CN112023943B - 一种花状多孔In2S3/In2O3复合催化剂的制备方法及应用 - Google Patents

一种花状多孔In2S3/In2O3复合催化剂的制备方法及应用 Download PDF

Info

Publication number
CN112023943B
CN112023943B CN202010152425.XA CN202010152425A CN112023943B CN 112023943 B CN112023943 B CN 112023943B CN 202010152425 A CN202010152425 A CN 202010152425A CN 112023943 B CN112023943 B CN 112023943B
Authority
CN
China
Prior art keywords
flower
precursor
composite catalyst
porous
prepared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010152425.XA
Other languages
English (en)
Other versions
CN112023943A (zh
Inventor
李盼
刘应敏
瞿鹏
杨尚坤
龚昊元
杨晨
冯鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shangqiu Normal University
Original Assignee
Shangqiu Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shangqiu Normal University filed Critical Shangqiu Normal University
Priority to CN202010152425.XA priority Critical patent/CN112023943B/zh
Publication of CN112023943A publication Critical patent/CN112023943A/zh
Application granted granted Critical
Publication of CN112023943B publication Critical patent/CN112023943B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1088Non-supported catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种花状多孔In2S3/In2O3复合催化剂的制备方法及应用,以花状In2S3作为前驱体,采用原位氧化的方法在In2S3表面上直接生长In2O3制备多孔In2S3/In2O3复合催化剂,所述花状In2S3前驱体是以InCl3为铟源,TAA为硫源及乙二醇和水的混合溶液为反应介质,通过溶剂热法制备的花状In2S3前驱体。本发明提供一种通过原位氧化法构建In2S3/In2O3复合催化剂的解决思路。通过In2S3和In2O3两者之间异质结的构建,有效抑制了光生载流子的复合,提高了其分离效率;同时,In2O3引入也产生了多孔结构,增加了暴露的催化反应活性位点,显著地提高了复合体系的催化活性。

Description

一种花状多孔In2S3/In2O3复合催化剂的制备方法及应用
技术领域
本发明属于光催化领域,尤其涉及一种花状多孔In2S3/In2O3复合催化剂的制备方法。
背景技术
煤、石油、天然气等传统化石能源是目前全球使用的主要能源,但随着人类生活水平的普遍提高及世界经济的持续发展,能源危机已成为人们面临的主要问题。同时,由于传统化石能源的大量消耗所引起的空气污染、水体污染、全球变暖等环境问题,也严重地威胁着人类的健康。寻找新的洁净能源将对人类的可持续发展具有重要的意义。氢的燃烧热值高,且氢燃烧后生成物只有水,不会对环境造成任何污染。因此,氢能是一种最具发展潜力的理想清洁能源。自1972年日本科学家Fujishima和Honda发现TiO2电极在紫外光照射下能够分解水产生氢气现象以来,半导体光催化制氢技术已成为世界各国研究的热点,吸起了越来越多科研工作者的广泛关注。
金属硫化物半导体In2S3是一种重要的半导体光催化剂,它具有较窄的带隙、较好的可见光响应性能和合适的导带电位等优点,被认为是一个很有潜力的光催化产氢催化剂。但对于单一In2S3半导体光催化剂来说,光生电子和光生空穴的复合比较严重,导致其光催化效率较低。而异质结的构建是提高光生载流子分离效率一种十分有效的策略。此外,多孔结构的引入使催化剂具有更大的比表面积和暴露出更多的活性位点,有利于反应物和产物的扩散,从而使催化体系表现出更优异的光催化性能。
虽然已有专利报道了In2O3/In2S3复合催化剂(CN 109999836 A和 CN 105664973A),此复合催化剂的制备方法是通过硫化的方法,在In2O3表面上包裹In2S3。但此结构的缺点是In2S3上的光生电子转移至上In2O3,而In2O3被包裹在内部,不利于催化反应的进行。不同于之前的制备方法,本专利中我们构建了In2S3/In2O3复合结构,包裹在外部的In2O3可以顺利接受In2S3上的光生电子并在表面上发生催化反应,提高了催化效率。
发明内容
针对现有技术中存在的问题,为了解决In2S3半导体光生电子和空穴的复合比较严重的缺点,本发明提供一种通过原位氧化法构建In2S3/In2O3复合催化剂的解决思路。通过In2S3和In2O3两者之间异质结的构建,有效抑制了光生载流子的复合,提高了其分离效率;同时,In2O3引入也产生了多孔结构,增加了暴露的催化反应活性位点,显著地提高了复合体系的催化活性。
为解决上述技术问题,本发明采用以下技术方案:
一种花状多孔In2S3/In2O3复合催化剂的制备方法,以花状In2S3作为前驱体,采用原位氧化的方法在In2S3表面上直接生长In2O3制备多孔In2S3/In2O3复合催化剂。
进一步,所述原位氧化的方法是将花状In2S3前驱体在富氧气氛中加热处理得到多孔In2S3/In2O3复合催化剂。
进一步,所述花状In2S3前驱体是以InCl3为铟源,TAA为硫源及乙二醇和水的混合溶液为反应介质,通过溶剂热法制备的花状In2S3前驱体。
进一步,所述花状In2S3前驱体的制备方法如下:将InCl3∙4H2O 和TAA 溶解于乙二醇和水的混合溶液中,在150℃下保温10-20 h,优先选择12h,等反应釜自然降温至室温,离心洗涤所得的沉淀,并放于65℃真空干燥箱中干燥。
进一步,所述InCl3∙4H2O 和TAA的摩尔比为1:4,所述乙二醇和水的体积比=1:5。
进一步,将花状In2S3前驱体在空气气氛中,450-550℃条件下处理1-4h,优选500℃处理2 h,得到多孔In2S3/In2O3复合催化剂,。
本发明制得的花状多孔In2S3/In2O3复合催化剂在光降解中的应用,具体可应用于光解水或光催化还原CO2反应,优先选择光解水反应。
本发明的有益效果:通过引入In2O3构建多孔In2S3/In2O3异质结复合催化剂,抑制了光生电子-光生空穴的复合,提高了光生载流子的分离效率;另外,In2O3引入也产生了多孔结构,具有更大的比表面积和暴露更多的活性位点,有利于反应物和产物的扩散,使复合体系表现出更优异的光催化活性。本发明的制备方法简单可行,操作方便,In2O3可以均匀地生长在In2S3表面上,且两者之间具有较紧密的界面接触,有利于光生电荷的快速转移。制得的多孔In2S3/In2O3异质结复合催化剂可用于光降解、光解水、光催化还原二氧化碳等领域,优先选择光解水反应。
附图说明
图1为实施例1,2和3中所制备催化剂的XRD图谱;
图2为实施例1中所制备的In2S3前躯体的扫描电子显微镜图;
图3为实施例2中所制备In2S3/In2O3-500复合催化剂的扫描电子显微镜图;
图4为实施例3中所制备In2O3复合催化剂的扫描电子显微镜图;
图5为所制备催化剂光照6 h后产生的氢气含量。
具体实施方式
下面结合具体实施例,对本发明做进一步说明。应理解,以下实施例仅用于说明本发明而非用于限制本发明的范围,该领域的技术熟练人员可以根据上述发明的内容作出一些非本质的改进和调整。
实施例1
通过溶剂热法制备In2S3前驱体,具体方法:配置25 mL H2O和5mL乙二醇的混合溶液中,加入293 mg InCl3和30 mg 硫代乙酰胺,持续搅拌30分钟。然后转移至反应釜中,在150℃下保温12 h。等反应釜自然降温至室温,离心洗涤所得沉淀,并放于65℃真空干燥箱中干燥,所得的样品记为In2S3
实施例2
通过简单的热处理方法来制备In2S3/In2O3-500复合催化剂,具体方法:称取200mg In2S3实施例1制备得到的In2S3前驱体于瓷舟中,使前驱体平铺于瓷舟内部。将瓷舟放于马弗炉中,以10℃/min 在500℃下热处理2h,所得的样品记为 In2S3/In2O3-500。
实施例3
通过简单的热处理方法来制备In2S3/In2O3-450复合催化剂,具体方法:称取200mg实施例1制备得到的In2S3前驱体于瓷舟中,使前驱体平铺于瓷舟内部。将瓷舟放于马弗炉中,以10℃/min 在450℃下热处理2h,所得的样品记为 In2S3/In2O3-450。
实施例4
通过简单的热处理方法来制备In2S3/In2O3-550复合催化剂,具体方法:称取200mg实施例1制备得到的In2S3前驱体于瓷舟中,使前驱体平铺于瓷舟内部。将瓷舟放于马弗炉中,以10℃/min 在550℃下热处理2h,所得的样品记为 In2S3/In2O3-550。
实施例5
通过简单的热处理方法来制备In2S3/In2O3-520复合催化剂,具体方法:称取200mg 实施例1制备得到的In2S3前驱体于瓷舟中,使前驱体平铺于瓷舟内部。将瓷舟放于马弗炉中,以10℃/min 在520℃下热处理2h,所得的样品记为 In2S3/In2O3-520。
对比例1
通过简单的热处理方法来制备In2O3催化剂,具体方法:
称取200 mg实施例1制备得到的In2S3前驱体于瓷舟中,使前驱体平铺于瓷舟内部。将瓷舟放于马弗炉中,以10℃/min 在600℃下热处理2 h,所得的样品记为 In2O3
图1为实施例1和2中所制备催化剂的XRD图谱,从结果中可以看出已经成功制备了In2S3/In2O3复合催化剂。
图2为实施例1中所制备的In2S3前躯体的扫描电子显微镜图,从结果中可以看出In2S3具有花状的形貌。
图3为实施例2中所制备的In2S3/In2O3-500复合催化剂的扫描电子显微镜图。
图4为对比例1中所制备的In2O3复合催化剂的扫描电子显微镜图。
实施例4:光解水反应
配制100 mL水溶液,称量40 mg上述实施例1和2中得到的催化剂并放入其中,超声半小时使催化剂均匀地分散于溶液中,转移至光催化反应器中。首先,在黑暗条件下向反应体系中通入Ar约15分钟排除反应器中的空气。然后,在氙灯照射下6 h后,用气相色谱检测还原产物,光催化测试结果见图5。从催化结果可以看出,通过In2S3/In2O3复合催化体系的构建,光生电子和空穴得到有效分离,与单独的In2O3和In2S3相比,光催化效率得到了显著地提高。
以上显示和描述了本发明的基本原理和主要特征以及本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (1)

1.一种花状多孔In2S3/In2O3复合催化剂在光解水反应中的应用,其特征在于:配制100mL水溶液,称量40 mg花状多孔In2S3/In2O3复合催化剂并放入其中,超声半小时使催化剂均匀地分散于溶液中,转移至光催化反应器中,首先,在黑暗条件下向反应体系中通入Ar 15分钟排除反应器中的空气,然后,在氙灯照射下6 h后,用气相色谱检测还原产物;
所述花状多孔In2S3/In2O3复合催化剂以花状In2S3作为前驱体,采用原位氧化的方法在In2S3表面上直接生长In2O3制备多孔In2S3/In2O3复合催化剂;
所述原位氧化的方法是将花状In2S3前驱体在富氧气氛中加热处理得到多孔In2S3/In2O3复合催化剂,即将花状In2S3前驱体在空气气氛中,450-550℃的条件下处理1-4 h得到多孔In2S3/In2O3复合催化剂;
所述花状In2S3前驱体是以InCl3为铟源,TAA为硫源及乙二醇和水的混合溶液为反应介质,通过溶剂热法制备的花状In2S3前驱体,具体制备方法如下:将InCl3∙4H2O 和TAA 溶解于乙二醇和水的混合溶液中,在150℃下保温10-20 h,优先选择12h,等反应釜自然降温至室温,离心洗涤所得的沉淀,并放于65℃真空干燥箱中干燥;
所述InCl3∙4H2O 和TAA的摩尔比为1:4,所述乙二醇和水的体积比=1:5。
CN202010152425.XA 2020-03-06 2020-03-06 一种花状多孔In2S3/In2O3复合催化剂的制备方法及应用 Active CN112023943B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010152425.XA CN112023943B (zh) 2020-03-06 2020-03-06 一种花状多孔In2S3/In2O3复合催化剂的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010152425.XA CN112023943B (zh) 2020-03-06 2020-03-06 一种花状多孔In2S3/In2O3复合催化剂的制备方法及应用

Publications (2)

Publication Number Publication Date
CN112023943A CN112023943A (zh) 2020-12-04
CN112023943B true CN112023943B (zh) 2022-09-23

Family

ID=73578767

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010152425.XA Active CN112023943B (zh) 2020-03-06 2020-03-06 一种花状多孔In2S3/In2O3复合催化剂的制备方法及应用

Country Status (1)

Country Link
CN (1) CN112023943B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112588300A (zh) * 2020-12-16 2021-04-02 江苏大学 一种基于晶格畸变的异质结光催化剂及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109759082A (zh) * 2019-02-21 2019-05-17 黑龙江大学 一种氧化铟-硫化铟空心多孔六棱柱复合光催化剂的制备方法
CN110116988A (zh) * 2018-02-07 2019-08-13 中国科学院武汉物理与数学研究所 一种光解水产氢的制备方法
CN110639619A (zh) * 2019-10-28 2020-01-03 商丘师范学院 基于金属有机框架原位生长金属硫化物复合催化剂Uio-66/In2S3的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4256564A (en) * 1979-04-03 1981-03-17 Phillips Petroleum Company Cracking process and catalyst for same containing indium to passivate contaminating metals
JP2001276614A (ja) * 2000-03-31 2001-10-09 Hoya Corp 気相用光触媒活性材料の製造方法および気相用光触媒活性材料
CN105664973A (zh) * 2016-02-26 2016-06-15 大连理工大学 一种三维花状In2S3/In2O3复合微米球光催化材料及其制备方法
CN109999836A (zh) * 2019-04-28 2019-07-12 大连工业大学 一种氧化铟/硫化铟异质结半导体材料的制备及光催化剂用途及太阳能固氮应用
CN110282653A (zh) * 2019-08-08 2019-09-27 东北师范大学 一种用于气体检测的氧化铟材料及制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110116988A (zh) * 2018-02-07 2019-08-13 中国科学院武汉物理与数学研究所 一种光解水产氢的制备方法
CN109759082A (zh) * 2019-02-21 2019-05-17 黑龙江大学 一种氧化铟-硫化铟空心多孔六棱柱复合光催化剂的制备方法
CN110639619A (zh) * 2019-10-28 2020-01-03 商丘师范学院 基于金属有机框架原位生长金属硫化物复合催化剂Uio-66/In2S3的制备方法

Also Published As

Publication number Publication date
CN112023943A (zh) 2020-12-04

Similar Documents

Publication Publication Date Title
US11345616B2 (en) Heterojunction composite material consisting of one-dimensional IN2O3 hollow nanotube and two-dimensional ZnFe2O4 nanosheet, and application thereof in water pollutant removal
US20220355286A1 (en) P-n heterojunction composite material supported on surface of nickel foam, preparation method therefor and application thereof
CN112169819A (zh) 一种g-C3N4 (101)-(001)-TiO2复合材料的制备方法和应用
CN110639619B (zh) 基于金属有机框架原位生长金属硫化物复合催化剂Uio-66/In2S3的制备方法
Rodríguez-Padrón et al. Waste-derived materials: opportunities in photocatalysis
CN108671907B (zh) 一种铂/二氧化钛纳米花复合材料及其制备方法与应用
CN113751029B (zh) 一种Co9S8/ZnIn2S4光催化产氢材料及其制备方法和应用
CN107138173A (zh) 一种无定型磷化镍/类石墨烯碳氮化合物复合催化剂的简便制备方法
CN110227500A (zh) 一种Cd1-xZnxS-Ni/MoS2复合光催化剂及其制备方法、应用
CN108745382A (zh) 一种NiCd双非贵金属修饰的CdS可见光催化剂的制备方法及其应用
CN111056567A (zh) 一种黑色金红石相二氧化钛的制备方法
CN113145138A (zh) 热响应型复合光催化剂及其制备方法和应用
CN112023943B (zh) 一种花状多孔In2S3/In2O3复合催化剂的制备方法及应用
CN113680366B (zh) 一种石墨相氮化碳基复合光催化剂及其制备方法和应用
CN109499597B (zh) 一种多孔二氧化钛/氮化碳纳米颗粒复合材料的制备方法
CN110102349A (zh) 一种α-Fe2O3/TpPa-2复合材料的制备及光解水制氢
CN111167434B (zh) 一种降解气态污染物的光催化复合材料Cr2O3-SnO2及其制备方法和应用
Ding et al. Covalent organic framework films grown on spongy g-C3N4 for efficient photocatalytic hydrogen production
CN113134349A (zh) 一种蓝色层状Nb2O5光催化剂的制备方法及应用
CN110787829B (zh) 一种Mo纳米球助催化剂及其制备方法与应用
Zhang et al. Promoted interfacial charge transfer by coral-like nickel diselenide for enhanced photocatalytic hydrogen evolution over carbon nitride nanosheet
CN115069270B (zh) 一种CuSAP/CdS光解水制氢催化剂及其制备方法
CN103041772A (zh) 一维氧化锌/石墨化碳核壳结构异质结及其制备方法
CN116078429A (zh) 一种促进co2还原与1-苯乙醇氧化偶联的光催化剂
CN110124701A (zh) 一种二硫化钼量子点/二氧化钛纳米片复合光催化剂的制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant