WO2023093741A1 - 一种介质波导射频器件的制造方法 - Google Patents

一种介质波导射频器件的制造方法 Download PDF

Info

Publication number
WO2023093741A1
WO2023093741A1 PCT/CN2022/133603 CN2022133603W WO2023093741A1 WO 2023093741 A1 WO2023093741 A1 WO 2023093741A1 CN 2022133603 W CN2022133603 W CN 2022133603W WO 2023093741 A1 WO2023093741 A1 WO 2023093741A1
Authority
WO
WIPO (PCT)
Prior art keywords
glue
dielectric material
layer
material sheet
radio frequency
Prior art date
Application number
PCT/CN2022/133603
Other languages
English (en)
French (fr)
Inventor
林彬
侯贺天
王皓吉
隋天一
Original Assignee
天津大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津大学 filed Critical 天津大学
Publication of WO2023093741A1 publication Critical patent/WO2023093741A1/zh
Priority to US18/670,324 priority Critical patent/US20240304977A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P11/00Apparatus or processes specially adapted for manufacturing waveguides or resonators, lines, or other devices of the waveguide type
    • H01P11/001Manufacturing waveguides or transmission lines of the waveguide type
    • H01P11/006Manufacturing dielectric waveguides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P11/00Apparatus or processes specially adapted for manufacturing waveguides or resonators, lines, or other devices of the waveguide type
    • H01P11/001Manufacturing waveguides or transmission lines of the waveguide type
    • H01P11/002Manufacturing hollow waveguides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P11/00Apparatus or processes specially adapted for manufacturing waveguides or resonators, lines, or other devices of the waveguide type
    • H01P11/001Manufacturing waveguides or transmission lines of the waveguide type
    • H01P11/003Manufacturing lines with conductors on a substrate, e.g. strip lines, slot lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P11/00Apparatus or processes specially adapted for manufacturing waveguides or resonators, lines, or other devices of the waveguide type
    • H01P11/007Manufacturing frequency-selective devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P11/00Apparatus or processes specially adapted for manufacturing waveguides or resonators, lines, or other devices of the waveguide type
    • H01P11/008Manufacturing resonators

Definitions

  • the invention relates to a manufacturing method of a waveguide radio frequency device.
  • Waveguide RF devices use the propagation and coupling of electromagnetic waves in the radio frequency band in the waveguide cavity to realize the transmission and processing of electromagnetic waves, mainly including waveguides, waveguide filters, waveguide multiplexers, waveguide antennas, etc.
  • the dielectric part of the waveguide is made of ceramic material, and the high dielectric constant of the ceramic can be used to adjust (generally reduce) the size of the device and realize the integration of the device.
  • High-temperature co-fired ceramics or low-temperature co-fired ceramics technology uses ceramic powder and resin binder to form green ceramic tapes, and then realizes circuit layout by printing conductive metal paste on the green ceramic tapes, and multiple layers printed with circuits are layer by layer.
  • Layered green ceramic tapes are stacked and sintered in a high temperature environment to form a ceramic body device with internal wiring.
  • the green ceramic tape of this technology shrinks during the sintering process, resulting in device size errors; on the other hand, this technology cannot manufacture waveguide radio frequency devices, only printed circuits can form capacitors, inductors, and resistor structures and form resonance
  • the circuit implements functions such as filtering. This solution is only suitable for low frequencies. When the frequency increases, the conduction loss in the metal circuit will increase significantly, which will lead to a decrease in the transmission efficiency of the device and a serious deterioration in performance.
  • Dielectric integrated waveguide technology is a new type of technology developed on the basis of high-temperature co-fired ceramics and low-temperature co-fired ceramics.
  • This technology processes the green ceramic tape into a microhole array with a special structure, and metallizes the inner wall of the hole, and uses the hole spacing to regulate the electromagnetic wave, so as to achieve the waveguide effect.
  • this process still has the disadvantage of sintering shrinkage, and the process of micropore manufacturing and metallization of the inner wall of the hole is complicated, and the electromagnetic wave is not constrained enough, causing leakage and deteriorating device performance.
  • Ceramic additive manufacturing technology can also be used in the manufacture of ceramic waveguide radio frequency devices, but on the one hand, ceramic additive manufacturing has low precision and poor surface quality, which is not conducive to stable and qualified manufacturing of devices; Micropowder manufacturing is difficult and costly, and it is impossible to realize low-cost, high-volume processing of ceramic waveguide radio frequency devices.
  • the purpose of the present invention is to solve the problems of high cost, low processing efficiency, poor dimensional accuracy and poor surface quality of the existing method for preparing ceramic waveguide radio frequency devices, resulting in reduced device performance and inability to prepare ceramic waveguide radio frequency devices in large quantities, and to provide a A method for manufacturing a dielectric waveguide radio frequency device.
  • a method for manufacturing a dielectric waveguide radio frequency device is completed according to the following steps:
  • Design a dielectric waveguide radio frequency device cut the dielectric material into n layers along one direction according to the model of the dielectric waveguide radio frequency device, and then grind, polish, and cut to obtain n layers of dielectric material sheets; n layers of dielectric material sheets from bottom to top stack settings;
  • the coupling structure described in step 2 is slotted coupling, through-hole coupling, blind-hole coupling, oblique hole coupling or window coupling;
  • the tuning holes are respectively processed on the n-layer dielectric material sheet;
  • step 2 If the coupling structure described in step 2 is in the form of slotted coupling, through-hole coupling, blind-hole coupling or inclined-hole coupling, adhesive glue is arranged on the upper surface of each layer of dielectric material sheet except the first layer, and then Stacking sequentially from bottom to top to obtain n-layer dielectric material sheets with adhesive glue;
  • step 2 If the coupling structure described in step 2 is in the form of window coupling, first carry out local metallization at the coupling structure of the dielectric material sheet, and then perform local metallization on the upper surface of each layer of dielectric material sheet except the first layer after the local metallization is completed. Adhesive glue is arranged on the top, avoiding the metallized parts, and finally stacked sequentially from bottom to top to obtain n-layer dielectric material sheets with adhesive glue arranged;
  • Bonding is carried out according to the following conditions to obtain the device
  • the present invention can easily process dielectric waveguide radio frequency devices with complex internal geometric structures, so as to realize the manufacture of more complex and diverse device topologies;
  • the present invention avoids complex molds and difficult ceramic three-dimensional mechanical processing in the traditional ceramic device manufacturing process, reduces device manufacturing difficulty, and improves precision margin;
  • the present invention selects the dielectric plate and then manufactures the dielectric sheet, and there is no problem of device size shrinkage caused by sintering after processing, so the processing accuracy is high and the process stability is good;
  • the present invention can realize the precise manufacture of ultra-small dielectric waveguide radio frequency devices, thereby realizing high-frequency devices;
  • the present invention is not only suitable for the manufacture of existing frequency band devices, but also especially suitable for the manufacture of ultra-small dielectric waveguide radio frequency devices for high frequency bands, and can provide manufacturing capabilities covering all frequency domain devices.
  • Fig. 1 is the schematic diagram of the technological process of preparing dielectric waveguide radio-frequency device of the present invention
  • FIG. 2 is a schematic diagram of a model for preparing a fourth-order symmetric waveguide filter device in Embodiment 1;
  • 1-1 is the first layer of dielectric material sheet
  • 1-2 is the second layer of dielectric material sheet
  • 1-3 is the first layer of dielectric material sheet.
  • Three-layer dielectric material sheet, 1-4 is the fourth layer of dielectric material sheet, 2 is the groove, 3 is the dielectric resonant cavity, 4-1 is the first tuning hole, 4-2 is the second tuning hole, 4-3 is the second tuning hole Three tuning holes, 4-4 is the fourth tuning hole;
  • step 4 is a schematic diagram of step 4 of preparing a fourth-order symmetric waveguide filter device in Embodiment 1, in which 5-1 is the first energy input hole, and 5-2 is the second energy input hole;
  • Fig. 5 is the return loss curve of quartz glass waveguide radio frequency device
  • Figure 6 is the insertion loss curve of the quartz glass waveguide RF device.
  • Embodiment 1 In this embodiment, a method for manufacturing a dielectric waveguide radio frequency device is completed according to the following steps:
  • Design a dielectric waveguide radio frequency device cut the dielectric material into n layers along one direction according to the model of the dielectric waveguide radio frequency device, and then grind, polish, and cut to obtain n layers of dielectric material sheets; n layers of dielectric material sheets from bottom to top stack settings;
  • the coupling structure described in step 2 is slotted coupling, through-hole coupling, blind-hole coupling, oblique hole coupling or window coupling;
  • the tuning holes are respectively processed on the n-layer dielectric material sheet;
  • step 2 If the coupling structure described in step 2 is in the form of slotted coupling, through-hole coupling, blind-hole coupling or inclined-hole coupling, adhesive glue is arranged on the upper surface of each layer of dielectric material sheet except the first layer, and then Stacking sequentially from bottom to top to obtain n-layer dielectric material sheets with adhesive glue;
  • step 2 If the coupling structure described in step 2 is in the form of window coupling, first carry out local metallization at the coupling structure of the dielectric material sheet, and then perform local metallization on the upper surface of each layer of dielectric material sheet except the first layer after the local metallization is completed. Adhesive glue is arranged on the top, avoiding the metallized parts, and finally stacked sequentially from bottom to top to obtain n-layer dielectric material sheets with adhesive glue arranged;
  • Bonding is carried out according to the following conditions to obtain the device
  • the electroplating solution described in step 7 3 was purchased from Beichen Hardware Technology Company;
  • the gold-plating potion described in step seven 4 is the cyanide-free gold water provided by Weilan Technology Company.
  • Embodiment 2 The difference between this embodiment and Embodiment 1 is that the thicknesses of the n-layer dielectric material sheets described in Step 1 are the same or different. Other steps are the same as in the first embodiment.
  • Embodiment 3 This embodiment differs from Embodiment 1 or Embodiment 2 in that: the value range of n mentioned in Step 1 is 2 ⁇ n ⁇ 100. Other steps are the same as those in Embodiment 1 or 2.
  • Embodiment 4 This embodiment differs from Embodiments 1 to 3 in that: in step 1, the thickness of each layer of dielectric material sheet is 30 ⁇ m ⁇ 5 mm. Other steps are the same as those in Embodiments 1 to 3.
  • Embodiment 5 The difference between this embodiment and Embodiments 1 to 4 is that the dielectric material in step 1 is ceramics, glass, fused silica or resin. Other steps are the same as those in Embodiments 1 to 4.
  • Embodiment 6 The difference between this embodiment and one of Embodiments 1 to 5 is that the specific steps of local metallization described in Step 5 are as follows:
  • the mask plate described in step 1 is adhesive tape or epoxy resin
  • the electroplating solution described in step 4 was purchased from Beichen Hardware Technology Company;
  • the gold-plating potion described in step 5 is the cyanide-free gold water provided by Weilan Technology Company.
  • Embodiment 7 This embodiment differs from Embodiment 1 to Embodiment 6 in that: the depths of the resonant cavity holes described in Step 3 are equal or unequal. Other steps are the same as those in Embodiments 1 to 6.
  • Embodiment 8 The difference between this embodiment and Embodiment 1 to 7 is: the hole depths of the energy input holes described in step 4 are equal or unequal. Other steps are the same as those in Embodiments 1 to 7.
  • Embodiment 9 The difference between this embodiment and Embodiments 1 to 8 is: in step 6, case 1: when the adhesive used in step 5 is a pp prepreg film, n layers of adhesive will be arranged The dielectric material sheet is put into the mold, and cured at a pressure of 0.5MPa-20MPa and a temperature of 120°C. The curing time is 30min-120min. Finally, the overflowing adhesive layer is polished to complete the bonding;
  • the pp prepreg film is purchased from Duoming New Material Technology Co., Ltd., and the model is PP/GF60-65@0.15 prepreg film;
  • the adhesive glue used in step 5 is a thermoplastic resin film
  • the thermoplastic resin film is a polyethylene film with a thickness of 0.03 mm to 0.3 mm;
  • the polyethylene film is purchased from Dezhou Zhengyu Geotechnical Materials Co., Ltd.;
  • the adhesive used in step 5 is a premixed adhesive, put the n-layer dielectric material sheet with the adhesive into the mold, and cure it for 10 to 120 minutes under a pressure of 0.5 MPa to 20 MPa to complete the bonding process. knot; the premixed glue is mixed with acrylic resin, curing agent and ceramic powder according to the mass ratio of 1.4:1: (0.01 ⁇ 1) to obtain the premixed glue; the described ceramic powder is titanium dioxide ceramic powder, titanium dioxide Barium oxide ceramic powder or magnesium titanate ceramic powder;
  • the premixed rubber was purchased from Ningbo Xiongying Testing Equipment Co., Ltd., model XYX-604Y;
  • thermosetting epoxy resin glue put the n-layer dielectric material sheet with the adhesive glue into the mold, and cure it under a pressure of 0.5MPa-20MPa for 1h-30h, Complete the bonding; the thermosetting epoxy resin glue is mixed with A glue, B glue and titanium dioxide ceramic powder according to the mass ratio of 3:1: (0.01 ⁇ 1), to obtain the thermosetting epoxy resin glue;
  • the bonding glue used in step 5 is photosensitive resin glue
  • the photosensitive resin glue is liquid under normal conditions, and the upper surface of each layer of dielectric material sheet except the first layer is placed on the glue leveling machine, and it is heated at 7000 Spread the glue at a speed of rpm for 120s. After spreading the glue, stack them in order to remove the overflowing glue, and finally expose to ultraviolet light for 2-3 minutes to complete the bonding;
  • the photosensitive resin glue is SINWE-3623;
  • the brand of the organic glue is Dow Corning DC184;
  • Described inorganic glue is SINWE-S523 type glue
  • the bonding glue used in step 5 is inorganic silica gel
  • the inorganic silica gel is a dispersion of nano-scale silica particles in water or a solvent , the mass fraction of silicon dioxide is 10% to 50%, and the solvent is water or an organic solvent; the organic solvent is is isopropanol, propylene glycol or absolute ethanol;
  • Embodiment 10 This embodiment differs from Embodiments 1 to 9 in that: in step 7 1, place the device in an ultrasonic cleaning machine equipped with absolute ethanol for cleaning for 1 min. Other steps are the same as those in Embodiments 1 to 9.
  • Embodiment 1 Taking a fourth-order symmetrical waveguide filter device as an example, the manufacturing method of the dielectric waveguide radio frequency device of the present invention is described, and a four-cavity dielectric filter is designed.
  • the design requirements are as follows:
  • the size of the fourth-order symmetrical waveguide filter device 21mm ⁇ 21mm ⁇ 7mm;
  • a method for manufacturing a dielectric waveguide radio frequency device is specifically completed according to the following steps:
  • Design the model of the dielectric waveguide radio frequency device as shown in Figure 2, cut the dielectric material into 4 layers along one direction according to the model of the dielectric waveguide radio frequency device, first process the dielectric material to the thickness of each layer by grinding, then polish it, and then use it
  • the ultraviolet picosecond laser cuts each layer of quartz glass plate according to the two-dimensional shape of each layer, and obtains 4 layers of dielectric material sheets with exactly the same size, that is, the first layer of dielectric material sheet 1-1, and the second layer of dielectric material sheet 1-2, the third layer of dielectric material sheets 1-3 and the fourth layer of dielectric material sheets 1-4, the 4 layers of dielectric material sheets are stacked from bottom to top;
  • the dielectric material described in step 1 is quartz glass with a dielectric constant of 3.8;
  • the thicknesses of the first layer of dielectric material sheet 1-1, the second layer of dielectric material sheet 1-2, the third layer of dielectric material sheet 1-3 and the fourth layer of dielectric material sheet 1-4 described in step 1 are respectively 3.8 mm, 0.2mm, 1.5mm, 1.5mm;
  • grooves 2 are respectively made on 4 layers of dielectric material sheets, the width of the grooves is 2mm, and the length is 9.85mm; and the grooves opened at the same position on different dielectric material sheets 2 have the same size, and two adjacent dielectric resonators 3 perform energy coupling through the slot 2;
  • the model of the dielectric waveguide radio frequency device in step 2 includes four dielectric resonators 3 arranged vertically;
  • the tuning holes are respectively processed on the 4 layers of dielectric material sheets, and each dielectric material resonant cavity 3 has a tuning hole;
  • the model of the dielectric waveguide radio frequency device includes 4 The tuning hole, the hole depth of the first tuning hole 4-1 and the fourth tuning hole 4-4 are equal, the hole depth is 3.8mm, the hole depth of the second tuning hole 4-2 and the third tuning hole 4-3 are equal, the hole depth is is 4mm; the radius of the first tuning hole 4-1, the second tuning hole 4-2, the third tuning hole 4-3 and the fourth tuning hole 4-4 is 5.2mm;
  • the backs of the first tuning hole 4-1 and the fourth tuning hole 4-4 are respectively processed with the first energy input hole 5-1 and the second energy input hole 5-2, the first energy input hole 5-1 and the second energy input hole 5-2 have the same depth, the depth is 1.5mm;
  • Adhesive glue is arranged on the upper surface of each layer of dielectric material sheets except the first layer, and then stacked sequentially from bottom to top to obtain a 4-layer dielectric material sheet with adhesive glue arranged;
  • the bonding glue used in step 5 is photosensitive resin glue, which is liquid under normal conditions, and put it on the glue leveler on the upper surface of each layer of dielectric material sheet except the first layer, at a speed of 7000 rpm Spread the glue for 120s, stack it in order after the glue is spread, remove the overflowing glue, and finally expose it to ultraviolet light for 2 minutes to complete the bonding;
  • the photosensitive resin glue is SINWE-3623;
  • the electroplating solution described in step 7 3 was purchased from Beichen Hardware Technology Company;
  • the gold-plating potion described in step seven 4 is the cyanide-free gold water provided by Weilan Technology Company.
  • the quartz glass waveguide radio frequency device is manufactured by traditional mechanical processing technology and the quartz glass waveguide radio frequency device is manufactured by the laminated manufacturing process in the first embodiment of the present invention, and the devices made by the two processes are tested.
  • the measured return loss curve of the test piece is shown in Figure 5, and the insertion loss curve is shown in Figure 6.
  • center frequency of the quartz glass waveguide RF device manufactured by traditional mechanical processing technology has a certain difference from the designed frequency, which is 3.4GHz, which is caused by the error of mechanical processing. , while using the laser lamination manufacturing process in Embodiment 1 can achieve higher processing accuracy, so that the center frequency is closer to the design value. It can be seen from the figure that the center frequency is 3.5 GHz.
  • the return loss Due to the manufacturing error of the traditional machining process, the return loss is >13.6dB, which does not meet the filter design requirements and needs to be adjusted to meet the use requirements. However, the filter manufactured by the laser lamination process in Example 1 The return loss of the device is >15.34dB, which meets the design requirements and does not require subsequent adjustments.
  • Insertion loss The insertion loss of quartz glass waveguide radio frequency devices manufactured by traditional mechanical processing technology meets the requirements within the passband range, but due to the cheap center frequency, the passband range is not consistent with the design passband range, which does not meet the filter requirements , the performance of the filter still needs to be adjusted through subsequent processing. This problem can be avoided by using the laser stacking manufacturing process in Example 1. It can be seen from the figure that the center frequency of stacking manufacturing meets the requirements, and the insertion loss also meets the design requirements. requirements without subsequent adjustments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

一种介质波导射频器件的制造方法,它涉及一种波导射频器件的制造方法。本发明的目的是要解决现有制备陶瓷波导射频器件的方法成本高、加工效率低、尺寸精度差,表面质量差,造成器件性能降低,无法大批量制备陶瓷波导射频器件的问题。方法:一、剖切;二、开槽;三、加工调谐孔;四、加工能量输入孔;五、布胶、叠放;六、粘结;七、整体金属化,得到介质波导射频器件。本发明可以实现更复杂多样的器件拓扑结构制造,降低器件制造难度,提升精度余量;加工精度高,工艺稳定性好,且可实现超小型介质波导射频器件的精密制造,从而实现器件高频化。本发明可获得一种介质波导射频器件。

Description

一种介质波导射频器件的制造方法 技术领域
本发明涉及一种波导射频器件的制造方法。
背景技术
波导射频器件利用射频频段的电磁波在波导腔体内的传播和耦合,实现电磁波的传送和处理,主要包括波导管、波导滤波器、波导多工器、波导天线等。相比于空气介质波导,以陶瓷材料制成波导的介质部分,可以利用陶瓷较高的介电常数调节(一般是减小)器件的尺寸,实现器件集成化。
常规的陶瓷波导射频器件,利用陶瓷粉末烧结成毛坯,再进行精密加工,成本高、加工效率低、尺寸精度差,造成器件性能降低。
高温共烧陶瓷或低温共烧陶瓷技术,利用陶瓷粉末和树脂粘接剂流延形成生瓷带,再通过在生瓷带上印刷导电金属浆料实现电路布局,逐层将印有电路的多层生瓷带叠放,并在高温环境下烧结,形成带有内部线路的陶瓷体器件。但一方面,这种技术的生瓷带在烧结过程中收缩,造成器件尺寸误差;另一方面,这种技术并不能制造波导射频器件,仅能印刷电路形成电容、电感、电阻结构并组成谐振电路实现滤波等功能,这种方案仅适用于低频情况,当频率升高,金属电路中的导电损耗大幅提高,会导致器件传输效率降低,性能严重恶化。
介质集成波导技术是在高温共烧陶瓷和低温共烧陶瓷技术基础上发展的一类新技术。这种技术将生瓷带加工出有特殊结构的微孔阵列,并在孔内壁进行金属化,利用孔间距调控电磁波,从而实现波导效果。但这种工艺仍具有烧结收缩的缺点,而且微孔制造和孔内壁金属化的工艺复杂,对电磁波约束也不足,造成泄露,进而恶化器件性能。
陶瓷增材制造技术亦可用于陶瓷波导射频器件的制造,但一方面,陶瓷增材制造精度不高、表面质量差,不利于器件稳定、合格制造;另一方面,增材制造所需的陶瓷微粉制造困难,成本高,无法实现低成本、大批量的陶瓷波导射频器件加工。
发明内容
本发明的目的是要解决现有制备陶瓷波导射频器件的方法成本高、加工效率低、尺寸精度差,表面质量差,造成器件性能降低,无法大批量制备陶瓷波导射频器件的问题,而提供一种介质波导射频器件的制造方法。
一种介质波导射频器件的制造方法,是按以下步骤完成的:
一、剖切:
设计介质波导射频器件,按照介质波导射频器件的模型将介质材料沿一个方向剖切成n层,再进行磨削、抛光,切割,得到n层介质材料片;n层介质材料片自下而上叠放设置;
二、耦合:
按照介质波导射频器件设计要求确定介质谐振腔的数量,在相邻介质谐振腔之间进行耦合设计,再在n层介质材料片相应的片层上加工耦合结构;
步骤二中所述的耦合结构为开槽耦合、通孔耦合、盲孔耦合、斜孔耦合或开窗耦合;
三、加工调谐孔:
按照介质波导射频器件的模型设置的谐振腔孔个数及深度,在n层介质材料片上分别加工调谐孔;
四、加工能量输入孔:
在最后一层介质材料片上,两个谐振腔的背面分别加工能量输入孔;
五、布胶、叠放/局部金属化、布胶、叠放:
若步骤二中所述的耦合结构为开槽耦合、通孔耦合、盲孔耦合或斜孔耦合形式时,在除第一层以外的各层介质材料片的上表面上布置粘接胶,再自下而上依次叠放,得到布置粘接胶的n层介质材料片;
若步骤二中所述的耦合结构为开窗耦合形式时,首先在介质材料片耦合结构部位进行局部金属化,完成局部金属化后再在除第一层以外的各层介质材料片的上表面上布置粘接胶,避开金属化部位,最后自下而上依次叠放,得到布置粘接胶的n层介质材料片;
六、粘结:
按照以下情况进行粘结,得到器件;
七、整体金属化:
①、将器件进行清洗,去除表面杂质,再风干,得到干燥的器件;
②、将干燥的器件放入离子磁控溅射仪中,再以金为靶材,在8A~10A的电流下溅射200s,得到镀金后的器件;
③、将镀金后的器件与电镀设备的阴极相连接,再浸泡于电镀液中,电镀设备的阳极与纯铜板连接,在2A~4A的电流下电镀40min,得到镀铜后的器件;
④、将镀铜后的器件与电镀设备的阴极相连接,将浸有镀金药水的棉花与电镀设备的阳极相连接,在3V~5V的电压下使用棉花在镀铜后的器件表面进行涂覆,完成镀金工艺, 得到介质波导射频器件。
与现有的技术相比,本发明的有益效果为:
一、本发明能很容易的加工出具有复杂内部几何结构的介质波导射频器件,从而实现更复杂多样的器件拓扑结构制造;
二、本发明规避了传统陶瓷器件制造过程中的复杂模具和艰难的陶瓷三维机械加工,降低器件制造难度,提升精度余量;
三、本发明选用介质板后再制造介质片,没有加工后烧结带来的器件尺寸收缩问题,所以加工精度高,工艺稳定性好;
四、利用精密激光加工技术,本发明可实现超小型介质波导射频器件的精密制造,从而实现器件高频化;
五、本发明不仅适合于现有频段器件制造,也特别适合于面向高频段的超小型介质波导射频器件的制造,可以提供覆盖全频域器件的制造能力。
附图说明
图1为本发明制备介质波导射频器件的工艺流程示意图;
图2为实施例一中制备四阶对称波导滤波器件的模型示意图;
图3为实施例一中制备四阶对称波导滤波器件的步骤一至三的示意图,图中1-1为第一层介质材料片,1-2为第二层介质材料片,1-3为第三层介质材料片,1-4为第四层介质材料片,2为槽,3为介质谐振腔,4-1为第一调谐孔,4-2为第二调谐孔,4-3为第三调谐孔,4-4为第四调谐孔;
图4为实施例一中制备四阶对称波导滤波器件的步骤四的示意图,图中5-1为第一能量输入孔,5-2为第二能量输入孔;
图5为石英玻璃波导射频器件的回波损耗曲线;
图6为石英玻璃波导射频器件的插入损耗曲线。
具体实施方式
以下实施例进一步说明本发明的内容,但不应理解为对本发明的限制。在不背离本发明实质的情况下,对本发明方法、步骤或条件所作的修改和替换,均属于本发明的范围。
具体实施方式一:本实施方式一种介质波导射频器件的制造方法,是按以下步骤完成的:
一、剖切:
设计介质波导射频器件,按照介质波导射频器件的模型将介质材料沿一个方向剖切成 n层,再进行磨削、抛光,切割,得到n层介质材料片;n层介质材料片自下而上叠放设置;
二、耦合:
按照介质波导射频器件设计要求确定介质谐振腔的数量,在相邻介质谐振腔之间进行耦合设计,再在n层介质材料片相应的片层上加工耦合结构;
步骤二中所述的耦合结构为开槽耦合、通孔耦合、盲孔耦合、斜孔耦合或开窗耦合;
三、加工调谐孔:
按照介质波导射频器件的模型设置的谐振腔孔个数及深度,在n层介质材料片上分别加工调谐孔;
四、加工能量输入孔:
在最后一层介质材料片上,两个谐振腔的背面分别加工能量输入孔;
五、布胶、叠放/局部金属化、布胶、叠放:
若步骤二中所述的耦合结构为开槽耦合、通孔耦合、盲孔耦合或斜孔耦合形式时,在除第一层以外的各层介质材料片的上表面上布置粘接胶,再自下而上依次叠放,得到布置粘接胶的n层介质材料片;
若步骤二中所述的耦合结构为开窗耦合形式时,首先在介质材料片耦合结构部位进行局部金属化,完成局部金属化后再在除第一层以外的各层介质材料片的上表面上布置粘接胶,避开金属化部位,最后自下而上依次叠放,得到布置粘接胶的n层介质材料片;
六、粘结:
按照以下情况进行粘结,得到器件;
七、整体金属化:
①、将器件进行清洗,去除表面杂质,再风干,得到干燥的器件;
②、将干燥的器件放入离子磁控溅射仪中,再以金为靶材,在8A~10A的电流下溅射200s,得到镀金后的器件;
③、将镀金后的器件与电镀设备的阴极相连接,再浸泡于电镀液中,电镀设备的阳极与纯铜板连接,在2A~4A的电流下电镀40min,得到镀铜后的器件;
步骤七③中所述的电镀液购买自贝宸五金科技公司;
④、将镀铜后的器件与电镀设备的阴极相连接,将浸有镀金药水的棉花与电镀设备的阳极相连接,在3V~5V的电压下使用棉花在镀铜后的器件表面进行涂覆,完成镀金工艺,得到介质波导射频器件。
步骤七④中所述的镀金药水为微蓝科技公司提供的无氰金水。
具体实施方式二:本实施方式与具体实施方式一不同点是:步骤一中所述的n层介质材料片的厚度相同或不相同。其它步骤与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一或二之一不同点是:步骤一中所述的n的取值范围为2≤n≤100。其它步骤与具体实施方式一或二相同。
具体实施方式四:本实施方式与具体实施方式一至三之一不同点是:步骤一中每层介质材料片的厚度为30μm~5mm。其它步骤与具体实施方式一至三相同。
具体实施方式五:本实施方式与具体实施方式一至四之一不同点是:步骤一中所述的介质材料为陶瓷、玻璃、熔融石英或树脂。其它步骤与具体实施方式一至四相同。
具体实施方式六:本实施方式与具体实施方式一至五之一不同点是:步骤五中所述的局部金属化的具体步骤如下:
①、使用掩膜板将非金属化区域覆盖;
步骤①中所述的掩膜板为胶带或环氧树脂;
②、将n层介质材料片进行清洗,去除表面杂质,再风干,得到干燥的n层
介质材料片;
③、将干燥的n层介质材料片放入离子磁控溅射仪中,再以金为靶材,在8A~10A的电流下溅射200s,得到镀金后的n层介质材料片;
④、将镀金后的n层介质材料片与电镀设备的阴极相连接,再浸泡于电镀液中,电镀设备的阳极与纯铜板连接,在2A~4A的电流下电镀40min,得到镀铜后的n层介质材料片;
步骤④中所述的电镀液购买自贝宸五金科技公司;
⑤、将镀铜后的n层介质材料片与电镀设备的阴极相连接,将浸有镀金药水的棉花与电镀设备的阳极相连接,在3V~5V的电压下使用棉花在镀铜后的n层介质材料片表面进行涂覆,完成镀金工艺;
步骤⑤中所述的镀金药水为微蓝科技公司提供的无氰金水。
⑥、去除n层介质材料片表面的掩膜板,再清洗n层介质材料片,去除表面杂质,风干,完成局部金属化。其它步骤与具体实施方式一至五相同。
具体实施方式七:本实施方式与具体实施方式一至六之一不同点是:步骤三中所述的谐振腔孔的深度相等或不相等。其它步骤与具体实施方式一至六相同。
具体实施方式八:本实施方式与具体实施方式一至七之一不同点是:步骤四中所述的 能量输入孔的孔深度相等或不相等。其它步骤与具体实施方式一至七相同。
具体实施方式九:本实施方式与具体实施方式一至八之一不同点是:步骤六中情况一:当步骤五中使用的粘接胶为pp预浸膜时,将布置粘接胶的n层介质材料片放入模具中,在压力为0.5MPa~20MPa和温度为120℃下进行固化,固化时间为30min~120min,最后对溢出的胶层进行打磨,完成粘结;
所述的pp预浸膜购买自多鸣新材料科技有限公司,型号为PP/GF60-65@0.15型预浸膜;
情况二:当步骤五中使用的粘接胶为热塑性树脂膜时,将布置粘接胶的n层介质材料片放入模具中,在0.5-20MPa的压力下150℃保持2h,同时去除多余的热塑性树脂膜,完成粘结;所述的热塑性树脂膜为聚乙烯膜,厚度为0.03mm~0.3mm;
所述的聚乙烯膜采购自德州正宇土工材料有限公司;
情况三:当步骤五中使用的粘接胶为预混胶时,将布置粘接胶的n层介质材料片放入模具中,在压力为0.5MPa~20MPa下进行固化10min~120min,完成粘结;所述的预混胶为丙烯酸树脂、固化剂和陶瓷粉体照质量比1.4:1:(0.01~1)混合,得到预混胶;所述的陶瓷粉体为二氧化钛陶瓷粉体、钛酸钡陶瓷粉体或钛酸镁陶瓷粉体;
所述的预混胶购买自宁波雄鹰检测设备有限公司,型号为XYX-604Y;
情况四:当步骤五中使用的粘接胶为热固性环氧树脂胶时,将布置粘接胶的n层介质材料片放入模具中,在压力为0.5MPa~20MPa下进行固化1h~30h,完成粘结;所述的热固性环氧树脂胶为A胶、B胶和二氧化钛陶瓷粉体按照质量比3:1:(0.01~1)混合,得到热固性环氧树脂胶;
所述的A胶和B胶的品牌为靛律;
情况五:当步骤五中使用的粘接胶为光敏树脂胶时,光敏树脂胶在常态下为液态,在除第一层以外的各层介质材料片的上表面放入匀胶机上,在7000转/分的转速下匀胶120s,匀胶后按顺序依次叠放,去除溢出的胶水,最后在紫外光下曝光2min~3min,完成粘结;
所述的光敏树脂胶为SINWE-3623;
情况六:当步骤五中使用的粘接胶为有机胶水时,粘结前将n层介质材料片清洗干净,再将有机胶水滴在除第一层以外的各层介质材料片的上表面,在7000转/分的转速下匀胶60s,匀胶后按顺序依次叠放,去除溢出的胶水,室温下自然固化10min~120min,完成粘结;所述的有机胶水为聚硅氧烷;
所述的有机胶水的品牌为道康宁DC184;
情况七:当步骤五中使用的粘接胶为无机胶水时,粘结前将n层介质材料片清洗干净,将无机胶水和直径为1μm的二氧化钛陶瓷粉体按照1:(0.01~1)的质量比混合后涂覆到除第一层以外的各层介质材料片的上表面,再依次叠放,首先在常温和0.5MPa~20MPa的条件下常温放置12h~24h,然后在温度为80℃~100℃下保温2h,再在150℃下保温2h,最后冷却至室温,完成粘结;
所述的无机胶水为SINWE-S523型胶水;
情况八:当步骤五中使用的粘接胶为无机硅胶时,将无机硅胶滴在除第一层以外的各层介质材料片的上表面,在7000转/分的转速下匀胶120s,匀胶后按顺序依次叠放,去除溢出的胶水,再在0.5MPa~20MPa下静置1h~12h完成粘结;所述的无机硅胶为纳米级的二氧化硅颗粒在水中或溶剂中的分散液,二氧化硅的质量分数为10%~50%,所述的溶剂为水或有机溶剂;所述的有机溶剂为异丙醇、丙二醇或无水乙醇;
情况九:当步骤五中使用的粘接胶为厌氧胶时,粘结前将n层介质材料片清洗干净,将厌氧胶滴均匀的涂覆在除第一层以外的各层介质材料片的上表面,再依次叠放,在0.5MPa~20MPa的条件下常温放置24h,去除溢出的胶水,完成粘接。其它步骤与具体实施方式一至八相同。
具体实施方式十:本实施方式与具体实施方式一至九之一不同点是:步骤七①中将器件放入装有无水乙醇的超声波清洗机中清洗1min。其它步骤与具体实施方式一至九相同。
下面结合附图和实施例对本发明进行详细的说明。
实施例一:以一个四阶对称波导滤波器件为例,阐述本发明介质波导射频器件的制造方法,设计四腔介质滤波器,设计要求如下:
四阶对称波导滤波器件的尺寸:21mm×21mm×7mm;
中心频率:3.5GHz;
带宽:0.1GHz;
通带范围:3.45GHz-3.55GHz;
插入损耗:<1dB;
回波损耗:>15dB;
本实施例一种介质波导射频器件的制造方法,具体是按以下步骤完成的:
一、剖切:
设计介质波导射频器件模型,如图2所示,按照介质波导射频器件的模型将介质材料沿一个方向剖切成4层,先将介质材料利用磨削加工至各层厚度,再抛光,之后使用紫外 皮秒激光器,按照各层的二维形状,对各层石英玻璃板进行切割,得到大小完全相同的4层介质材料片,即第一层介质材料片1-1、第二层介质材料片1-2、第三层介质材料片1-3和第四层介质材料片1-4,4层介质材料片自下而上叠放设置;
步骤一中所述的介质材料为石英玻璃,介电常数为3.8;
步骤一中所述的第一层介质材料片1-1、第二层介质材料片1-2、第三层介质材料片1-3和第四层介质材料片1-4的厚度分别为3.8mm、0.2mm、1.5mm、1.5mm;
二、耦合:
按照介质波导射频器件的模型设置的介质谐振腔3的数量,分别在4层介质材料片上开槽2,槽的宽度为2mm,长度为9.85mm;且不同介质材料片上的同一位置处开设的槽2的尺寸相同,相邻两个介质谐振腔3通过槽2进行能量耦合;
步骤二中介质波导射频器件的模型包括4个纵向布置的介质谐振腔3;
三、加工调谐孔:
按照介质波导射频器件的模型设置的谐振腔孔个数及深度,在4层介质材料片上分别加工调谐孔,每个介质材料谐振腔3带有一个调谐孔;介质波导射频器件的模型包括4个调谐孔,第一调谐孔4-1和第四调谐孔4-4的孔深相等,孔深为3.8mm,第二调谐孔4-2和第三调谐孔4-3孔深相等,孔深为4mm;第一调谐孔4-1、第二调谐孔4-2和第三调谐孔4-3和第四调谐孔4-4的半径为5.2mm;
四、加工能量输入孔:
在最后一层介质材料片上,第一调谐孔4-1和第四调谐孔4-4的背面分别加工第一能量输入孔5-1和第二能量输入孔5-2,第一能量输入孔5-1和第二能量输入孔5-2的深度相同,深度为1.5mm;
五、布胶、叠放:
在除第一层以外的各层介质材料片的上表面上布置粘接胶,再自下而上依次叠放,得到布置粘接胶的4层介质材料片;
步骤五中使用的粘接胶为光敏树脂胶,光敏树脂胶在常态下为液态,在除第一层以外的各层介质材料片的上表面放入匀胶机上,在7000转/分的转速下匀胶120s,匀胶后按顺序依次叠放,去除溢出的胶水,最后在紫外光下曝光2min,完成粘结;
所述的光敏树脂胶为SINWE-3623;
六、粘结:
按照以下情况进行粘结,得到滤波器:
七、整体金属化:
①、将滤波器放入装有无水乙醇的超声波清洗机中清洗1min,去除表面杂质,再风干,得到干燥的滤波器;
②、将干燥的滤波器放入离子磁控溅射仪中,再以金为靶材,在9A的电流下溅射200s,得到镀金后的滤波器;
③、将镀金后的滤波器与电镀设备的阴极相连接,再浸泡于电镀液中,电镀设备的阳极与纯铜板连接,在3A的电流下电镀40min,得到镀铜后的滤波器;
步骤七③中所述的电镀液购买自贝宸五金科技公司;
④、将镀铜后的滤波器与电镀设备的阴极相连接,将浸有镀金药水的棉花与电镀设备的阳极相连接,在4V的电压下使用棉花在镀铜后的滤波器表面进行涂覆,完成镀金工艺,得到石英玻璃波导射频器件。
步骤七④中所述的镀金药水为微蓝科技公司提供的无氰金水。
分别针对于石英玻璃这一材料,分别利用传统机械加工工艺制造石英玻璃波导射频器件和本发明实施例一中叠层制造工艺制造石英玻璃波导射频器件,对两种工艺制的的器件进行测试,测得试件回波损耗曲线见图5所示,插入损耗曲线见图6所示。
从图5和图6可以看出,本发明利用激光分层制造工艺制造出的石英玻璃波导射频器件性能满足设计需求,而采用传统机械加工工艺所制造出的石英玻璃波导射频器件由于存在制造误差,其插入损耗、回波损耗以及中心频率都与理想情况存在较大差异,其中:
中心频率:可以从以上两图中看出,采用传统机械加工工艺制造出的石英玻璃波导射频器件中心频率与所设计频率有一定的差异,为3.4GHz,这是由于机械加工存在误差所导致的,而采用实施例一中激光叠层制造工艺可以达到更高的加工精度,从而中心频率更为接近设计值,从图中可以看出,其中心频率为3.5GHz。
回波损耗:传统机械加工工艺由于制造误差原因,其回波损耗为>13.6dB,不满足滤波器设计要求,需经过后续调整达到使用要求,而使用实施例一中激光叠层工艺所制造滤波器回波损耗>15.34dB,满足设计需求,无需后续进行调整。
插入损耗:传统机械加工工艺制造石英玻璃波导射频器件插入损耗在其通带范围内参数满足要求,但是由于中心频率的便宜,其通带范围与设计通带范围并不一致,不满足滤波器使用要求,仍需通过后续处理对滤波器性能进行调整,利用实施例一中激光叠层制造工艺可以避免这一问题,可以从图中看出,采用叠层制造中心频率符合要求,插入损耗同样满足设计需求,无需经过后续调整处理。
通过比较可以看出,采用实施例一中激光叠层制造工艺可以很好的降低制造误差,使器件的达到理想的性能,减小后续滤波器调整的工作量,提高生产效率。对于大批量滤波器制造具有重要的意义。

Claims (10)

  1. 一种介质波导射频器件的制造方法,其特征在于一种介质波导射频器件的制造方法是按以下步骤完成的:
    一、剖切:
    设计介质波导射频器件,按照介质波导射频器件的模型将介质材料沿一个方向剖切成n层,再进行磨削、抛光,切割,得到n层介质材料片;n层介质材料片自下而上叠放设置;
    二、耦合:
    按照介质波导射频器件设计要求确定介质谐振腔的数量,在相邻介质谐振腔之间进行耦合设计,再在n层介质材料片相应的片层上加工耦合结构;
    步骤二中所述的耦合结构为开槽耦合、通孔耦合、盲孔耦合、斜孔耦合或开窗耦合;
    三、加工调谐孔:
    按照介质波导射频器件的模型设置的谐振腔孔个数及深度,在n层介质材料片上分别加工调谐孔;
    四、加工能量输入孔:
    在最后一层介质材料片上,两个谐振腔的背面分别加工能量输入孔;
    五、布胶、叠放/局部金属化、布胶、叠放:
    若步骤二中所述的耦合结构为开槽耦合、通孔耦合、盲孔耦合或斜孔耦合形式时,在除第一层以外的各层介质材料片的上表面上布置粘接胶,再自下而上依次叠放,得到布置粘接胶的n层介质材料片;
    若步骤二中所述的耦合结构为开窗耦合形式时,首先在介质材料片耦合结构部位进行局部金属化,完成局部金属化后再在除第一层以外的各层介质材料片的上表面上布置粘接胶,避开金属化部位,最后自下而上依次叠放,得到布置粘接胶的n层介质材料片;
    六、粘结:
    按照以下情况进行粘结,得到器件;
    七、整体金属化:
    ①、将器件进行清洗,去除表面杂质,再风干,得到干燥的器件;
    ②、将干燥的器件放入离子磁控溅射仪中,再以金为靶材,在8A~10A的电流下溅射200s,得到镀金后的器件;
    ③、将镀金后的器件与电镀设备的阴极相连接,再浸泡于电镀液中,电镀设备的阳极与纯铜板连接,在2A~4A的电流下电镀40min,得到镀铜后的器件;
    ④、将镀铜后的器件与电镀设备的阴极相连接,将浸有镀金药水的棉花与电镀设备的 阳极相连接,在3V~5V的电压下使用棉花在镀铜后的器件表面进行涂覆,完成镀金工艺,得到介质波导射频器件。
  2. 根据权利要求1所述的一种介质波导射频器件的制造方法,其特征在于步骤一中所述的n层介质材料片的厚度相同或不相同。
  3. 根据权利要求1所述的一种介质波导射频器件的制造方法,其特征在于步骤一中所述的n的取值范围为2≤n≤100。
  4. 根据权利要求1所述的一种介质波导射频器件的制造方法,其特征在于步骤一中每层介质材料片的厚度为30μm~5mm。
  5. 根据权利要求1所述的一种介质波导射频器件的制造方法,其特征在于步骤一中所述的介质材料为陶瓷、玻璃、熔融石英或树脂。
  6. 根据权利要求1所述的一种介质波导射频器件的制造方法,其特征在于步骤五中所述的局部金属化的具体步骤如下:
    ①、使用掩膜板将非金属化区域覆盖;
    步骤①中所述的掩膜板为胶带或环氧树脂;
    ②、将n层介质材料片进行清洗,去除表面杂质,再风干,得到干燥的n层介质材料片;
    ③、将干燥的n层介质材料片放入离子磁控溅射仪中,再以金为靶材,在8A~10A的电流下溅射200s,得到镀金后的n层介质材料片;
    ④、将镀金后的n层介质材料片与电镀设备的阴极相连接,再浸泡于电镀液中,电镀设备的阳极与纯铜板连接,在2A~4A的电流下电镀40min,得到镀铜后的n层介质材料片;
    ⑤、将镀铜后的n层介质材料片与电镀设备的阴极相连接,将浸有镀金药水的棉花与电镀设备的阳极相连接,在3V~5V的电压下使用棉花在镀铜后的n层介质材料片表面进行涂覆,完成镀金工艺;
    ⑥、去除n层介质材料片表面的掩膜板,再清洗n层介质材料片,去除表面杂质,风干,完成局部金属化。
  7. 根据权利要求1所述的一种介质波导射频器件的制造方法,其特征在于步骤三中所述的谐振腔孔的深度相等或不相等。
  8. 根据权利要求1所述的一种介质波导射频器件的制造方法,其特征在于步骤四中所述的能量输入孔的孔深度相等或不相等。
  9. 根据权利要求1所述的一种介质波导射频器件的制造方法,其特征在于步骤六中情 况一:当步骤五中使用的粘接胶为pp预浸膜时,将布置粘接胶的n层介质材料片放入模具中,在压力为0.5MPa~20MPa和温度为120℃下进行固化,固化时间为30min~120min,最后对溢出的胶层进行打磨,完成粘结;
    情况二:当步骤五中使用的粘接胶为热塑性树脂膜时,将布置粘接胶的n层介质材料片放入模具中,在0.5-20MPa的压力下150℃保持2h,同时去除多余的热塑性树脂膜,完成粘结;所述的热塑性树脂膜为聚乙烯膜,厚度为0.03mm~0.3mm;
    情况三:当步骤五中使用的粘接胶为预混胶时,将布置粘接胶的n层介质材料片放入模具中,在压力为0.5MPa~20MPa下进行固化10min~120min,完成粘结;所述的预混胶为丙烯酸树脂、固化剂和陶瓷粉体照质量比1.4:1:(0.01~1)混合,得到预混胶;所述的陶瓷粉体为二氧化钛陶瓷粉体、钛酸钡陶瓷粉体或钛酸镁陶瓷粉体;
    情况四:当步骤五中使用的粘接胶为热固性环氧树脂胶时,将布置粘接胶的n层介质材料片放入模具中,在压力为0.5MPa~20MPa下进行固化1h~30h,完成粘结;所述的热固性环氧树脂胶为A胶、B胶和二氧化钛陶瓷粉体按照质量比3:1:(0.01~1)混合,得到热固性环氧树脂胶;
    情况五:当步骤五中使用的粘接胶为光敏树脂胶时,光敏树脂胶在常态下为液态,在除第一层以外的各层介质材料片的上表面放入匀胶机上,在7000转/分的转速下匀胶120s,匀胶后按顺序依次叠放,去除溢出的胶水,最后在紫外光下曝光2min~3min,完成粘结;
    情况六:当步骤五中使用的粘接胶为有机胶水时,粘结前将n层介质材料片清洗干净,再将有机胶水滴在除第一层以外的各层介质材料片的上表面,在7000转/分的转速下匀胶60s,匀胶后按顺序依次叠放,去除溢出的胶水,室温下自然固化10min~120min,完成粘结;所述的有机胶水为聚硅氧烷;
    情况七:当步骤五中使用的粘接胶为无机胶水时,粘结前将n层介质材料片清洗干净,将无机胶水和直径为1μm的二氧化钛陶瓷粉体按照1:(0.01~1)的质量比混合后涂覆到除第一层以外的各层介质材料片的上表面,再依次叠放,首先在常温和0.5MPa~20MPa的条件下常温放置12h~24h,然后在温度为80℃~100℃下保温2h,再在150℃下保温2h,最后冷却至室温,完成粘结;
    情况八:当步骤五中使用的粘接胶为无机硅胶时,将无机硅胶滴在除第一层以外的各层介质材料片的上表面,在7000转/分的转速下匀胶120s,匀胶后按顺序依次叠放,去除溢出的胶水,再在0.5MPa~20MPa下静置1h~12h完成粘结;所述的无机硅胶为纳米级的二氧化硅颗粒在水中或溶剂中的分散液,二氧化硅的质量分数为10%~50%,所述的溶剂为水 或有机溶剂;所述的有机溶剂为异丙醇、丙二醇或无水乙醇;
    情况九:当步骤五中使用的粘接胶为厌氧胶时,粘结前将n层介质材料片清洗干净,将厌氧胶滴均匀的涂覆在除第一层以外的各层介质材料片的上表面,再依次叠放,在0.5MPa~20MPa的条件下常温放置24h,去除溢出的胶水,完成粘接。
  10. 根据权利要求1所述的一种介质波导射频器件的制造方法,其特征在于步骤七①中将器件放入装有无水乙醇的超声波清洗机中清洗1min。
PCT/CN2022/133603 2021-11-24 2022-11-23 一种介质波导射频器件的制造方法 WO2023093741A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/670,324 US20240304977A1 (en) 2021-11-24 2024-05-21 Manufacturing method of dielectric waveguide radio-frequency device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111405712.8A CN114006144B (zh) 2021-11-24 2021-11-24 一种介质波导射频器件的制造方法
CN202111405712.8 2021-11-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/670,324 Continuation US20240304977A1 (en) 2021-11-24 2024-05-21 Manufacturing method of dielectric waveguide radio-frequency device

Publications (1)

Publication Number Publication Date
WO2023093741A1 true WO2023093741A1 (zh) 2023-06-01

Family

ID=79930154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/133603 WO2023093741A1 (zh) 2021-11-24 2022-11-23 一种介质波导射频器件的制造方法

Country Status (3)

Country Link
US (1) US20240304977A1 (zh)
CN (1) CN114006144B (zh)
WO (1) WO2023093741A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114006144B (zh) * 2021-11-24 2022-05-03 天津大学 一种介质波导射频器件的制造方法
CN115612324B (zh) * 2022-10-14 2024-01-16 中国科学院赣江创新研究院 一种雷达吸波涂层及其制备方法与应用
CN115494456B (zh) * 2022-11-21 2023-03-10 南京隼眼电子科技有限公司 雷达收发装置及雷达装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103188867A (zh) * 2012-05-30 2013-07-03 珠海越亚封装基板技术股份有限公司 具有新型传输线的多层电子结构
CN104253296A (zh) * 2013-06-25 2014-12-31 深圳光启创新技术有限公司 滤波器谐振子及其制造方法、滤波器件和电磁设备
JP2015188143A (ja) * 2014-03-26 2015-10-29 日東電工株式会社 導波管およびその製造方法
CN106560950A (zh) * 2015-10-05 2017-04-12 株式会社Kmw 射频滤波器调谐系统及利用其的滤波器的制作方法
US20190123448A1 (en) * 2017-05-02 2019-04-25 Rogers Corporation Electromagnetic reflector for use in a dielectric resonator antenna system
CN111266813A (zh) * 2020-03-20 2020-06-12 安徽川越通信科技有限责任公司 一种用于通信的功分器腔体加工方法
CN111300728A (zh) * 2020-03-20 2020-06-19 安徽川越通信科技有限责任公司 一种用于通信的功分器腔体加工设备
CN114006144A (zh) * 2021-11-24 2022-02-01 天津大学 一种介质波导射频器件的制造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006340141A (ja) * 2005-06-03 2006-12-14 Toko Inc 誘電体導波管フィルタの製造方法
KR100932705B1 (ko) * 2007-10-23 2009-12-21 한밭대학교 산학협력단 유전체 도파관 필터 및 그 제조방법
CN108365308B (zh) * 2018-02-05 2020-04-21 重庆思睿创瓷电科技有限公司 介质波导滤波器及其贴装方法
CN109534789B (zh) * 2018-11-01 2020-05-19 华中科技大学 一种陶瓷介质滤波器的制备方法
KR102193435B1 (ko) * 2018-11-26 2020-12-21 주식회사 에이스테크놀로지 세라믹 웨이브가이드 필터 및 이의 제조 방법
CN111048874B (zh) * 2019-12-11 2021-08-17 惠州市华磁微波技术有限公司 介质滤波器及其制作方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103188867A (zh) * 2012-05-30 2013-07-03 珠海越亚封装基板技术股份有限公司 具有新型传输线的多层电子结构
CN104253296A (zh) * 2013-06-25 2014-12-31 深圳光启创新技术有限公司 滤波器谐振子及其制造方法、滤波器件和电磁设备
JP2015188143A (ja) * 2014-03-26 2015-10-29 日東電工株式会社 導波管およびその製造方法
CN106560950A (zh) * 2015-10-05 2017-04-12 株式会社Kmw 射频滤波器调谐系统及利用其的滤波器的制作方法
US20190123448A1 (en) * 2017-05-02 2019-04-25 Rogers Corporation Electromagnetic reflector for use in a dielectric resonator antenna system
CN111266813A (zh) * 2020-03-20 2020-06-12 安徽川越通信科技有限责任公司 一种用于通信的功分器腔体加工方法
CN111300728A (zh) * 2020-03-20 2020-06-19 安徽川越通信科技有限责任公司 一种用于通信的功分器腔体加工设备
CN114006144A (zh) * 2021-11-24 2022-02-01 天津大学 一种介质波导射频器件的制造方法

Also Published As

Publication number Publication date
US20240304977A1 (en) 2024-09-12
CN114006144B (zh) 2022-05-03
CN114006144A (zh) 2022-02-01

Similar Documents

Publication Publication Date Title
WO2023093741A1 (zh) 一种介质波导射频器件的制造方法
CN103265293B (zh) 陶瓷基片的制备方法
CN110828961B (zh) 一种ltcc内嵌空心矩形波导结构的制造方法
CN112074106A (zh) 一种多层异质熟瓷基片高精度对位堆叠的方法
KR20050109591A (ko) 초소형 rf 스트립라인 선형위상 필터
CN108832247A (zh) 一种基于玻璃通孔技术的威尔金森功分器
CN112004325A (zh) 一种多层异质熟瓷结构薄膜元器件及电路板制备方法
Ali et al. Heterogeneous integration of 5G and millimeter-wave diplexers with 3D glass substrates
CN112010665A (zh) 一种嵌入式异质陶瓷基片的制备方法
CN104201454A (zh) Ltcc小型化微波无源器件
CN103880413B (zh) 一种制备钛酸钡基低温共烧板用陶瓷粉体的方法
CN106067376B (zh) 一种超薄表贴型陶瓷电容器的加工方法
CN206340652U (zh) 包含陶瓷微带的射频垂直过渡结构
CN105846789B (zh) 低通滤波器及其制备方法
CN109411889B (zh) 天线用正六边形型ebg结构及其制造工艺
CN111393171A (zh) 一种滤波器的成型方法及滤波器
CN115832662A (zh) 一种环行器用微波复合基板及其制备方法
CN203895579U (zh) 一种陶瓷介质滤波器
CN114628135B (zh) 一种电子元器件的制造方法
CN115226323A (zh) 低温共烧陶瓷基板表面焊盘及其制备方法
Li et al. Design of super compact bandpass filter using silicon-based integrated passive device technology
CN109039293A (zh) 一种自偏置钡微波介质滤波器及其叠层工艺
Zhang et al. Design and fabrication of the silicon-based integrated MIM capacitors
CN115410930B (zh) 一种基于lcp的射频器件集成制造方法
JP2000332422A (ja) 多層回路基板及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897824

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE