CN112179875B - 一种一型透明质酸酶荧光纳米传感器的制备及应用 - Google Patents

一种一型透明质酸酶荧光纳米传感器的制备及应用 Download PDF

Info

Publication number
CN112179875B
CN112179875B CN201910596953.1A CN201910596953A CN112179875B CN 112179875 B CN112179875 B CN 112179875B CN 201910596953 A CN201910596953 A CN 201910596953A CN 112179875 B CN112179875 B CN 112179875B
Authority
CN
China
Prior art keywords
hyaluronidase
tpc3
type
nanosensor
dye
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910596953.1A
Other languages
English (en)
Other versions
CN112179875A (zh
Inventor
杨盛
罗金秋
杨荣华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changsha University of Science and Technology
Original Assignee
Changsha University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changsha University of Science and Technology filed Critical Changsha University of Science and Technology
Priority to CN201910596953.1A priority Critical patent/CN112179875B/zh
Publication of CN112179875A publication Critical patent/CN112179875A/zh
Application granted granted Critical
Publication of CN112179875B publication Critical patent/CN112179875B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本发明公开了一种聚合物纳米传感器及其检测一型透明质酸酶(Hyal‑1)的应用。本发明基于不同透明质酸酶对透明质聚合物纳米胶束差异性降解的原理,将氢键诱导增强型染料分子包裹于纳米胶束粒内,利用这一刺激响应型纳米材料调节染料与水分子间相互作用,设计高选择性高灵敏Hyal‑1荧光纳米传感器。该一型透明质酸酶检测试剂盒,它包括一型透明质酸酶荧光纳米传感器和溶剂。结果表明,该试剂盒具有专一性高,灵敏度好,操作简便,经济实用等优点;实现了实际尿样中Hyal‑1的检测。因此,该发明方法具有原始创新性、良好的社会价值和应用前景,有望应用于膀胱癌患者尿液中Hyal‑1检测分析。

Description

一种一型透明质酸酶荧光纳米传感器的制备及应用
技术领域
本发明属于纳米技术和分析检测领域,涉及基于氢键诱导增强原理的一型透明质酸酶荧光纳米传感器构建及一型透明质酸酶检测分析新方法。
背景技术
从属于内切糖苷酶家族的透明质酸酶(HAases)能够将透明质酸(HA)降解为寡糖片段以维持血管生成,受精过程,胚胎发育和细胞运动等多种生理功能。HAases具有基因序列相似但功能各异的亚型,其中一型透明质酸酶(Hyal-1)通常存在于溶酶体内催化降解细胞内HA以维持关键生理功能。当机体功能异常或病变时,细胞内Hyal-1会过量表达并外溢到组织体液之中。体液中Hyal-1成为恶性疾病尤其是癌症的重要标志物之一。例如,膀胱癌患者尿液中的Hyal-1高于正常人的3-7倍。因此,发展高灵敏且选择性检测Hyal-1方法并设计相应的高效传感器工具,对于癌症的早期诊断与治疗具有重要意义。
本发明以一型透明质酸酶选择性检测为研究切入点,基于不同HAase对HA聚合物纳米胶束差异性降解的原理,将氢键诱导增强型染料分子包裹于纳米胶束粒内,利用这一刺激响应型纳米材料调节染料与水分子间相互作用,设计高选择性高灵敏Hyal-1荧光纳米传感器。本发明是基于目前得到广泛发展的高分子聚合物技术,结合分子识别和信号转换原理,综合运用有机化学、分析化学、纳米技术、以及生物医学等多学科理论和方法,开展深入系统的生命分析化学研究。结果表明,该方法具有专一性高,灵敏度好,操作简便,经济实用等优点,实现了实际尿样中Hyal-1的检测。因此,该发明方法具有原始创新性、良好的社会价值和应用前景。目前,这种传感体系在检测尿液中Hyal-1还未见报道。
发明内容
本发明的目的是提供一种具有特异性的响应型荧光纳米传感器直接、灵敏检测膀胱癌患者尿液中一型透明质酸酶的方法。本方法用于一型透明质酸酶的检测,具有简单方便,响应快速,成本低廉,特异性好等优点,有良好的社会价值和应用前景。
为实现上述目的,本发明的技术方案是:
DMSO溶液中加入CHA聚合物和TPC3染料,溶解,37℃下,磁力搅拌缓慢滴加超纯水,30min后,TPC3染料包裹入纳米胶束内腔,在胶束疏水内腔的TPC3染料无荧光。经纯化除去未包封的TPC3染料并计算TPC3染料的包载量,得到粒径160nm的聚合物纳米胶束,于4℃保存备。
所述TPC3染料是氢键增强型染料。
所述TPC3染料与CHA的质量比例为1:2。
所述纯化是经过3500KD透析袋透析出未被包封的TPC3染料进行纯化。
所述的检测方法,在PB缓冲溶液中加入纳米传感器TPC3@CHA,摇晃混匀;再向上述溶液中加入一型透明质酸酶溶液。随后,CHA发生降解导致纳米传感体系被破坏,释放的TPC3与体系的水分子氢键键合,荧光增强。通过响应前后荧光强度变化实现对一型透明质酸酶定性与定量检测。
所述的检测方法,缓冲液中TPC3@CHA的浓度为0.02mmol/LTPC3@0.3mg/mLCHA。
所述的检测方法,其特征在于,待测样品加入后,以375nm为激发光源,收集450nm-600nm的荧光。
本发明中的一型透明质酸酶检测试剂盒包括检测一型透明质酸酶的纳米传感器和溶剂组成的纳米传感器储备液。
所述试剂盒中,所述一型透明质酸酶检测的纳米传感器在所述纳米传感器储备液中的摩尔浓度为0.2mmol/L。
所述溶剂选自PB缓冲溶液或者超纯水的至少一种。
所述的试剂盒,其特征在于,用于检测0-12μg/mL一型透明质酸酶浓度范围的样品。
本发明提供的检测待测样品中一型透明质酸酶含量的方法,包括如下步骤:
1)制作标准曲线:
以375nm为激发波长,测定一系列不同浓度的一型透明质酸酶标准反应液在发射波长为495nm处的荧光强度,记为S;
并测定试剂空白在发射波长为495nm处的荧光强度,记为B,以一型透明质酸酶的浓度C为横坐标,以荧光强度变化值S/B为纵坐标,绘制标准曲线;
所述一系列不同浓度的一型透明质酸酶标准反应液为TPC3@CHA纳米传感器的溶液、一型透明质酸酶的标准储备溶液和缓冲液混合进行反应2-5h后而得。
2)检测待测样品中一型透明质酸酶的含量:
将膀胱癌患者尿液样品和正常人体尿液经离心取其上层清液后,分别向尿液样品中加入不同水平的Hyal-1以制备加标样品,按照所述步骤1)所述方法检测所述待测样品在发射波长为495nm处的荧光强度,记为S;同时测定试剂空白在发射波长为495nm处的荧光强度,记为B;将S/B带入所述步骤1)所得标准曲线,即分别得到膀胱癌患者尿液样品和正常人体尿液中一型透明质酸酶的浓度,进而得到所述待测样品中一型透明质酸酶的含量。
本发明制备出了Hyal-1荧光纳米传感器,该纳米传感器可选择性地被一型透明质酸酶降解从而实现对该酶的测定;而且,本发明纳米传感器制备的试剂盒能用于尿液中一型透明质酸酶的检测。
与现有技术相比,本发明的优势在于:该方法具有专一性高、灵敏度好、操作简便、条件温和、经济实用等优点;可以检测出尿液中一型透明质酸酶的含量变化;实现了首次膀胱癌患者尿液中一型透明质酸酶的检测和荧光分析。因此,该发明方法具有原始创新性、良好的社会价值和应用前景。
附图说明
图1(A)透明质酸纳米传感器电镜图;(B)纳米传感器响应Hyal-1后电镜图;
图2(A)0.02mmol/LTPC3@0.3mg/mLCHA纳米传感器在PB体系中对不同浓度一型透明质酸酶(0-12μg/mL);(B)0.02mmol/LTPC3@0.3mg/mLCHA纳米传感器对不同一型透明质酸酶浓度响应信背比(S/B)线性关系图;
图3纳米传感器用于一型透明质酸酶检测的选择性探究图;
图4纳米传感器与ELISA试剂盒检测尿液中Hyal-1的对比图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明,但不限于此。
实施例1:纳米传感器的制备及表征
将1毫克TPC3染料和2毫克CHA聚合物加入到1毫升DMSO中,37℃下,在磁力搅拌下将3毫升超纯水缓慢滴加入溶液中,反应30min,溶液中逐渐出现白色胶束颗粒。反应结束后,并将反应液用截留分子量为3500KD透析袋去除未包裹的TPC3染料分子,透析3天。此过程中白色胶束颗粒在透析袋中慢慢分散至消失制得尺寸均一TPC3@CHA胶束溶液。最终所得产物于4℃下保存。由图1(A)透射电镜图可知TPC3@CHA尺寸约160nm,且未见团聚现象,均一性好。
实施例2:纳米传感器响应的滴定曲线
在优化得到的条件下进行滴定曲线的测定。图2(A)表明,经过不同浓度Hyal-1(0-12μg/mL)后,纳米传感器的荧光强度随Hyal-1浓度的升高而明显增加。且从图1(B)可以看出,纳米传感器响应Hyal-1后,纳米传感器被Hyal-1降解后的尺寸在5nm左右。图2(B)表明,纳米传感器与待测物Hyal-1在0.25-6.0μg/mL的范围内的信号-背景比(S/B)呈现较好的线性关系,线性函数式为y=1.267x+2.1811;R2=0.9956。该探针可以对尿液中Hyal-1准确检测。
实施例3:纳米传感器的选择性考察
取纳米传感加入PB缓冲液中,浓度为0.02mmol/LTPC3@0.3mg/mL CHA,接着向其中加入不同具有代表性的各种干扰物种(0.1μM/mL H2O2,Urea,Uric acid,Glu,Gly,Cys,Glucose,VC,GSH,Cathepsin,Trypsin,Thrombin,Galactosidase,Ribnudease,Hyal-2(5μg/mL),Hyal-3(5μg/mL),Hyal-4(5μg/mL),PH-20(5μg/mL)andHyal-1(5μg/mL))。同时,增加一空白组,只加入2μL PBS缓冲溶液,摇匀,测量并记录各组溶液在激发波长=375nm,发射波长=495nm时的荧光强度值,得到各种物种对纳米传感荧光信号的影响。信背比为加入各种干扰物种后溶液的荧光值除以空白组的荧光值,重复三次试验,取平均值。
结果分析:如图3表明所示,只有Hyal-1才会引起纳米传感荧光信号的显著变化,而其它对照物质不存在干扰。说明该纳米传感荧对Hyal-1检测具有很好的选择性。
实施例4:纳米传感器的实际应用
将纳米传感器应用于膀胱癌患者尿液中Hyal-1回收率的测定。将膀胱癌患者尿液样品和正常人体尿液经离心取其上层清液后,分别向尿液样品中加入不同水平的Hyal-1以制备加标样品,然后通过所提出的方法检测。图4总结了通过标准加入方法获得的结果,并且通过回收率评估了所提出方法的准确度。此方法测得患者尿液中Hyal-1是正常人体尿样的30倍,使用商业ELISA试剂盒检测Hyal-1患者是正常人体尿样的61倍,表明Hyal-1的准确可靠测定。患者尿样回收率在86.0-97.6%之间,正常人体样品回收率在88.8-108.2%之间,两种方法之间的偏差基本在20%左右,表明结果很好。总之,所提出的方法被证明对于生物样品中Hyal-1的定量测定是可行的。

Claims (8)

1.一种一型透明质酸酶的纳米传感器,其特征是,以胆固醇酯基-透明质酸聚合物包裹双光子查尔酮染料,并合成TPC3@CHA纳米胶束,在TPC3@CHA纳米胶束的疏水内腔中TPC3染料荧光熄灭;
其中,胆固醇酯基-透明质酸聚合物记为CHA聚合物,双光子查尔酮染料记为TPC3染料。
2.根据权利要求1所述的一种一型透明质酸酶的纳米传感器,其特征是,纳米传感器与一型透明质酸酶响应,CHA聚合物被降解,释放的TPC3染料与体系中水分子氢键键合后荧光增强,实现一型透明质酸酶荧光分析检测。
3.根据权利要求1所述的一种一型透明质酸酶的纳米传感器,其特征是,DMSO溶液中加入CHA聚合物和TPC3染料,溶解,磁力搅拌下缓慢滴加超纯水,反应30min后,TPC3染料包裹入TPC3@CHA纳米胶束疏水内腔,在TPC3@CHA纳米胶束疏水内腔的TPC3染料无荧光,经纯化除去未包封的TPC3染料并计算TPC3染料的包载量。
4.根据权利要求3所述的一种一型透明质酸酶的纳米传感器,其特征是,所述TPC3染料与CHA聚合物的质量比例为1:2,DMSO与超纯水的体积比例为1:3。
5.根据权利要求3所述的一种一型透明质酸酶的纳米传感器,其特征是,所述包载量为93%。
6.根据权利要求1所述的一种一型透明质酸酶的纳米传感器,其特征是,用于检测人体尿液中的一型透明质酸酶;以375nm为激发光源,收集450nm-600nm的荧光。
7.一种一型透明质酸酶检测试剂盒,它包括一型透明质酸酶检测的纳米传感器和溶剂组成的纳米传感器储备液;所述一型透明质酸酶检测的纳米传感器为权利要求1所述的纳米传感器。
8.根据权利要求7所述的试剂盒,其特征在于:所述试剂盒中,所述一型透明质酸酶检测的纳米传感器在所述纳米传感器储备液中的浓度为0.02mmol/L TPC3@0.3mg/mL CHA。
CN201910596953.1A 2019-07-04 2019-07-04 一种一型透明质酸酶荧光纳米传感器的制备及应用 Active CN112179875B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910596953.1A CN112179875B (zh) 2019-07-04 2019-07-04 一种一型透明质酸酶荧光纳米传感器的制备及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910596953.1A CN112179875B (zh) 2019-07-04 2019-07-04 一种一型透明质酸酶荧光纳米传感器的制备及应用

Publications (2)

Publication Number Publication Date
CN112179875A CN112179875A (zh) 2021-01-05
CN112179875B true CN112179875B (zh) 2022-06-21

Family

ID=73915106

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910596953.1A Active CN112179875B (zh) 2019-07-04 2019-07-04 一种一型透明质酸酶荧光纳米传感器的制备及应用

Country Status (1)

Country Link
CN (1) CN112179875B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113599506B (zh) * 2021-05-31 2023-07-21 长沙理工大学 一种铂纳米酶/葡萄糖氧化酶@透明质酸复合抗菌材料及其制备和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104390947A (zh) * 2014-11-20 2015-03-04 南京邮电大学 一种检测透明质酸酶的荧光方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105675573B (zh) * 2016-03-16 2019-05-14 安徽师范大学 透明质酸酶的检测方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104390947A (zh) * 2014-11-20 2015-03-04 南京邮电大学 一种检测透明质酸酶的荧光方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
One-step facile synthesis of hyaluronic acid functionalized fluorescent gold nanoprobes sensitive to hyaluronidase in urine specimen from bladder cancer patients;Dan Cheng et al;《Talanta》;20140710;全文 *
基于RNA 辅助荧光放大的Hyal-1 纳米胶束成像探针研究;李媛等;《中国化学会第十三届全国分析化学年会论文集》;20181231;全文 *

Also Published As

Publication number Publication date
CN112179875A (zh) 2021-01-05

Similar Documents

Publication Publication Date Title
Sargazi et al. Fluorescent-based nanosensors for selective detection of a wide range of biological macromolecules: A comprehensive review
Cho et al. Carbon-dot-based ratiometric fluorescence glucose biosensor
Deng et al. A sensitive fluorescence anisotropy method for the direct detection of cancer cells in whole blood based on aptamer-conjugated near-infrared fluorescent nanoparticles
Cheng et al. One-step facile synthesis of hyaluronic acid functionalized fluorescent gold nanoprobes sensitive to hyaluronidase in urine specimen from bladder cancer patients
Chen et al. Rapid and simple detection of ascorbic acid and alkaline phosphatase via controlled generation of silver nanoparticles and selective recognition
CN103884838B (zh) 聚多巴胺纳米球生物传感器
Liu et al. A novel aptamer-mediated CuInS 2 quantum dots@ graphene oxide nanocomposites-based fluorescence “turn off–on” nanosensor for highly sensitive and selective detection of kanamycin
Hu et al. A rapid and sensitive turn-on fluorescent probe for ascorbic acid detection based on carbon dots–MnO 2 nanocomposites
Cao et al. Enzyme-free fluorescence determination of uric acid and trace Hg (II) in serum using Si/N doped carbon dots
Yu et al. Glucose sensing via polyanion formation and induced pyrene excimer emission
Chen et al. Pt–DNA complexes as peroxidase mimetics and their applications in colorimetric detection of H 2 O 2 and glucose
Shao et al. Dual-colored carbon dots-based ratiometric fluorescent sensor for high-precision detection of alkaline phosphatase activity
Zhang et al. Colorimetric detection of bis-phosphorylated peptides using zinc (ii) dipicolylamine-appended gold nanoparticles
Chauhan et al. Immobilization of barley oxalate oxidase onto gold–nanoparticle-porous CaCO3 microsphere hybrid for amperometric determination of oxalate in biological materials
Chen et al. One-step rapid synthesis of fluorescent silicon nanodots for a hydrogen peroxide-related sensitive and versatile assay based on the inner filter effect
Mao et al. Accelerated and signal amplified nanozyme-based lateral flow assay of acetamiprid based on bivalent triple helix aptamer
Gao et al. Visual detection of alkaline phosphatase based on ascorbic acid-triggered gel-sol transition of alginate hydrogel
CN104198740B (zh) 一种对葡萄糖和胆固醇同步检测的纳米生物传感器
CN112179875B (zh) 一种一型透明质酸酶荧光纳米传感器的制备及应用
Zhao et al. Chemiluminescence resonance energy transfer determination of uric acid with fluorescent covalent organic framework as energy acceptor
Chen et al. A homogeneous capillary fluorescence imprinted nanozyme intelligent sensing platform for high sensitivity and visual detection of triclocarban
He et al. Ultrasensitive fluorescence detection of microRNA through DNA-induced assembly of carbon dots on gold nanoparticles with no signal amplification strategy
Wang et al. Ratiometric fluorescence sensor and smartphone-based microfluidic sensing platform based on oxidation induced Ce (III)/Ce (IV) phosphatase-like activity and complexation effect activation for sarcosine detection
Zakery et al. Novel histamine fluorosensor based on modified environmental friendly carbon nanoparticles from gum tragacanth
CN108760695B (zh) 一种基于pret的磷光探针定量检测凝血酶的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant