CN111996515B - 一种铱锡氧化物梯度复合涂层电极及其制备方法 - Google Patents

一种铱锡氧化物梯度复合涂层电极及其制备方法 Download PDF

Info

Publication number
CN111996515B
CN111996515B CN202010676241.3A CN202010676241A CN111996515B CN 111996515 B CN111996515 B CN 111996515B CN 202010676241 A CN202010676241 A CN 202010676241A CN 111996515 B CN111996515 B CN 111996515B
Authority
CN
China
Prior art keywords
coating
iridium
tin
layer
gradient composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010676241.3A
Other languages
English (en)
Other versions
CN111996515A (zh
Inventor
蒋玉思
肖方明
邵彩茹
曹洪杨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Resource Utilization and Rare Earth Development of Guangdong Academy of Sciences
Original Assignee
Institute of Rare Metals of Guangdong Academy of Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Rare Metals of Guangdong Academy of Sciences filed Critical Institute of Rare Metals of Guangdong Academy of Sciences
Priority to CN202010676241.3A priority Critical patent/CN111996515B/zh
Publication of CN111996515A publication Critical patent/CN111996515A/zh
Application granted granted Critical
Publication of CN111996515B publication Critical patent/CN111996515B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1225Deposition of multilayers of inorganic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1241Metallic substrates
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/02Electrodes; Connections thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Ceramic Engineering (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

本发明公开了一种铱锡氧化物梯度复合涂层电极,由纯钛基体、连接层、过渡层和催化层组成;连接层化学组成为IrxSn0.9‑xTi0.1O2,其中0<x≤0.1,厚度为1~3μm;过渡层化学组成为IrySn1‑yO2,其中0.1<y≤0.2,厚度为1~4μm;催化层化学组成为IrzSn1‑zO2,其中0.2<z≤0.4,厚度为8~15μm。本发明的铱锡氧化物梯度复合涂层电极涂层结构致密、表面裂缝少而小,通过连接层、过渡层使纯钛基体和催化层的相界面逐渐梯度变化,结合强度更高,化学稳定性高和使用寿命长,解决了现有技术电极稳定性较差,使用寿命较短的问题。

Description

一种铱锡氧化物梯度复合涂层电极及其制备方法
技术领域:
本发明涉及铱锡氧化物电极技术领域,具体涉及一种铱锡氧化物梯度复合涂层电极及其制备方法。
背景技术:
铱锡氧化物电极是一种钛基表面涂覆铱锡氧化物的不溶性电极,具有电催化活性高和化学稳定性高等优点,在电镀、电解和金属回收等领域具有较大应用价值,受到学术界和工业界的广泛关注。最初的铱锡氧化物涂层是均质的,直接施涂在钛基体上。研究表明,铱锡氧化物电极的失效部分归因于钛基体的钝化。为延长铱锡氧化物电极的使用寿命,一般在钛基表面施镀(涂)Pt层、SnO2-Sb2O3层等。在中等电流密度下,Pt层、SnO2-Sb2O3层等防钝化层可显著延长金属氧化物电极的寿命,但在高工作电流密度下,含Pt层或SnO2-Sb2O3等的电极稳定性较差,使用寿命较短。因此,有必要研究一种高稳定性长寿命的复合金属氧化物电极。
发明内容:
本发明的目的是提供一种铱锡氧化物梯度复合涂层电极及其制备方法,得到的电极稳定性好,使用寿命长,解决了现有技术电极稳定性较差,使用寿命较短的问题。
本发明是通过以下技术方案予以实现的:
一种铱锡氧化物梯度复合涂层电极,由纯钛基体、连接层、过渡层和催化层组成;所述的连接层化学组成为IrxSn0.9-xTi0.1O2,其中0<x≤0.1,厚度为1~3μm;所述的过渡层化学组成为IrySn1-yO2,其中0.1<y≤0.2,厚度为1~4μm;所述的催化层化学组成为IrzSn1- zO2,其中0.2<z≤0.4,厚度为8~15μm。
连接层的作用是连接钛基体与过渡层,保护钛基体,延缓其钝化的发生。在连接层中引入具有搪瓷性能的TiO2,是为了提高钛基与连接层的附着强度。连接层的厚度小于1μm,不能有效保护钛基体,大于3μm则降低与基体的结合力,理想的厚度为1~3μm。
过渡层的引入是缓解连接层和催化层界面上热应力,提高氧的扩散障垒,间接改善钛基体的抗钝化性。另外,可改善催化层的表面形态。催化层是电极的活性层,为电化学反应发生的场所。
所述的铱锡氧化物梯度复合涂层电极的制备方法包括以下步骤:
①用5%~10%(质量分数)的草酸溶液在85~95℃下蚀刻钛材2~4h,水洗后红外干燥得清洁的钛基体;
②将连接涂层涂液均匀涂覆在清洁的钛基体上,在100~120℃下固化10~15min,450~500℃下热氧化分解10~15min,空冷,重复涂覆、固化和热氧化分解等上述过程,共涂覆1~3次,最后在450~500℃下热处理0.5h,制得连接涂层;以涂液金属摩尔百分比总量为100%计,所述的连接层涂液配方为:锡前驱体:80%~90%,钛前驱体:10%,余为铱前驱体;溶剂为乙醇和正丁醇,涂液中金属离子浓度为0.1~0.4mol/L,涂液中金属离子浓度大,涂覆次数少;反之则涂覆次数多,操作中灵活使用。
③将过渡涂层涂液均匀涂覆在连接涂层上,在100~120℃下固化10~15min,480~520℃下热氧化分解10~15min,重复上述过程,共涂覆1~4次,最后在480~520℃下热处理0.5h,制得过渡涂层;以涂液金属摩尔百分比总量为100%计,所述的过渡涂层涂液配方为:铱前驱体:10%~20%,锡前驱体:80%~90%,溶剂为乙醇和正丁醇,涂液中金属离子浓度为0.2~0.4mol/L;
④将催化涂层涂液均匀涂覆过渡涂层上,在100~120℃下固化10~15min,480~520℃下热氧化分解10~15min,空冷,共涂覆8~15次,最后在480~520℃下热处理1h,制得梯度复合涂层电极;以涂液金属摩尔百分比总量为100%计,所述催化涂层涂液配方为铱前驱体:20%~40%,锡前驱体:60%~80%,溶剂为乙醇和正丁醇,涂液中金属离子浓度为0.2~0.4mol/L;涂液浓度大,涂覆次数少;浓度小,涂覆次数多,操作中灵活使用。
通常置于大气环境中的钛材表面覆有一层疏松的氧化钛,这种氧化物膜层会影响钛基与后续涂覆涂层的结合力。草酸的作用是去除钛材表面的氧化钛膜层,以得到清洁的基体。
所述的铱前驱体为三氯化铱、氯铱酸。
所述的锡前驱体为烷氧基锡、醋酸锡。与锡氯化物相比,烷氧基锡、醋酸锡等有机前驱体的沸点较高,挥发减少,锡沉积率得以提高。
所述的钛前驱体为三氯化钛、钛酸丁酯。
涂覆可以采用刷涂、浸涂和喷涂方式。选用刷涂时,用力适度,纵向和横向刷涂交替进行,以保证涂层的均匀性。采用浸涂时,提拉速度为1~40μm/s。采用喷涂时,进气压力0.2~0.4MPa,喷涂距离20~30cm。考虑到贵金属的利用率和操作简单,优选刷涂方式。
固化是在热力的作用下去除有机溶剂,将前驱物附着在钛基体或涂层上。当温度高于120℃时,溶剂挥发过快,会影响涂层的结合力,一般选择100~120℃进行干燥固化。
热氧化分解是将前驱体转变为金属氧化物。当温度低于450℃时,金属前驱体氧化分解不彻底。当高于520℃时,钛材会发生严重氧化,因此理想的热处理温度为450~520℃。
热处理是消除复合涂层中的内应力,提高钛基、过渡层与催化涂层间的结合力。温度高于520℃时,钛材会发生严重氧化,因此理想的热处理温度为450~520℃。
本发明的有益效果如下:
本发明的铱锡氧化物梯度复合涂层电极涂层结构致密、表面裂缝少而小,通过连接层、过渡层使纯钛基体和催化层的相界面逐渐梯度变化,结合强度更高,化学稳定性高和使用寿命长,解决了现有技术电极稳定性较差,使用寿命较短的问题。其制备方法为清洁方法,易于实现涂层成分的设计,工艺简单,适合规模化生产。
附图说明:
图1是本发明梯度复合涂层电极结构示意图;
图2是实施例1得到的梯度复合涂层电极扫描电镜图;
图3是实施例2得到的梯度复合涂层电极扫描电镜图;
图4是实施例3得到的梯度复合涂层电极扫描电镜图;
图5是实施例4得到的梯度复合涂层电极扫描电镜图。
具体实施方式:
以下是对本发明的进一步说明,而不是对本发明的限制。
实施例1:
一种铱锡氧化物梯度复合涂层电极,由纯钛基体、连接层、过渡层和催化层组成;所述的连接层化学组成为Ir0.1Sn0.8Ti0.1O2,厚度为2μm;所述的过渡层化学组成为Ir0.2Sn0.8O2,厚度为3μm;所述的催化层化学组成为Ir0.3Sn0.7O2,厚度为10μm。
制备方法包括以下步骤:
选用纯钛片TA2为基体,用10%(质量分数)的草酸90℃下蚀刻3h,水洗后红外干燥。
按铱锡钛金属摩尔比1:8:1,将氯铱酸、烷氧基锡和钛酸丁酯溶于体积比为1:1的乙醇-正丁醇混合溶剂中,得到总金属摩尔浓度为0.20mol/L的涂液。用软毛刷均匀涂刷在钛基体上,接着在110℃下干燥固化10min,然后在450℃下热氧化分解10min,反复进行直到将涂液刷完,最后480℃下热处理0.5h,制得连接涂层。
按铱锡金属摩尔比2:8,将氯铱酸和烷氧基锡溶于体积比为1:1的乙醇-正丁醇混合溶剂中,得到总金属摩尔浓度为0.30mol/L的涂液。用软毛刷均匀涂刷在连接涂层上,接着在110℃下干燥固化10min,然后在480℃下热氧化分解10min,反复进行直到将涂液刷完,最后480℃热处理0.5h,制得过渡涂层。
按铱锡金属摩尔比3:7,将氯化铱和烷氧基锡溶于乙醇-正丁醇混合溶剂中,得到总金属摩尔浓度为0.30mol/L的涂液。用软毛刷均匀涂刷在过渡涂层上,接着在120℃下干燥固化10min,然后在480℃下热氧化分解10min,反复进行直到将涂液刷完,最后480℃热处理1h,制得梯度复合涂层电极。
扫描电镜测试(如图2)表明,本实施例梯度复合涂层电极结构致密,表面裂缝少而小。一般约定,在0.5mol/L硫酸溶液中、2A/cm2下恒流电解,槽电压升至10V,所经历的时间为电极的强化寿命。
为了便于对照,制备了Ti/SnO2-Sb2O3/IrO2-SnO2电极(中间层中锡锑摩尔比为9:1,外层中铱锡摩尔比为3:7),其Ir含量与本实施例梯度复合涂层电极相同。测试了Ti/SnO2-Sb2O3/IrO2-SnO2电极(中间层中锡锑摩尔比为9:1,外层中铱锡摩尔比为3:7)、本实施例梯度复合涂层电极的寿命。测试结果为Ti/SnO2-Sb2O3/IrO2-SnO2电极(中间层中锡锑摩尔比为9:1,外层中铱锡摩尔比为3:7)寿命800h,本实施例梯度复合涂层电极寿命960h。基于此判断,本实施例梯度复合涂层电极的化学稳定性较高。
其中Ti/SnO2-Sb2O3/IrO2-SnO2(中间层中锡锑摩尔比为9:1,外层中铱锡摩尔比为3:7)电极的制备方法如下:
钛基体的前处理同梯度复合涂层电极。
按锡锑摩尔比9:1,将四氯化锡、三氯化锑溶于乙醇和正丁醇溶剂中,得到总金属摩尔浓度为0.20mol/L的锡锑涂液。用软毛刷均匀将锡锑涂液均匀涂刷在钛基体上,接着在110℃干燥10min,然后在480℃下热氧化分解10min,反复涂刷5次,最后在480℃下热处理1h,得到SnO2-Sb2O3中间涂层。
按铱锡金属摩尔比3:7,将氯化铱和四氯化锡溶于乙醇-正丁醇混合溶剂中,得到总金属摩尔浓度为0.30mol/L的铱锡涂液。用软毛刷均匀涂刷在中间涂层上,接着在120℃下干燥固化10min,然后在480℃下热氧化分解10min,反复进行直到将涂液刷完,最后480℃热处理1h,制得Ti/SnO2-Sb2O3/IrO2-SnO2电极(中间层中锡锑摩尔比为9:1,外层中铱锡摩尔比为3:7)。
实施例2
一种铱锡氧化物梯度复合涂层电极,由纯钛基体、连接层、过渡层和催化层组成;所述的连接层化学组成为Ir0.05Sn0.85Ti0.1O2,厚度为1.5μm;所述的过渡层化学组成为Ir0.15Sn0.85O2,厚度为3μm;所述的催化层化学组成为Ir0.4Sn0.6O2,厚度为8μm。
制备方法包括以下步骤:
选用纯钛网TA2为基体,用8%(质量分数)的草酸85℃蚀刻4h,水洗后红外干燥。
按铱锡钛金属摩尔比0.5:8.5:1,将氯铱酸、醋酸锡和钛酸丁酯溶于体积比为1:1的乙醇-正丁醇混合溶剂中,得到总金属摩尔浓度为0.30mol/L的涂液。将清洁钛基浸入连接层涂液中,以25μm/s速率提拉,接着在110℃下干燥固化10min,然后在450℃下热氧化10min,反复进行4次,最后480℃下热处理0.5h,制得连接涂层。
按铱锡金属摩尔比1.5:8.5,将氯铱酸和烷氧基锡溶于体积比为1:1的乙醇-正丁醇混合溶剂中,得到总金属摩尔浓度为0.30mol/L的涂液。将带有连接涂层钛基浸入过渡层涂液中,以20μm/s速率提拉,接着在115℃下干燥固化10min,然后在480℃下热氧化分解10min,反复进行5次,最后480℃热处理0.5h,制得过渡涂层。
按铱锡金属摩尔比4:6,将氯化铱和烷氧基锡溶于乙醇-正丁醇混合溶剂中,得到总金属摩尔浓度为0.30mol/L的涂液。将带有过渡涂层钛基浸入催化层涂液中,以15μm/s速率提拉,接着在120℃下干燥固化10min,然后在480℃下热氧化分解10min,反复进行15次,最后480℃热处理1h,制得梯度复合涂层电极。
扫描电镜测试(如图3)表明,本实施例梯度复合涂层电极结构致密,表面裂缝少而小。为了便于对照,制备并测试了Ti/Pt/IrO2-SnO2电极(铱锡摩尔比4:6)、本实施例梯度复合涂层电极的寿命。结果表明,Ti/Pt/IrO2-SnO2电极(铱锡摩尔比4:6)寿命为850h,本实施例梯度复合涂层电极寿命959h。
其中Ti/Pt/IrO2-SnO2电极(铱锡摩尔比4:6)的制备方法如下:
钛基体的前处理同梯度复合涂层电极。
将氯铂酸溶于乙醇中,得到铂浓度为20g/L的铂涂液。用软毛刷均匀将铂涂液均匀涂刷在钛基体上,接着在110℃干燥10min,然后在450℃下热氧化分解10min,反复涂刷3次,最后在450℃下热处理0.5h,得到铂中间层。
按铱锡金属摩尔比4:6,将氯化铱和四氯化锡溶于乙醇-正丁醇混合溶剂中,得到总金属摩尔浓度为0.25mol/L的铱锡涂液,其铱量等同于本实施例梯度复合涂层电极。用软毛刷均匀涂刷在中间涂层上,接着在120℃下干燥固化10min,然后在480℃下热氧化分解10min,反复进行直到将涂液刷完,最后480℃热处理1h,制得Ti/Pt/IrO2-SnO2电极。
实施例3
一种铱锡氧化物梯度复合涂层电极,由纯钛基体、连接层、过渡层和催化层组成;所述的连接层化学组成为Irx0.08Sn0.82Ti0.1O2,厚度为3μm;所述的过渡层化学组成为Ir0.13Sn0.87O2,厚度为4μm;所述的催化层化学组成为Ir0.35Sn0.65O2,厚度为12μm。
制备方法包括以下步骤:
选用纯钛片TA2为基体,用10%(质量分数)的草酸90℃下蚀刻3h,水洗后红外干燥。
按铱锡钛金属摩尔比0.8:8.2:1,将氯铱酸、烷氧基锡和三氯化钛溶于体积比为1:1的乙醇-正丁醇混合溶剂中,得到总金属摩尔浓度为0.20mol/L的涂液。喷涂时,进气压力0.4MPa,喷涂距离25cm,接着在110℃下干燥固化10min,然后在460℃下热氧化分解10min,反复进行直到连接涂层厚度为3μm,最后480℃下热处理0.5h,制得连接涂层。
按铱锡金属摩尔比1.3:8.7,将氯铱酸和烷氧基锡溶于体积比为1:1的乙醇-正丁醇混合溶剂中,得到总金属摩尔浓度为0.30mol/L的涂液。喷涂时,进气压力0.4MPa,喷涂距离25cm,接着在110℃下干燥固化10min,然后在480℃下热氧化分解10min,反复进行直到过渡涂层厚度为4μm,最后480℃热处理0.5h,制得过渡涂层。
按铱锡金属摩尔比3.5:6.5,将氯化铱和烷氧基锡溶于乙醇-正丁醇混合溶剂中,得到总金属摩尔浓度为0.30mol/L的涂液。喷涂时,进气压力0.4MPa,喷涂距离25cm,接着在120℃下干燥固化10min,然后在480℃下热氧化分解10min,反复进行直到催化涂层厚度为12μm,最后480℃热处理1h,制得梯度复合涂层电极。
扫描电镜测试(如图4)表明,本实施例梯度复合涂层电极结构致密,表面裂缝少而小。对照Ti/SnO2-Sb2O3/IrO2-SnO2电极(中间层中锡锑摩尔比为8.5:1.5,外层中铱锡摩尔比为3.5:6.5)寿命为750h,本实施例梯度复合涂层电极寿命928h。由此判断,本实施例梯度复合涂层电极的化学稳定性较高。
其中Ti/SnO2-Sb2O3/IrO2-SnO2电极(中间层中锡锑摩尔比为8.5:1.5,外层中铱锡摩尔比为3.5:6.5)的制备方法如下:
中间层涂液中锡锑摩尔比为8.5:1.5,外层涂层中铱锡摩尔比为3.5:6.5,其制备过程与实施例1的对照样品Ti/SnO2-Sb2O3/IrO2-SnO2电极(中间层中锡锑摩尔比为9:1,外层中铱锡摩尔比为3:7)相同。
实施例4
一种铱锡氧化物梯度复合涂层电极,由纯钛基体、连接层、过渡层和催化层组成;所述的连接层化学组成为Ir0.05Sn0.85Ti0.1O2,厚度为2μm;所述的过渡层化学组成为Ir0.18Sn0.82O2,厚度为3μm;所述的催化层化学组成为Ir0.4Sn0.6O2,厚度为10μm。
制备方法包括以下步骤:
选用纯钛片TA2为基体,用10%(质量分数)的草酸90℃下蚀刻2.5h,水洗后红外干燥。
按铱锡钛金属摩尔比0.5:8.5:1,将氯铱酸、烷氧基锡和钛酸丁酯溶于体积比为1:1的乙醇-正丁醇混合溶剂中,得到总金属摩尔浓度为0.20mol/L的涂液。用软毛刷均匀涂刷在钛基体上,接着在110℃下干燥固化10min,然后在450℃下热氧化分解10min,反复进行直到将涂液刷完,最后470℃下热处理0.5h,制得连接涂层。
按铱锡金属摩尔比1.8:8.2,将氯铱酸和烷氧基锡溶于体积比为1:1的乙醇-正丁醇混合溶剂中,得到总金属摩尔浓度为0.30mol/L的涂液。用软毛刷均匀涂刷在连接涂层上,接着在110℃下干燥固化10min,然后在480℃下热氧化分解10min,反复进行直到将涂液刷完,最后470℃热处理0.5h,制得过渡涂层。
按铱锡金属摩尔比4:6,将氯化铱和烷氧基锡溶于乙醇-正丁醇混合溶剂中,得到总金属摩尔浓度为0.30mol/L的涂液。用软毛刷均匀涂刷在过渡涂层上,接着在110℃下干燥固化10min,然后在470℃下热氧化分解10min,反复进行直到将涂液刷完,最后470℃热处理1h,制得梯度复合涂层电极。
扫描电镜测试(如图5)表明,本实施例梯度复合涂层电极结构致密,表面裂缝少而小。Ti/SnO2-Sb2O3/IrO2-SnO2电极(中间层中锡锑摩尔比为9:1,外层中铱锡摩尔比为4:6)、本实施例梯度复合涂层电极的寿命分别为890h、1085h。基于此判断,本实施例梯度复合涂层电极的化学稳定性较高。
其中Ti/SnO2-Sb2O3/IrO2-SnO2电极(中间层中锡锑摩尔比为9:1,外层中铱锡摩尔比为4:6)的制备方法如下:
中间层涂液中锡锑摩尔比为9:1,外层涂层中铱锡摩尔比为4:6,其制备过程与实施例1的对照样品Ti/SnO2-Sb2O3/IrO2-SnO2电极(中间层中锡锑摩尔比为9:1,外层中铱锡摩尔比为3:7)相同。

Claims (9)

1.一种铱锡氧化物梯度复合涂层电极,其特征在于,由纯钛基体、连接层、过渡层和催化层组成;所述的连接层化学组成为IrxSn0.9-xTi0.1O2,其中0<x≤0.1,厚度为1~3μm;所述的过渡层化学组成为IrySn1-yO2,其中0.1<y≤0.2,厚度为1~4μm;所述的催化层化学组成为IrzSn1-zO2,其中0.2<z≤0.4,厚度为8~15μm。
2.权利要求1所述铱锡氧化物梯度复合涂层电极的制备方法,其特征在于,包括以下步骤:
①用质量分数为5%~10%的草酸溶液在85~95℃下蚀刻钛材2~4h,水洗后红外干燥得清洁的钛基体;
②将连接涂层涂液均匀涂覆在清洁的钛基体上,在100~120℃下固化10~15min,450~500℃下热氧化分解10~15min,空冷,重复涂覆、固化和热氧化分解过程,共涂覆1~3次,最后在450~500℃下热处理0.5h,制得连接涂层;以涂液金属摩尔百分比总量为100%计,所述的连接层涂液配方为:锡前驱体:80%~90%,钛前驱体:10%,余为铱前驱体;溶剂为乙醇和正丁醇,涂液中金属离子浓度为0.1~0.4mol/L;
③将过渡涂层涂液均匀涂覆在连接涂层上,在100~120℃下固化10~15min,480~520℃下热氧化分解10~15min,重复上述过程,共涂覆1~4次,最后在480~520℃下热处理0.5h,制得过渡涂层;以涂液金属摩尔百分比总量为100%计,所述的过渡涂层涂液配方为:铱前驱体:10%~20%,锡前驱体:80%~90%,溶剂为乙醇和正丁醇,涂液中金属离子浓度为0.2~0.4mol/L;
④将催化涂层涂液均匀涂覆过渡涂层上,在100~120℃下固化10~15min,480~520℃下热氧化分解10~15min,空冷,共涂覆8~15次,最后在480~520℃下热处理1h,制得梯度复合涂层电极;以涂液金属摩尔百分比总量为100%计,所述催化涂层涂液配方为铱前驱体:20%~40%,锡前驱体:60%~80%,溶剂为乙醇和正丁醇,涂液中金属离子浓度为0.2~0.4mol/L。
3.根据权利要求2所述的铱锡氧化物梯度复合涂层电极的制备方法,其特征在于,所述的铱前驱体为三氯化铱或氯铱酸。
4.根据权利要求2所述的铱锡氧化物梯度复合涂层电极的制备方法,其特征在于,所述的锡前驱体为烷氧基锡、醋酸锡。
5.根据权利要求2所述的铱锡氧化物梯度复合涂层电极的制备方法,其特征在于,所述的钛前驱体为三氯化钛、钛酸丁酯。
6.根据权利要求2所述的铱锡氧化物梯度复合涂层电极的制备方法,其特征在于,涂覆采用刷涂、浸涂和喷涂方式中的任一种。
7.根据权利要求6所述的铱锡氧化物梯度复合涂层电极的制备方法,其特征在于,刷涂时,纵向和横向刷涂交替进行。
8.根据权利要求6所述的铱锡氧化物梯度复合涂层电极的制备方法,其特征在于,浸涂时,提拉速度为1~40μm/s。
9.根据权利要求6所述的铱锡氧化物梯度复合涂层电极的制备方法,其特征在于,喷涂时,进气压力0.2~0.4MPa,喷涂距离20~30cm。
CN202010676241.3A 2020-07-14 2020-07-14 一种铱锡氧化物梯度复合涂层电极及其制备方法 Active CN111996515B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010676241.3A CN111996515B (zh) 2020-07-14 2020-07-14 一种铱锡氧化物梯度复合涂层电极及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010676241.3A CN111996515B (zh) 2020-07-14 2020-07-14 一种铱锡氧化物梯度复合涂层电极及其制备方法

Publications (2)

Publication Number Publication Date
CN111996515A CN111996515A (zh) 2020-11-27
CN111996515B true CN111996515B (zh) 2022-01-25

Family

ID=73467167

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010676241.3A Active CN111996515B (zh) 2020-07-14 2020-07-14 一种铱锡氧化物梯度复合涂层电极及其制备方法

Country Status (1)

Country Link
CN (1) CN111996515B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113387417B (zh) * 2021-05-14 2022-09-23 山西盛汉沣源科技有限责任公司 一种有机废水处理的金属氧化物电极的制备方法
CN113387418B (zh) * 2021-05-14 2022-12-13 上海泓济环保科技股份有限公司 一种降解废水用梯度金属氧化物电极
CN113584525A (zh) * 2021-08-03 2021-11-02 湖南新欧源环保科技有限公司 一种多元离子蓝氧羟基芯片催化剂及其配制方法
CN113716654B (zh) * 2021-09-01 2023-12-26 安徽康菲尔检测科技有限公司 一种高电导率合金催化电极的制备方法及制备的电极
CN114272920B (zh) * 2021-11-22 2023-10-03 广东省科学院资源利用与稀土开发研究所 一种有机污染物降解用复合氧化物涂层电极及其制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2979691B2 (ja) * 1991-04-02 1999-11-15 ダイソー株式会社 酸素発生用陽極の製法
KR100310272B1 (ko) * 1999-10-20 2001-11-14 박호군 전기화학적 폐수 처리 장치
CN1179068C (zh) * 2000-08-22 2004-12-08 黄永昌 不溶性电极和制备方法及用途
ITMI20031542A1 (it) * 2003-07-28 2005-01-29 De Nora Elettrodi Spa Anodo per processi elettrochimici
JP4476759B2 (ja) * 2004-09-17 2010-06-09 多摩化学工業株式会社 電解用電極の製造方法、及びこの電解用電極を用いた水酸化第四アンモニウム水溶液の製造方法
US8574983B2 (en) * 2011-05-13 2013-11-05 Intermolecular, Inc. Method for fabricating a DRAM capacitor having increased thermal and chemical stability
CN105836854A (zh) * 2016-05-23 2016-08-10 张家富 一种具有广泛用途的水处理装置、水处理电极及制作方法
CN106745557B (zh) * 2017-03-13 2023-07-07 盐城工学院 一种钛基锡铱氧化物电极及其制备方法
KR101931505B1 (ko) * 2017-03-27 2018-12-21 (주)엘켐텍 고전류 밀도 운전용 전극
CN107217278A (zh) * 2017-05-19 2017-09-29 福州大学 一种具有光电催化性能的Ru掺杂钛基二氧化锡电极
CN111003759A (zh) * 2019-12-24 2020-04-14 广东省稀有金属研究所 含亚氧化钛中间层的涂层电极及其制备方法与应用以及电化学水处理设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
双层结构钛阳极含铱涂层研究-配方和工艺对寿命的影响;林萱;《材料开发与应用》;19900501;第21-26页 *

Also Published As

Publication number Publication date
CN111996515A (zh) 2020-11-27

Similar Documents

Publication Publication Date Title
CN111996515B (zh) 一种铱锡氧化物梯度复合涂层电极及其制备方法
US20120103828A1 (en) Electrode for electrolytic chlorine production
CN112795908A (zh) 一种钛基涂层钛阳极的制备方法
US20070034505A1 (en) Electrode for electrolysis and method of manufacturing electrode for electrolysis
US20040031692A1 (en) Coatings for the inhibition of undesirable oxidation in an electrochemical cell
CN111926309B (zh) 一种金属氧化物电极用钛基的防钝化涂层及其制备方法
CN103147093A (zh) 一种长寿命dsa电极的制备方法
KR900001552B1 (ko) 전해용 산화납 피복 전극 및 그 제조방법
CN101338437A (zh) 一种梯度多元金属混合氧化物阳极的制备方法
CN109518221A (zh) 一种表面富含二氧化铱的梯度分布钛阳极及其制备方法
CN113881978A (zh) 一种低成本钛基涂层钛阳极的制备方法
WO2021164702A1 (en) Electrode having polarity capable of being reversed and use thereof
JP2505560B2 (ja) 電解用電極
JP2009102676A (ja) 耐食導電被覆材料及びその用途
CN111137953A (zh) 一种钛基锡铱系氧化物涂层电极的制备工艺
CN111962131B (zh) 一种析氧电极用复合氧化物催化涂层及其制备方法
CN111926345B (zh) 具有TiN纳米管中间层的IrO2-Ta2O5阳极
CN113957473A (zh) 一种多层结构的钛阳极的制备方法
CN112030188B (zh) 一种具有TiN纳米管中间层的IrO2纳米涂层阳极
CN108677209B (zh) 一种用于固体聚合物水电解器的有序膜电极及其制备方法
RU2425176C2 (ru) Способ получения электрода, электрод (варианты) и электролитическая ячейка (варианты)
CN114875458B (zh) 一种用于电解铜箔的贵金属阳极及其制备方法
CN114293178B (zh) 一种电极用氧化锡基改性涂层及其制备方法
JPH06306670A (ja) 酸素発生用電極の製法
CN117756236A (zh) 一种改性钛基涂层电极及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: No. 363, Changxing Road, Tianhe District, Guangzhou City, Guangdong Province

Applicant after: Institute of rare metals, Guangdong Academy of Sciences

Address before: No. 363, Changxing Road, Tianhe District, Guangzhou City, Guangdong Province

Applicant before: GUANGDONG INSTITUTE OF RARE METALS

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230321

Address after: 510651 No. 363, Changxin Road, Guangzhou, Guangdong, Tianhe District

Patentee after: Institute of resource utilization and rare earth development, Guangdong Academy of Sciences

Address before: No. 363, Changxing Road, Tianhe District, Guangzhou City, Guangdong Province

Patentee before: Institute of rare metals, Guangdong Academy of Sciences

TR01 Transfer of patent right
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20201127

Assignee: Guangzhou shunyao Energy Technology Co.,Ltd.

Assignor: Institute of resource utilization and rare earth development, Guangdong Academy of Sciences

Contract record no.: X2024980006118

Denomination of invention: A iridium tin oxide gradient composite coating electrode and its preparation method

Granted publication date: 20220125

License type: Common License

Record date: 20240523

Application publication date: 20201127

Assignee: Guangzhou Zhuoyue Power Technology Co.,Ltd.

Assignor: Institute of resource utilization and rare earth development, Guangdong Academy of Sciences

Contract record no.: X2024980006061

Denomination of invention: A iridium tin oxide gradient composite coating electrode and its preparation method

Granted publication date: 20220125

License type: Common License

Record date: 20240522

Application publication date: 20201127

Assignee: GUANGZHOU ZHUOYUE POWER NEW ENERGY Co.,Ltd.

Assignor: Institute of resource utilization and rare earth development, Guangdong Academy of Sciences

Contract record no.: X2024980006026

Denomination of invention: A iridium tin oxide gradient composite coating electrode and its preparation method

Granted publication date: 20220125

License type: Common License

Record date: 20240522