CN112010665A - 一种嵌入式异质陶瓷基片的制备方法 - Google Patents

一种嵌入式异质陶瓷基片的制备方法 Download PDF

Info

Publication number
CN112010665A
CN112010665A CN202010931708.4A CN202010931708A CN112010665A CN 112010665 A CN112010665 A CN 112010665A CN 202010931708 A CN202010931708 A CN 202010931708A CN 112010665 A CN112010665 A CN 112010665A
Authority
CN
China
Prior art keywords
ceramic
ceramic substrate
substrate
heterogeneous
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010931708.4A
Other languages
English (en)
Inventor
庞锦标
舒国劲
韩玉成
袁世逢
李淼
窦占明
刘凯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Zhenhua Group Yunke Electronics Co Ltd
Original Assignee
China Zhenhua Group Yunke Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Zhenhua Group Yunke Electronics Co Ltd filed Critical China Zhenhua Group Yunke Electronics Co Ltd
Priority to CN202010931708.4A priority Critical patent/CN112010665A/zh
Publication of CN112010665A publication Critical patent/CN112010665A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/003Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/0036Laser treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)

Abstract

本发明提供了一种嵌入式异质陶瓷基片的制备方法,利用激光打孔形成的梯形或锥度孔,将一种陶瓷基片打下的梯形或锥度陶瓷体倒扣嵌入另一种带有梯形或锥度陶瓷孔的陶瓷基片中,两者之间的微小缝隙通过耐高温、耐酸碱、致密的玻璃体进行互相粘接,最后再经过双面研磨抛光处理,得到所述嵌入式异质陶瓷基片。该基片具有厚度精度高、平整度高、表面粗糙度小等特点,解决了两种陶瓷之间的互联缝隙过大,基片厚度公差大、表面粗糙度高、翘度大,一致性、重复性和批生产性差,不适合高可靠异质陶瓷电子元器件厚薄或薄膜工艺等问题。广泛应用于各种异陶瓷型电子元器件和组件模块中,例如宽频带、小型化环形器等,应用领域广、市场前景非常好。

Description

一种嵌入式异质陶瓷基片的制备方法
技术领域
本发明涉及陶瓷型电子元器件领域,进一步来说,涉及异质陶瓷基片领域,具体来说,涉及一种嵌入式异质陶瓷基片的制备方法。
背景技术
陶瓷材料由于具有耐高低温、耐湿热,不易老化、硬度大强度高等特点,在电子元器件、组件模块以及电路板行业得到大量应用,电阻、电容、电感、环形器、功分器、TR组件等高性能电子产品基本都离不开陶瓷材料的支撑。目前,很多高性能的电子产品需要用到不同类型的陶瓷材料,以实现多种功能及缩小体积,因此采用异质陶瓷结构的电子元器件得到广泛研究及应用,包括宽频带环形器等产品。
但是,现有异质陶瓷器件存在很大的工艺技术瓶颈问题:一是,只能加工电路图形后,再在壁上及底面刷胶,再一颗一颗塞入其他类型的陶瓷片,比如铁氧体陶瓷圆片,对于小型化的器件来讲,操作难度大且效率极为低下;二是,两种异质陶瓷体只能依靠有机胶粘接,存在不耐高温、长期可靠型差的问题,同时由于需要考虑外观问题,两种陶瓷之间的互联缝隙必须足够大,以保证圆片能够顺利嵌入,这对产品的综合性能指标有明显的负面影响。
在此背景下,现阶段的异质陶瓷器件的研制迫切需求一种异质结构的陶瓷基片,该基片具有不同类型的陶瓷,且陶瓷之间具有良好的互联界面,且基片厚度公差小、表面粗糙度低、翘度度小,使用该类型异质结构基片,再通过厚薄或薄膜方式,可以制备高性能、超小型化的异质陶瓷元器件。
有鉴于此,特提出本发明。
发明内容
本发明的主要目的在于解决两种陶瓷之间的互联缝隙过大,基片厚度公差大、表面粗糙度高、翘度大,一致性、重复性和批生产性差,不适合高可靠微波异质陶瓷电子元器件厚薄工艺或薄膜工艺等问题。
为了实现本发明的上述目的,本发明提供一种嵌入式异质陶瓷基片的制备方法,技术方案工艺流程示意图如图1所示,异质陶瓷基片分离式结构示意图如图2所示,异质陶瓷基片一体化结构示意图如图3所示。
所述方法包括如下主要步骤:
(1)通过配料、混合球磨、薄片成型、裁片、叠片、层压、热切、排胶、烧结、研磨减薄及抛光处理,得到2种不同类型的陶瓷1基片和陶瓷2基片;
(2)在所述陶瓷1基片上进行激光打孔,形成孔壁边缘呈梯形或锥度的陶瓷孔2;
(3)按所述陶瓷1基片上相同的激光打孔形状,按比例缩小一定尺寸,在所述陶瓷2基片上进行激光打孔,得到形状呈梯形或锥度的陶瓷体3;确保陶瓷体3倒扣之后能够嵌入带孔的陶瓷基片1中,可以保持两种陶瓷之间的缝隙4从上到下一致;
(4)匀胶:在带有所述陶瓷孔的带孔陶瓷1基片的两面及陶瓷孔匀玻璃浆料,厚度15μm~40μm;
(5)在真空脱泡机中脱泡后,再将其烘干;
(6)将所述陶瓷2基片上打下的梯形或锥度的陶瓷体翻转180°倒扣嵌入带有所述带孔陶瓷1基片的陶瓷孔中;
(7)在烧结炉中进行烧结;
(8)将烧结完成的异质陶瓷基片进行双面研磨及抛光,同时去除异质陶瓷基片双面的玻璃釉,得到所需目标厚度的嵌入式异质陶瓷基片。如图3所示。
所述陶瓷包括铁氧体陶瓷、压电陶瓷、压敏陶瓷、热敏陶瓷或介电陶瓷等。所述陶瓷体3与带孔陶瓷基片1的类型不一致,从而可以在一块陶瓷基片上实现多种功能。
所述带孔陶瓷基片1上陶瓷孔2的形状及大小根据产品的设计而定;优选圆形孔,孔径大小2mm~5mm。比如对于微带式宽频环形器来讲,一般是在高介微波介质陶瓷基片上打圆形孔,孔径大小2mm~5mm,而嵌入的异质陶瓷则是微波铁氧体圆片。
所述薄片成型可以采用流延成型法,也可以采用压制成型法,所述2种不同类型的陶瓷基片厚度之差小于0.1mm。
所述陶瓷体的尺寸与所述陶瓷孔的尺寸小0.02mm~0.06mm,缝隙宽度在0.01mm~0.03mm之间,优选缝隙宽度为0.01mm。在保证异质陶瓷体能够顺利嵌入的前提下,该缝隙越小越好,这样对异质陶瓷元器件产品性能影响最小,且该缝隙经过玻璃填充后能够形成连续的界面,保证制备的厚膜/薄膜电路在此位置不断线。
所述玻璃浆料由玻璃粉、有机溶剂及树脂材料组成,粘度范围1Pa.S~50Pa.S,优选10Pa.S~30Pa.S,真空脱泡时间0.5h~1h,烘干温度选择50℃~100℃,时间0.5h~1h,烧结温度选择600℃~1000℃,峰值温度保温时间10min~15min;所述玻璃粉的平均粒径大小1μm~3μm。经过玻璃浆烧结之后致密无气孔,同时能够耐高温、耐酸碱,确保可以进行溅射、刻蚀、电镀等工序要求。
所述匀胶,是通过匀胶机来实现,转速为2000rpm~5000rpm。
所述双面研磨及抛光,每一面减薄厚度大于0.1mm,得到厚度公差<0.01mm、翘曲度<0.3%、表面粗糙度小于0.2μm的嵌入式异质陶瓷基片。
所述陶瓷孔与所述陶瓷体的互联孔壁处有0.01mm~0.03mm厚的致密玻璃釉。
与现有技术相比,本发明的有益效果为:
本发明中,首先:通过采用高精度激光打孔、表面研磨抛光技术,巧妙利用了激光打孔产生的锥度(上大下小),将所述陶瓷体倒扣再嵌入所述带孔陶瓷基片中,实现了嵌入的陶瓷体与带孔陶瓷基片之间的缝隙从上到下均一致,约0.01mm~0.03mm,该宽度缝隙恰好可以保证陶瓷体能够放入,同时由于激光打孔锥度产生的上下孔径差大于此缝隙宽度,从而可以保证嵌入的陶瓷体在嵌入、烘干、烧结及表面研磨抛光过程中不会发生位移或掉下去;其次:两种异质陶瓷之间的缝隙通过稳定性极好、烧结致密的玻璃体进行互联,填补该微细缝隙,形成无缝连接结构,确保了基片的可靠性及后续的应用;最后:通过表面研磨抛光的处理方式,去除嵌入异质陶瓷互联过程中产生的多余玻璃物质,同时可以改善基片表面状态及提高基片的厚度精度,确保应用于异质陶瓷元器件后性能优异。通过本发明技术方案,可以批量制备嵌入式异质陶瓷基片及相应的异质陶瓷元器件,这对高精度高可靠异质陶瓷元器件的工业化生产具有重要实用价值。
附图说明
图1为本发明技术方案工艺流程示意图。
图2为本发明技术方案异质陶瓷基片分离式结构示意图。
图3为本发明技术方案异质陶瓷基片一体化结构示意图。
图4为本发明技术方案异质陶瓷基片案例效果图。
图中:1为带孔陶瓷1基片,2为陶瓷孔,3为陶瓷2陶瓷体,4为陶瓷缝隙。
具体实施方式
