CN111961466B - 一种用于检测肝素的碳量子点荧光探针 - Google Patents

一种用于检测肝素的碳量子点荧光探针 Download PDF

Info

Publication number
CN111961466B
CN111961466B CN202010731662.1A CN202010731662A CN111961466B CN 111961466 B CN111961466 B CN 111961466B CN 202010731662 A CN202010731662 A CN 202010731662A CN 111961466 B CN111961466 B CN 111961466B
Authority
CN
China
Prior art keywords
carbon quantum
heparin
quantum dot
fluorescent probe
glucose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010731662.1A
Other languages
English (en)
Other versions
CN111961466A (zh
Inventor
段倩倩
马岚
桑胜波
贾慕月
王晓园
张博叶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN202010731662.1A priority Critical patent/CN111961466B/zh
Publication of CN111961466A publication Critical patent/CN111961466A/zh
Application granted granted Critical
Publication of CN111961466B publication Critical patent/CN111961466B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/65Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6439Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pathology (AREA)
  • Inorganic Chemistry (AREA)
  • Biophysics (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明公开了一种用于检测肝素的碳量子点荧光探针,通过如下步骤制备得到:按照质量比分别准确称量乙二醇、超纯水、葡萄糖和聚乙烯亚胺;将乙二醇、超纯水和葡萄糖混合,搅拌均匀后倒入反应釜中,将反应釜放入马弗炉内,加热反应;得到的溶液液冷却至室温,加入聚乙烯亚胺,加热反应;冷却后,纯化透析得到;碳量子点在血清中可以高灵敏度高选择性的检测肝素,并且具有宽的检测范围和低的检测限。

Description

一种用于检测肝素的碳量子点荧光探针
技术领域
本发明属于肝素检测技术领域,具体涉及一种用于检测肝素的碳量子点荧光探针。
背景技术
临床上肝素已被普遍用作抗凝剂,可以有效地防止手术过程中的血液凝结和血栓形成。据数据显示,肝素在心血管外科治疗中所剂量为 2-8 U/mL(10.8-43.2μg/mL),而在术后治疗或者长期治疗中肝素钠的用量则为 0.2-1.2 U/mL(1.08-6.48μg/mL),其外科心血管治疗和术后治疗或长期治疗中肝素的剂量是完全不同的。然而,过量的肝素可能会诱导一系列的并发症,如出血和血小板减少。传统监测肝素浓度的方法有的是依赖于全血激活凝固时间(ATC)与活化全血凝固时间(APTT)进行的,还有分光光度法和毛细管电泳法等,这些方法都存在一定的缺点,比如耗费时间长,成本高,平均周转时间长等。用于疾病相关生物标记物准确检测的简单低成本方法对于早期诊断和治疗具有重要意义。因此,寻找更加灵敏、准确、快速分析血清中的肝素含量对于调节心肺外科手术和术后治疗期间的临床应用中的正常病理过程非常必要。
肝素是已知带负电荷最高的天然生物分子,含有-OSO3-、-NHSO3-、-COO-等基团,而碳量子点表面含有的氨基基团。带负电荷的肝素和带正电荷的碳量子点在 EDC 的活化下形成氢键,电子开始转移,很可能是其荧光增强原因。荧光探针由于其操作简单,灵敏度高和易于观察而在过去的几十年中得到了广泛的研究。已经建立了许多用于肝素检测的荧光传感器,包括小型阳离子分子传感器、超分子传感器、纳米传感器等。然而,大多数这些探针需要费力的多步有机合成,并且在水中的溶解性差。因此,寻求一种制备简单且水溶性好的检测肝素的传感器仍然具有实际重要性。
发明内容
本发明克服了现有技术的不足,提出一种用于检测肝素的碳量子点荧光探针,该方法操作简单,灵敏度高。
为了达到上述目的,本发明是通过如下技术方案实现的:
一种用于检测肝素的碳量子点荧光探针,通过如下步骤制备得到:
1)按照质量比为乙二醇:超纯水:葡萄糖:聚乙烯亚胺=10-15:10-15:0.3~0.8:0.05~0.15,分别准确称量乙二醇、超纯水、葡萄糖和聚乙烯亚胺;
2)将乙二醇、超纯水和葡萄糖混合,搅拌均匀后倒入反应釜中,密封反应釜;
3)将步骤2)所得到的混合物连同反应釜一起放入马弗炉内,在温度为150~200℃条件下,加热反应2~3小时;
4)将步骤3)所得到的溶液液冷却至室温,加入聚乙烯亚胺,50~100℃下加热2~4小时;
5)待步骤4)所得到的溶液冷却后,纯化透析20~30小时,得到目标碳量子点。
进一步的,所述乙二醇:超纯水:葡萄糖:聚乙烯亚胺的质量比为:12~13:12~13:0.4~0.6:0.08~0.12。
进一步的,步骤3)中马弗炉的加热温度为170~190℃,加热反应时间为2.5~3小时。
进一步的,步骤4)中的加热温度为70~90℃,加热时间为2.5~3.5小时。
进一步的,所述目标碳量子点,经过稀释100倍后得到的溶液的荧光强度在肝素浓度0-2.5 U/mL范围内时具有指数关系。
配置不同浓度的肝素溶液,加入碳量子点,检测其荧光强度。带负电荷的肝素和带正电荷的碳量子点的分子间强大作用力发生聚集诱导发光,使荧光增强。本碳量子点最大激发波长345 nm。
本发明还可以在步骤5)得到的溶液中,加入适量EDC后震荡均匀,再在超声清洗机中进行活化,然后将碳量子点和肝素进行混合,带负电荷的肝素和带正电荷的碳量子点在1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(EDC)的活化下形成氢键,电子开始转移,分子间的强大作用力发生聚集诱导发光,从而使荧光增强。该方法获得了良好的效果,能有效测得肝素含量,且操作方便,灵敏度高。
本发明相对于现有技术所产生的有益效果为:
本发明提出的基于碳量子点的荧光探针,是一种灵敏度高且检测范围适宜的纳米荧光探针;其制备简单,水溶性好,粒径小,毒性低,生物相容性好,光学性能好且富含氨基。使得现代医学更加灵敏、准确、快速分析血清中的肝素含量在临床应用中的正常病理过程。
本发明方法制备的修饰后的碳量子点材料可用于血清中检测肝素含量,并且表现出极高的灵敏度和选择性。
附图说明
图1为本发明碳量子点荧光探针的TEM图、红外光谱图以及紫外-可见吸收光谱图和荧光发射光谱图。
图2为本发明碳量子点荧光探针的稳定性研究图谱。
图3为本发明不同浓度碳量子点荧光探针用于肝素检测的荧光图谱以及荧光强度与肝素浓度的线性关系图。
图4为本发明碳量子点荧光探针对肝素的选择性实验图。
具体实施方式
为了使本发明所要解决的技术问题、技术方案及有益效果更加清楚明白,结合实施例和附图,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。下面结合实施例及附图详细说明本发明的技术方案,但保护范围不被此限制。
实施例1
一种用于检测肝素的碳量子点荧光探针,通过如下步骤制备得到:
1)分别准确称量乙二醇、超纯水、葡萄糖和聚乙烯亚胺;
2)将12.5 mL 的乙二醇,12.5 mL的超纯水和 0.5 g 的葡萄糖混合,搅拌均匀倒入反应釜中,密封反应釜;
3)将步骤2)所得到的混合物连同反应釜一起放入马弗炉内,在温度为180℃条件下,加热反应2.75小时;
4)将步骤3)所得到的溶液液冷却至室温,加入1 mL、10%聚乙烯亚胺,80℃下加热3小时;
5)待步骤4)所得到的溶液冷却后,纯化透析24小时,制得目标碳量子点,即修饰后的碳量子点荧光探针。
实施例2
一种用于检测肝素的碳量子点荧光探针,通过如下步骤制备得到:
1)按照质量比为乙二醇:超纯水:葡萄糖:聚乙烯亚胺=10:15:0.3:0.15,分别准确称量乙二醇、超纯水、葡萄糖和聚乙烯亚胺;
2)将乙二醇、超纯水和葡萄糖混合,搅拌均匀后倒入反应釜中,密封反应釜;
3)将步骤2)所得到的混合物连同反应釜一起放入马弗炉内,在温度为150℃条件下,加热反应3小时;
4)将步骤3)所得到的溶液液冷却至室温,加入聚乙烯亚胺,100℃下加热2小时;
5)待步骤4)所得到的溶液冷却后,纯化透析20小时,制得目标碳量子点,即修饰后的碳量子点荧光探针。
实施例3
一种用于检测肝素的碳量子点荧光探针,通过如下步骤制备得到:
1)按照质量比为乙二醇:超纯水:葡萄糖:聚乙烯亚胺=15:10:0.8:0.05,分别准确称量乙二醇、超纯水、葡萄糖和聚乙烯亚胺;
2)将乙二醇、超纯水和葡萄糖混合,搅拌均匀后倒入反应釜中,密封反应釜;
3)将步骤2)所得到的混合物连同反应釜一起放入马弗炉内,在温度为200℃条件下,加热反应2小时;
4)将步骤3)所得到的溶液液冷却至室温,加入聚乙烯亚胺,50℃下加热2小时;
5)待步骤4)所得到的溶液冷却后,纯化透析30小时。
实施例4
一种用于检测肝素的碳量子点荧光探针,通过如下步骤制备得到:
1)按照质量比为乙二醇:超纯水:葡萄糖:聚乙烯亚胺=12: 12:0.4:0.08,分别准确称量乙二醇、超纯水、葡萄糖和聚乙烯亚胺;
2)将乙二醇、超纯水和葡萄糖混合,搅拌均匀后倒入反应釜中,密封反应釜;
3)将步骤2)所得到的混合物连同反应釜一起放入马弗炉内,在温度为170℃条件下,加热反应3小时;
4)将步骤3)所得到的溶液液冷却至室温,加入聚乙烯亚胺,70℃下加热3.5小时;
5)待步骤4)所得到的溶液冷却后,纯化透析25小时。
实施例5
一种用于检测肝素的碳量子点荧光探针,通过如下步骤制备得到:
1)按照质量比为乙二醇:超纯水:葡萄糖:聚乙烯亚胺=13:12: 0.6: 0.12,分别准确称量乙二醇、超纯水、葡萄糖和聚乙烯亚胺;
2)将乙二醇、超纯水和葡萄糖混合,搅拌均匀后倒入反应釜中,密封反应釜;
3)将步骤2)所得到的混合物连同反应釜一起放入马弗炉内,在温度为190℃条件下,加热反应2.5小时;
4)将步骤3)所得到的溶液液冷却至室温,加入聚乙烯亚胺,90℃下加热2.5小时;
5)待步骤4)所得到的溶液冷却后,纯化透析28小时。
对实施例1制得的修饰后的碳量子点荧光探针材料进行表征,如图1、2所示,图1中,(a)图表示碳量子点的 TEM 图,(b)图表示碳量子点的粒径分布图,从图中可以看出碳量子点具有良好的分散性且呈球形,平均粒径为 3.9 nm,证明了该荧光探针粒径小;(c)图表示碳量子点的红外光谱图,根据图分析可得3287 cm-1处的宽带吸收峰为 O-H 和 N-H 键的伸缩振动,1651 cm-1处吸收峰 N-H 键的伸缩振动,1038 cm-1处的峰属于C-O-C 键的伸缩振动,861 cm-1处的吸收峰为 C-N 键的伸缩振动,证明了制备的碳量子点表面富含氨基;(d)图表示碳量子点的紫外吸收光谱,从图中可以看出碳量子点在紫外区域表现出较宽的光吸收,在可见光区域则表现较弱的吸收尾,吸收峰出现在 220 nm 和 280 nm 附近,证明了碳量子点表面大量的表面态,对其发光性能有很大的作用;(e)图表示碳量子点在不同激发波长下的荧光光谱,从图中可以看出碳量子点荧光对于激发波长的依赖性,对激发波长以 20 nm 为间隔进行调节,从335 nm 增加到 515 nm,碳量子点的荧光发射强度出现先增加后降低的现象,在 415 nm 激发时荧光强度最大,证明了碳量子点荧光有不错的光学性能。
图2表示本发明碳量子点荧光探针材料的稳定性研究图谱 ,从图中可以看出pH在 4-12 范围内,碳量子点的荧光强度基本处于稳定状态,证明了碳量子点荧光在较宽的酸碱度范围具有很高的稳定性。
综合图1和2可知,本发明修饰后的碳量子点荧光探针材料粒径小,富含氨基且光学性能好。
实施例6
碳量子点对肝素的荧光响应性研究,具体包括如下步骤:
1)将修饰后的碳量子点荧光探针材料溶液稀释100或50倍后,待用;
2) 用 10 mL 的超纯水将 0.01 g 的肝素进行充分溶解待用;
3)将步骤2)得到的肝素溶液加入至步骤1)得到的碳量子点溶液中后搅拌 15min,使其混合均匀且充分反应。CDs溶液中肝素的浓度为 0、5、10、20、30、40、50、60、70、80µg/mL,用荧光分光光度计测出荧光强度;
4)统计出步骤3)中各个离心管中溶液的荧光强度,绘制出相应的拟合曲线。
图3中,(A)所示,是稀释了100倍的碳量子点作为荧光探针对肝素的荧光响应性。可以看出,肝素浓度0-12 μg/mL(0-2.5 U/mL)范围内时对碳量子点的荧光强度有着较为明显的增强作用,在10 μg/mL开始,荧光强度不再明显增加趋于平缓。荧光比率(F/F0)为y轴,肝素浓度为x轴,通过指数拟拟合出一条曲线,R2=0.97932,回归方程如图3中(C)所示,这说明肝素含量与碳量子点荧光强度呈良好的指数关系。
图3中,(B)是稀释了50倍的碳量子点作为荧光探针对肝素的荧光响应性。可以看出,肝素对碳量子点的荧光强度有明显的增强作用。在0-80 μg/mL(0-16 U/mL)范围浓度,随着加入肝素浓度的增加,荧光强度呈线性增强,且增强效果比上一个探针要好。肝素的浓度和体系的荧光比率(F/F0)呈良好的线性关系。该检测体系的检测区间为肝素在0-80 µg/mL,R2= 0.98,回归方程如图3中(D)所示,以斜率为检测灵敏度。结果表明,修饰后的碳量子点在血清中可以在更大的浓度区间高灵敏度高选择性的检测肝素,并且相对于现有技术具有宽的检测范围和低的检测限,检测结果更清晰。
实施例7
碳量子点对肝素的选择性研究,具体包括以下步骤:
1)碳量子点溶液内加入40μg/mL的肝素和 100倍浓度的其他干扰物,包括:Ca2+、HSO3 -、K+、Fe3+、Na+、Mg2+、Glucose、HA。
2)统计出步骤1)中各个溶液的荧光强度,绘制出相应的拟合曲线。
观察上述步骤得出的细胞荧光成像图,得出结论。
从图4可以看出加入肝素后CDs的荧光增强了1.6倍左右,Fe3+、Na+对探针荧光的干扰相对较大,会对探针荧光有所增强。HSO3 -、K+探针荧光的干扰也相对较大,但是会对探针荧光有所减弱,而Mg2+和Glucose对其荧光干扰很小,荧光强度基本没有变化。但总的来看,干扰物质均对特异性检测产生微弱的影响。说明该测定方法特异性良好,能够应用在人体中对肝素的测定领域。
实施例8
人体血液样品中对肝素的检测研究,具体包括以下步骤:
1)通过标准加入法向处理过的人血清样品中添加 20、40和60 U/mL的肝素标准品;
2)对步骤1)的各个溶液用荧光检测法进行分析,进行标准回收实验,计算回收率。
下表1为本发明碳量子点荧光探针用于血清中检测肝素的测定结果。
表1
Figure 570355DEST_PATH_IMAGE001
从表中可以看出在人血清样品中进行标准回收实验,回收率保持在96%-99%范围内,三次测定的相对标准偏差均都低于3.7 %,这表明了该方法的可靠性和实用性。从获得的结果可以得出结论,本探针是有效的,并且可能适合直接检测肝素的临床应用。
以上内容是结合具体的优选实施方式对本发明所做的进一步详细说明,不能认定本发明的具体实施方式仅限于此,对于本发明所属技术领域的普通技术人员来说,在不脱离本发明的前提下,还可以做出若干简单的推演或替换,都应当视为属于本发明由所提交的权利要求书确定专利保护范围。

Claims (4)

1.一种碳量子点荧光探针以非诊断或治疗目的在肝素检测中的应用,其特征在于,用通过如下步骤制备得到的碳量子点荧光探针对肝素进行检测:
1)按照质量比为乙二醇:超纯水:葡萄糖:聚乙烯亚胺=10-15:10-15:0.3~0.8:0.05~0.15,分别准确称量乙二醇、超纯水、葡萄糖和聚乙烯亚胺;
2)将乙二醇、超纯水和葡萄糖混合,搅拌均匀后倒入反应釜中,密封反应釜;
3)将步骤2)所得到的混合物连同反应釜一起放入马弗炉内,在温度为150~200℃条件下,加热反应2~3小时;
4)将步骤3)所得到的溶液液冷却至室温,加入聚乙烯亚胺,50~100℃下加热2~4小时;
5)待步骤4)所得到的溶液冷却后,纯化透析20~30小时,得到目标碳量子点;
所述目标碳量子点经过稀释100倍后得到的溶液的荧光强度与肝素含量在肝素浓度0-2.5 U/mL范围内时具有指数关系。
2.根据权利要求1所述的一种碳量子点荧光探针以非诊断或治疗目的在肝素检测中的应用,其特征在于,所述乙二醇:超纯水:葡萄糖:聚乙烯亚胺的质量比为:12-13:12-13:0.4~0.6:0.08~0.12。
3.根据权利要求1所述的一种碳量子点荧光探针以非诊断或治疗目的在肝素检测中的应用,其特征在于,步骤3)中马弗炉的加热温度为170~190℃,加热反应时间为2.5~3小时。
4.根据权利要求1所述的一种碳量子点荧光探针以非诊断或治疗目的在肝素检测中的应用,其特征在于,步骤4)中的加热温度为70~90℃,加热时间为2.5~3.5小时。
CN202010731662.1A 2020-07-27 2020-07-27 一种用于检测肝素的碳量子点荧光探针 Active CN111961466B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010731662.1A CN111961466B (zh) 2020-07-27 2020-07-27 一种用于检测肝素的碳量子点荧光探针

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010731662.1A CN111961466B (zh) 2020-07-27 2020-07-27 一种用于检测肝素的碳量子点荧光探针

Publications (2)

Publication Number Publication Date
CN111961466A CN111961466A (zh) 2020-11-20
CN111961466B true CN111961466B (zh) 2022-05-13

Family

ID=73362793

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010731662.1A Active CN111961466B (zh) 2020-07-27 2020-07-27 一种用于检测肝素的碳量子点荧光探针

Country Status (1)

Country Link
CN (1) CN111961466B (zh)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100784485B1 (ko) * 2006-01-18 2007-12-11 한국과학기술연구원 생분해성 온도 감응성 폴리포스파젠계 하이드로젤, 그의제조방법 및 그의 용도
CN102435571B (zh) * 2011-09-16 2014-07-23 东华大学 利用聚乙烯亚胺稳定化金纳米粒子检测肝素含量的方法
CA2850148C (en) * 2011-09-27 2020-02-25 Glumetrics, Inc. Method for functionalizing a porous membrane covering of an optical sensor to facilitate coupling of an antithrombogenic agent
CN105441073A (zh) * 2015-11-30 2016-03-30 江苏大学 一种用于检测对硝基苯酚的氨基碳量子点的制备方法
WO2018039139A1 (en) * 2016-08-22 2018-03-01 The Regents Of The University Of California Hydrogel platform for aqueous two-phase concentration of a target to enhance its detection
CN106957050A (zh) * 2017-03-17 2017-07-18 山西大学 一种荧光碳量子点及其制备方法和应用
US20200206134A1 (en) * 2017-07-17 2020-07-02 Children's Hospital Medical Center Polyethylenimine nanoparticles and methods of using same
CN108587611B (zh) * 2018-05-10 2020-12-15 昆明理工大学 一种双波长荧光金纳米簇的合成方法及应用
CN109825291B (zh) * 2019-04-09 2021-07-02 山西大学 一种氮硫共掺杂的碳量子点及其制备方法和应用
CN110093158A (zh) * 2019-05-31 2019-08-06 西北大学 一种氮掺杂的荧光碳量子点及其制备方法和应用
CN111135312B (zh) * 2020-01-10 2022-11-29 中国药科大学 一种基于肿瘤泛代谢调控的混合纳米制剂的制备与应用

Also Published As

Publication number Publication date
CN111961466A (zh) 2020-11-20

Similar Documents

Publication Publication Date Title
Hu et al. A rapid and sensitive turn-on fluorescent probe for ascorbic acid detection based on carbon dots–MnO 2 nanocomposites
CN105001862A (zh) 利用芦荟为碳源制备碳量子点及柠檬黄检测方法
Wang et al. A one-pot synthesis of fluorescent N, P-codoped carbon dots for vitamin B 12 determination and bioimaging application
CN106833628A (zh) 表面修饰的碳纳米点及其制备和作为荧光探针检测Cu2+及谷胱甘肽的应用
CN107936035A (zh) 一种半胱氨酸改性的石墨烯量子点gqcy及制备方法与制备多巴胺荧光检测试剂上的应用
CN102435571B (zh) 利用聚乙烯亚胺稳定化金纳米粒子检测肝素含量的方法
CN110726707B (zh) 基于N-Ti3C2QDs与邻苯二胺氧化物的复合纳米探针及其检测方法
CN114181204A (zh) 一种检测粘度的近红外荧光探针及其制备和应用
Çubuk et al. Development of photopolymerized fluorescence sensor for glucose analysis
CN106928263B (zh) 一种用于快速检测过氧化氢的荧光探针的制备与应用
Wu et al. A novel carbon dot/polyacrylamide composite hydrogel film for reversible detection of the antibacterial drug ornidazole
Wang et al. Photoelectrochemical assay for the detection of circulating tumor cells based on aptamer-Ag 2 S nanocrystals for signal amplification
CN109852383B (zh) 基于富勒烯的快速高效响应谷胱甘肽的荧光探针及其制备方法和应用
CN112630279B (zh) 用于检测双氯酚酸的基于金纳米粒子的等离子共振增强型电化学发光传感器及制备方法
CN104330393A (zh) 金纳米簇为荧光探针的葡萄糖测定方法
Deng et al. Dual-channel fluorescent signal readout strategy for cysteine sensing
CN111961466B (zh) 一种用于检测肝素的碳量子点荧光探针
CN112179875B (zh) 一种一型透明质酸酶荧光纳米传感器的制备及应用
CN115494042A (zh) 一种以“关-开”型荧光传感器检测Hg2+和谷胱甘肽的方法
CN106749004A (zh) 一种荧光分子探针的合成方法和对实际水样中氯离子含量的检测
CN108760695A (zh) 一种基于pret的磷光探针定量检测凝血酶的方法
CN109668866A (zh) 一种用于水环境中碘离子检测的荧光探针制备及检测方法
CN112525963B (zh) 一种基于ZnO纳米材料的电化学生物传感器及其进行葡萄糖浓度检测的方法
Nangare et al. Graphene quantum dots incorporated UiO-66-NH2 based fluorescent nanocomposite for highly sensitive detection of quercetin
CN109868137B (zh) 一种上转换硼氮磷共掺杂碳基荧光纳米材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant