步溶剂热制备纳米颗粒/楠竹纤维复合材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710935539.XA CN107511144A (zh) 2017-10-10 2017-10-10 一步溶剂热制备纳米颗粒/楠竹纤维复合材料

Publications (1)

Publication Number Publication Date
CN107511144A true CN107511144A (zh) 2017-12-26

Family

ID=60726476

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710935539.XA Pending CN107511144A (zh) 2017-10-10 2017-10-10 一步溶剂热制备纳米颗粒/楠竹纤维复合材料

Country Status (1)

Country Link
CN (1) CN107511144A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108816259A (zh) * 2018-06-12 2018-11-16 石狮市川大先进高分子材料研究中心 一种二氧化钛负载型复合碳气凝胶及其制备与应用
CN110052260A (zh) * 2019-03-20 2019-07-26 常州大学 基于细菌纤维素合成具有三维互通结构的钛酸锶/碳复合材料
CN110180520A (zh) * 2019-05-08 2019-08-30 陕西科技大学 一种可回收的介孔碳@TiO2/碳纤维光催化材料及其制备方法
US11351532B2 (en) * 2018-07-30 2022-06-07 Suzhou University of Science and Technology Photocatalytic composite material and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0874171A (ja) * 1994-09-01 1996-03-19 Komatsu Seiren Kk 消臭、抗菌および防汚機能を有する繊維布帛
CN104045110A (zh) * 2014-07-04 2014-09-17 西北师范大学 二氧化钛纳米纤维材料的制备方法
CN106311204A (zh) * 2016-07-26 2017-01-11 浙江大学 一种在基材上生长二氧化钛颗粒的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0874171A (ja) * 1994-09-01 1996-03-19 Komatsu Seiren Kk 消臭、抗菌および防汚機能を有する繊維布帛
CN104045110A (zh) * 2014-07-04 2014-09-17 西北师范大学 二氧化钛纳米纤维材料的制备方法
CN106311204A (zh) * 2016-07-26 2017-01-11 浙江大学 一种在基材上生长二氧化钛颗粒的方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108816259A (zh) * 2018-06-12 2018-11-16 石狮市川大先进高分子材料研究中心 一种二氧化钛负载型复合碳气凝胶及其制备与应用
CN108816259B (zh) * 2018-06-12 2021-02-12 石狮市川大先进高分子材料研究中心 一种二氧化钛负载型复合碳气凝胶及其制备与应用
US11351532B2 (en) * 2018-07-30 2022-06-07 Suzhou University of Science and Technology Photocatalytic composite material and preparation method and application thereof
CN110052260A (zh) * 2019-03-20 2019-07-26 常州大学 基于细菌纤维素合成具有三维互通结构的钛酸锶/碳复合材料
CN110180520A (zh) * 2019-05-08 2019-08-30 陕西科技大学 一种可回收的介孔碳@TiO2/碳纤维光催化材料及其制备方法

Similar Documents

Publication Publication Date Title
Yu et al. Novel SiO2 nanoparticle-decorated BiOCl nanosheets exhibiting high photocatalytic performances for the removal of organic pollutants
Tian et al. Fabrication of modified g-C3N4 nanorod/Ag3PO4 nanocomposites for solar-driven photocatalytic oxygen evolution from water splitting
Zhang et al. One-step growth of nanosheet-assembled BiOCl/BiOBr microspheres for highly efficient visible photocatalytic performance
Chen et al. Ag3PO4/graphene-oxide composite with remarkably enhanced visible-light-driven photocatalytic activity toward dyes in water
Zhao et al. Study on the photocatalysis mechanism of the Z-scheme cobalt oxide nanocubes/carbon nitride nanosheets heterojunction photocatalyst with high photocatalytic performances
Jiang et al. Synthesis of ZnO particles with multi-layer and biomorphic porous microstructures and ZnO/rGO composites and their applications for photocatalysis
Zhang et al. Carbon-incorporated TiO2 microspheres: facile flame assisted hydrolysis of tetrabutyl orthotitanate and photocatalytic hydrogen production
CN102489284B (zh) 可磁性分离回收的石墨烯复合二氧化钛光催化剂及其制备方法
CN107511144A (zh) 一步溶剂热制备纳米颗粒/楠竹纤维复合材料
Feng et al. Photocatalytic dyes degradation on suspended and cement paste immobilized TiO2/g-C3N4 under simulated solar light
Zhao et al. Synthesis of one-dimensional α-Fe2O3/Bi2MoO6 heterostructures by electrospinning process with enhanced photocatalytic activity
CN107020142A (zh) 泡沫镍负载碳氮/还原石墨烯光催化剂的制备方法
Wei et al. Highly efficient photocatalytic activity and mechanism of novel Er3+ and Tb3+ co-doped BiOBr/g-C3N5 towards sulfamethoxazole degradation
Chen et al. Bi12SiO20/g-C3N4 heterojunctions: Synthesis, characterization, photocatalytic activity for organic pollutant degradation, and mechanism
CN109317183A (zh) 一种氮化硼量子点/超薄多孔氮化碳复合光催化材料及其制备方法和应用
CN102060330A (zh) 一种以微波幅射加热合成钼酸铋八面体纳米颗粒的方法
CN113145134B (zh) 一种基于矿物复合材料的可见光催化剂及其制备方法
CN103949234A (zh) 硼掺杂石墨烯/TiO2纳米棒光催化材料的制备方法
Li et al. Preparation of hollow Nd/TiO 2 sub-microspheres with enhanced visible-light photocatalytic activity
CN108246334A (zh) 一种功能化三元复合光催化材料及其制备方法与用途
CN105833887B (zh) 一种BiOCl/β‑FeOOH复合纳米材料及其制备方法
Wu et al. Study on TiO2/g-C3N4 S-Scheme heterojunction photocatalyst for enhanced formaldehyde decomposition
CN103111286A (zh) 一种新型纳米复合可见光催化剂及其制备方法
CN109529892A (zh) 一种纳米带状moa复合光催化剂制备方法
CN108499582A (zh) 一种复合光催化剂的制备方法

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20171226

RJ01 Rejection of invention patent application after publication