实施例1:由M25微波介质陶瓷基片和NZF微波铁氧体陶瓷基片组成的嵌入式异质陶瓷基片,制作步骤如下:
(1)陶瓷基片制备
所述M25微波介质陶瓷材料的配方包括:20%~30%MgO、55%~70%TiO2、2%~10%CaCO3、2%~10%La2O3等(质量比),介电常数为25;按M25微波介质陶瓷材料配方,对原材料分别称重后,进行球磨混合,然后将得到的混合物放入马弗炉内进行预烧合成微波介质陶瓷粉体,预烧温度1100℃,保温2h;在制备好的M25陶瓷粉体按常规的流延料制备工艺加入乙醇、甲苯等有机溶剂和PVB等粘合剂,制备流延料;采用流延成型法,通过流延机得到M25的生瓷带,再进行叠层、等静压及热切,得到方形巴块,通过排胶烧结后得到M25微波介质陶瓷基片,尺寸为50.8mm*50.8mm,厚度为0.7mm;
所述NZF微波铁氧体陶瓷材料的配方包括:8%~20%NiO、15%~30%ZnO、55%~70%Fe2O3等(质量比),饱和磁场强度为3000GS;按所述NZF微波铁氧体陶瓷材料配方,对原材料分别称重后,进行球磨混合,然后将得到的混合物放入马弗炉内进行预烧合成微波铁氧体陶瓷粉体,预烧温度1050℃,保温2h;在制备好的微波铁氧体陶瓷粉体按常规的流延料制备工艺加入乙醇、甲苯等有机溶剂和PVB等粘合剂,制备流延料;采用流延成型法,通过流延机得到NZF的生瓷带,再进行叠层、等静压及切割工序,得到方形巴块;最后,通过排胶烧结得到NZF微波铁氧体陶瓷基片,尺寸为50.8mm*50.8mm,厚度为0.7mm;
(2)激光打孔
采用紫外纳秒或紫外纳秒等激光打孔机,对所述M25微波介质陶瓷基片和NZF微波铁氧体陶瓷基片进行加工,在所述M25微波介质陶瓷基片上加工阵列直径为2.44mm的圆形孔,得到所需的带孔陶瓷基片;在所述NZF微波铁氧体陶瓷基片上加工阵列直径为2.4mm的圆形孔,得到2.4mm大小的圆片形陶瓷体;
(3)匀胶、装配、脱泡及烧结
采用粘度为20Pa.S、玻璃粉平均粒径为2μm的玻璃浆料,通过匀胶机在所述带孔陶瓷基片上的正反面及孔匀玻璃浆料,转速设置2500rpm,然后真空脱泡45min后,在60℃烘箱中烘烤50min,将所述圆片形陶瓷体倒扣入带孔陶瓷基片的圆形孔中,最后在850℃链条炉上进行烧结,得到一体化嵌入式异质陶瓷基片;
(4)研磨及抛光
用研磨机对烧结后的一体化嵌入式异质陶瓷基片进行双面研磨和抛光处理,去除样品表面烧结不致密和凹凸不平部分,再进行超声波清洗30min,得到厚度0.4mm,厚度精度和均匀性±5μm,翘曲度小于0.1%、表面粗糙度0.05μm的嵌入式异质陶瓷基片。
本实施例效果图如图4所示。
以上内容是结合最佳实施方案对本发明说做的进一步详细说明,不能认定本发明的具体实施只限于这些说明。本领域的技术人员应该理解,在不脱离由所附权利要求书限定的情况下,可以在细节上进行各种修改,都应当视为属于本发明的保护范围。本发明技术方案所制得的异质嵌入式陶瓷基片具有精度高、可靠性好、多种功能一体化等特点,具有重要的工业化生产实用价值。

Claims (10)

1.一种嵌入式异质陶瓷基片的制备方法,其特征在于,所述方法包括如下步骤:
(1)通过配料、混合球磨、薄片成型、裁片、叠片、层压、热切、排胶、烧结、研磨减薄及抛光处理,得到2种不同类型的陶瓷1基片和陶瓷2基片;
(2)在所述陶瓷1基片上进行激光打孔,形成孔壁边缘呈梯形或锥度的陶瓷孔;
(3)按所述陶瓷1基片上相同的激光打孔形状,按比例缩小一定尺寸,在所述陶瓷2基片上进行激光打孔,得到形状呈梯形或锥度的陶瓷体;确保陶瓷体倒扣之后能够嵌入带孔的陶瓷基片中,可以保持两种陶瓷之间的缝隙从上到下一致;
(4)匀胶:在带有所述陶瓷孔的带孔陶瓷1基片的两面及陶瓷孔匀玻璃浆料,厚度15μm~40μm;
(5)在真空脱泡机中脱泡后,再将其烘干;
(6)将所述陶瓷2基片上打下的梯形或锥度的陶瓷体翻转180°倒扣嵌入带有所述带孔陶瓷1基片的陶瓷孔中;
(7)在烧结炉中进行烧结;
(8)将烧结完成的异质陶瓷基片进行双面研磨及抛光,同时去除异质陶瓷基片双面的玻璃釉,得到所需目标厚度的嵌入式异质陶瓷基片。
2.如权利要求1所述的一种嵌入式异质陶瓷基片的制备方法,其特征在于,所述陶瓷包括铁氧体陶瓷、压电陶瓷、压敏陶瓷、热敏陶瓷或介电陶瓷等。
3.如权利要求1所述的一种嵌入式异质陶瓷基片的制备方法,其特征在于,所述带孔陶瓷基片上陶瓷孔的形状及大小根据产品的设计而定;优选圆形孔,孔径大小2mm~5mm。
4.如权利要求1所述的一种嵌入式异质陶瓷基片的制备方法,其特征在于,所述薄片成型可以采用流延成型法,也可以采用压制成型法,所述2种不同类型的陶瓷基片厚度之差小于0.1mm。
5.如权利要求1所述的一种嵌入式异质陶瓷基片的制备方法,其特征在于,所述陶瓷体的尺寸与所述陶瓷孔的尺寸小0.02mm~0.06mm,缝隙宽度在0.01mm~0.03mm之间,优选缝隙宽度为0.01mm。
6.如权利要求1所述的一种嵌入式异质陶瓷基片的制备方法,其特征在于,所述玻璃浆料由玻璃粉、有机溶剂及树脂材料组成,粘度范围1Pa.S~50Pa.S,优选10Pa.S~30Pa.S,真空脱泡时间0.5h~1h,烘干温度选择50℃~100℃,时间0.5h~1h,烧结温度选择600℃~1000℃,峰值温度保温时间10min~15min;
所述玻璃粉的平均粒径大小1μm~3μm。
7.如权利要求1所述的一种嵌入式异质陶瓷基片的制备方法,其特征在于,所述匀胶,是通过匀胶机来实现,转速为2000rpm~5000rpm。
8.如权利要求1所述的一种嵌入式异质陶瓷基片的制备方法,其特征在于,所述双面研磨及抛光,每一面减薄厚度大于0.1mm,得到厚度公差<0.01mm、翘曲度<0.3%、表面粗糙度小于0.2μm的嵌入式异质陶瓷基片。
9.如权利要求1所述的一种嵌入式异质陶瓷基片的制备方法,其特征在于,所述陶瓷孔与所述陶瓷体的互联孔壁处有0.01mm~0.03mm厚的致密玻璃釉。
10.如权利要求1所述的一种嵌入式异质陶瓷基片的制备方法,其特征在于,所述嵌入式异质陶瓷基片由M25微波介质陶瓷基片和NZF微波铁氧体陶瓷基片组成,制作步骤如下:
(1)陶瓷基片制备
所述M25微波介质陶瓷材料的配方包括:20%~30%MgO、55%~70%TiO2、2%~10%CaCO3、2%~10%La2O3等,介电常数为25;按M25微波介质陶瓷材料配方,对原材料分别称重后,进行球磨混合,然后将得到的混合物放入马弗炉内进行预烧合成微波介质陶瓷粉体,预烧温度1100℃,保温2h;在制备好的M25陶瓷粉体按常规的流延料制备工艺加入乙醇、甲苯等有机溶剂和PVB等粘合剂,制备流延料;采用流延成型法,通过流延机得到M25的生瓷带,再进行叠层、等静压及热切,得到方形巴块,通过排胶烧结后得到M25微波介质陶瓷基片,尺寸为50.8mm*50.8mm,厚度为0.7mm;
所述NZF微波铁氧体陶瓷材料的配方包括:8%~20%NiO、15%~30%ZnO、55%~70%Fe2O3等,饱和磁场强度为3000GS;按所述NZF微波铁氧体陶瓷材料配方,对原材料分别称重后,进行球磨混合,然后将得到的混合物放入马弗炉内进行预烧合成微波铁氧体陶瓷粉体,预烧温度1050℃,保温2h;在制备好的微波铁氧体陶瓷粉体按常规的流延料制备工艺加入乙醇、甲苯等有机溶剂和PVB等粘合剂,制备流延料;采用流延成型法,通过流延机得到NZF的生瓷带,再进行叠层、等静压及切割工序,得到方形巴块;最后,通过排胶烧结得到NZF微波铁氧体陶瓷基片,尺寸为50.8mm*50.8mm,厚度为0.7mm;
(2)激光打孔
采用紫外纳秒或紫外皮秒等激光打孔机,对所述M25微波介质陶瓷基片和NZF微波铁氧体陶瓷基片进行加工,在所述M25微波介质陶瓷基片上加工阵列直径为2.44mm的圆形孔,得到所需的带孔陶瓷基片;在所述NZF微波铁氧体陶瓷基片上加工阵列直径为2.4mm的圆形孔,得到2.4mm大小的圆片形陶瓷体;
(3)匀胶、装配、脱泡及烧结
采用粘度为20Pa.S、玻璃粉平均粒径为2μm的玻璃浆料,通过匀胶机在所述带孔陶瓷基片上的正反面及孔匀玻璃浆料,转速设置2500rpm,然后真空脱泡45min后,在60℃烘箱中烘烤50min,将所述圆片形陶瓷体倒扣入带孔陶瓷基片的圆形孔中,最后在850℃链条炉上进行烧结,得到一体化嵌入式异质陶瓷基片;
(4)研磨及抛光
用研磨机对烧结后的一体化嵌入式异质陶瓷基片进行双面研磨和抛光处理,去除样品表面烧结不致密和凹凸不平部分,再进行超声波清洗30min,得到厚度0.4mm,厚度精度和均匀性±5μm,翘曲度小于0.1%、表面粗糙度0.05μm的嵌入式异质陶瓷基片。
CN202010931708.4A 2020-09-07 2020-09-07 一种嵌入式异质陶瓷基片的制备方法 Pending CN112010665A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010931708.4A CN112010665A (zh) 2020-09-07 2020-09-07 一种嵌入式异质陶瓷基片的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010931708.4A CN112010665A (zh) 2020-09-07 2020-09-07 一种嵌入式异质陶瓷基片的制备方法

Publications (1)

Publication Number Publication Date
CN112010665A true CN112010665A (zh) 2020-12-01

Family

ID=73516084

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010931708.4A Pending CN112010665A (zh) 2020-09-07 2020-09-07 一种嵌入式异质陶瓷基片的制备方法

Country Status (1)

Country Link
CN (1) CN112010665A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112457040A (zh) * 2020-12-07 2021-03-09 北京无线电测量研究所 一种微波铁氧体套片及其制备方法
CN113307541A (zh) * 2021-06-03 2021-08-27 中国振华集团云科电子有限公司 一种碳氢树脂陶瓷粘结片及其批量化生产工艺
WO2023089804A1 (ja) * 2021-11-22 2023-05-25 三菱電機株式会社 磁性セラミック基板、基板製造方法、およびサーキュレータ

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4378951A (en) * 1979-06-27 1983-04-05 Tsukasa Nagao Traveling wave coupled type optical wave circulators
JPS5974703A (ja) * 1982-10-22 1984-04-27 Nec Corp マイクロ波回路用基板
US4797992A (en) * 1987-02-02 1989-01-17 Hercules Defense Electronics Systems Inc. Method of making a thin film integrated microcircuit
CN1324198A (zh) * 2000-03-03 2001-11-28 株式会社村田制作所 非可逆电路设备和通讯设备
CN2772838Y (zh) * 2005-02-05 2006-04-19 陈伯刚 新型墨水瓶
CN2934114Y (zh) * 2006-05-29 2007-08-15 东营市华方船体研制有限责任公司 一种酒瓶
CN103922726A (zh) * 2014-04-11 2014-07-16 云南云天化股份有限公司 一种微波介质陶瓷粉体及其制备方法
CN104193325A (zh) * 2014-08-28 2014-12-10 云南云天化股份有限公司 一种陶瓷粉体、其制备方法、微波介质陶瓷粉体及其制备方法
CN107845852A (zh) * 2017-10-20 2018-03-27 北京无线电测量研究所 一种复合基片式微带环行器
CN108276019A (zh) * 2018-03-01 2018-07-13 清华大学 精密真空转子球腔装置及其陶瓷电极引针的封接方法
CN110803921A (zh) * 2019-12-18 2020-02-18 横店集团东磁股份有限公司 一种复合微波铁氧体磁片及其制备方法和用途

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4378951A (en) * 1979-06-27 1983-04-05 Tsukasa Nagao Traveling wave coupled type optical wave circulators
JPS5974703A (ja) * 1982-10-22 1984-04-27 Nec Corp マイクロ波回路用基板
US4797992A (en) * 1987-02-02 1989-01-17 Hercules Defense Electronics Systems Inc. Method of making a thin film integrated microcircuit
CN1324198A (zh) * 2000-03-03 2001-11-28 株式会社村田制作所 非可逆电路设备和通讯设备
CN2772838Y (zh) * 2005-02-05 2006-04-19 陈伯刚 新型墨水瓶
CN2934114Y (zh) * 2006-05-29 2007-08-15 东营市华方船体研制有限责任公司 一种酒瓶
CN103922726A (zh) * 2014-04-11 2014-07-16 云南云天化股份有限公司 一种微波介质陶瓷粉体及其制备方法
CN104193325A (zh) * 2014-08-28 2014-12-10 云南云天化股份有限公司 一种陶瓷粉体、其制备方法、微波介质陶瓷粉体及其制备方法
CN107845852A (zh) * 2017-10-20 2018-03-27 北京无线电测量研究所 一种复合基片式微带环行器
CN108276019A (zh) * 2018-03-01 2018-07-13 清华大学 精密真空转子球腔装置及其陶瓷电极引针的封接方法
CN110803921A (zh) * 2019-12-18 2020-02-18 横店集团东磁股份有限公司 一种复合微波铁氧体磁片及其制备方法和用途

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
V. M. FERREIRA等: "The effect of Cr and La on MgTiO3 and MgTiO3–CaTiO3 microwave dielectric ceramics", 《JOURNAL OF MATERIALS RESEARCH》 *
李长青等: "《粉末冶金教程》", 30 September 2010, 中国矿业大学出版社 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112457040A (zh) * 2020-12-07 2021-03-09 北京无线电测量研究所 一种微波铁氧体套片及其制备方法
CN113307541A (zh) * 2021-06-03 2021-08-27 中国振华集团云科电子有限公司 一种碳氢树脂陶瓷粘结片及其批量化生产工艺
WO2023089804A1 (ja) * 2021-11-22 2023-05-25 三菱電機株式会社 磁性セラミック基板、基板製造方法、およびサーキュレータ
JP7305051B1 (ja) * 2021-11-22 2023-07-07 三菱電機株式会社 磁性セラミック基板、基板製造方法、およびサーキュレータ

Similar Documents

Publication Publication Date Title
CN112010665A (zh) 一种嵌入式异质陶瓷基片的制备方法
CN112074106A (zh) 一种多层异质熟瓷基片高精度对位堆叠的方法
CN113087526B (zh) 一种超薄大尺寸ltcc陶瓷基板的制备方法
WO2023093741A1 (zh) 一种介质波导射频器件的制造方法
CN102013320B (zh) 一种单层电容器及其制备方法
JP4099756B2 (ja) 積層基板
CN110379624B (zh) 一种多层芯片电容器的模块化制备方法
US7390449B2 (en) Method of manufacturing ceramic material body
CN103360070A (zh) 一种基于陶瓷基板超材料及制备方法
CN111540604B (zh) 一种多层片状陶瓷电子元器件的制备方法
JP2000269074A (ja) 積層セラミックコンデンサとその製造方法
CN105399419B (zh) 一种中介电微波介电陶瓷材料及其制备、使用方法
JPH04247603A (ja) Ntcサーミスタ素子の製造方法
JP4911829B2 (ja) セラミック基板の製造方法
CN220774706U (zh) 一种环行器用微波复合基板
JP2004009681A (ja) 積層体の製造方法、それに用いる金型および金型の製造方法
CN106365633B (zh) 一种片式ptcr及其制备方法
CN115745577B (zh) 一种超薄低温烧结陶瓷基板的制备方法
CN115832662A (zh) 一种环行器用微波复合基板及其制备方法
CN104129976A (zh) 一种低温共烧陶瓷材料及其制备方法
CN110981498A (zh) 提高压电陶瓷蜂鸣片质量的方法
TW202114233A (zh) 表面黏著型繞線式電感陶瓷芯的製作方法
CN116828699A (zh) 陶瓷基板及其制造方法
JPH05325633A (ja) 導電性ペースト
CN115710132A (zh) 氧化物陶瓷基板一体烧结方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20201201

RJ01 Rejection of invention patent application after publication