CN111952564A - 高能量密度的氟化铜/氟化石墨烯复合材料的制备与应用 - Google Patents
高能量密度的氟化铜/氟化石墨烯复合材料的制备与应用 Download PDFInfo
- Publication number
- CN111952564A CN111952564A CN202010822110.1A CN202010822110A CN111952564A CN 111952564 A CN111952564 A CN 111952564A CN 202010822110 A CN202010822110 A CN 202010822110A CN 111952564 A CN111952564 A CN 111952564A
- Authority
- CN
- China
- Prior art keywords
- fluoride
- composite material
- copper fluoride
- graphene
- ball
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/364—Composites as mixtures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0471—Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/06—Electrodes for primary cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/582—Halogenides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/5835—Comprising fluorine or fluoride salts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
- H01M4/623—Binders being polymers fluorinated polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/14—Cells with non-aqueous electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Carbon And Carbon Compounds (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明涉及一种高能量密度的氟化铜/氟化石墨烯复合材料的制备方法,按照将氟化铜与氟化石墨烯按(0.8‑9):1的比例混合,然后,在密封球磨罐中球磨,球磨好放入手套箱中取出样品。所制备的氟化铜/氟化石墨烯复合材料在锂金属电池正极材料中的应用。
Description
技术领域
本发明属于金属氟化物材料技术领域,具体地说是利用密封球磨机球磨氟化铜与氟化石墨烯使其形成复合材料。
背景技术
锂原电池已经成为长期、高容量能源产品的主要电源,氟化铜具有高的放电容量528mAh/g,较高的放电平台3.55V,高能量密度(1874Wh/kg)是一种具有很有应用前景的电极材料。氟化碳材料(CFx,x=1)的理论容量为865mAh/g,热力学理论的开路电压为4.57V。然而,氟化碳材料实际的放电平台远低于理论值。同时,为了获得更轻质量,更小体积的高能量储能电源设备,氟化碳材料的密度低需要与氟化金属材料复合获得更高能量密度,更小体积和质量的锂金属电池的正极材料。
为了提高锂原电池能量密度,本发明提出制备氟化铜/氟化石墨烯复合材料用于锂金属电池正极材料,达到制备高密度高能量的正极材料的目的。
发明内容
本发明的目的在于克服现有技术的不足,针对现有技术中氟化碳压实密度低,放电平台低等问题,提供一种制备氟化铜/氟化石墨烯复合材料用于锂金属电池正极材料,其中氟化铜能够提高复合材料的整体密度,提高放电平台。
本发明的技术目的通过下述技术方案予以实现:
一种高能量密度的氟化铜/氟化石墨烯复合材料的制备方法,按照将氟化铜与氟化石墨烯按(0.8-9):1的比例混合,然后,在密封球磨罐中球磨,球磨好放入手套箱中取出样品。
优选地,氟化铜与氟化碳按照质量比为1:1的比例混合。
在行星球磨机上球磨,转速为300转/分,时间为2小时。
所述的氟化铜/氟化石墨烯复合材料在锂金属电池正极材料中的应用。
本发明技术方案方便易行,且可通过氟化铜与氟化石墨烯的质量比例控制电极材料来提高复合材料整体的电化学性能。氟化铜,氟化铜/氟化石墨(5:5)烯扫描电镜图如附图1-4所示,表明氟化铜与氟化石墨烯复合的很好。且通过XRD表征说明氟化铜与氟化石墨烯复合材料成功制备。
附图说明
图1为本发明中氟化铜的扫描电镜照片。
图2为本发明中氟化铜的扫描电镜照片。
图3为本发明中氟化石墨烯的扫描电镜照片。
图4为本发明中氟化铜/氟化石墨烯的扫描电镜照片。
图5为本发明中氟化铜/氟化石墨烯的扫描电镜照片。
图6为本发明中制备的氟化铜/氟化石墨烯的XRD图。
图7为本发明中氟化石墨烯复合材料的恒流放电曲线图。
图8为本发明中制备的不同比例氟化铜/氟化石墨烯复合材料的恒流放电曲线图。
具体实施方式
下面结合具体实施例进一步说明本发明的技术方案。氟化铜购买上海阿拉丁纯度为99.5%。
实施例1
(1)在手套箱中,将200mg氟化铜转移到密封球磨罐中在300转/分下球磨两小时。
(2)将球磨后的密封球磨罐转移到手套箱中,取出样品。
(3)将样品80mg、炭黑10mg、粘结剂(PVDF)10mg的比例在手套箱中研磨,将研磨好的浆料均匀涂布于附碳铝箔上,放置于加热台上120℃烘干24h。称量裁剪的正极材料分别为4.2mg、4.1mg、4.0mg。
实施例2
(1)在手套箱中,将180mg氟化铜和20mg氟化石墨烯转移到密封球磨罐中在300转/分下球磨两小时。
(2)将球磨后的密封球磨罐转移到手套箱中,取出样品。
(3)将样品80mg、炭黑10mg、粘结剂(PVDF)10mg的比例在手套箱中研磨,将研磨好的浆料均匀涂布于附碳铝箔上,放置于加热台上120℃烘干24h。称量裁剪的正极材料分别为4.5mg、4.1mg、4.3mg。
实施例3
(1)在手套箱中,将160mg氟化铜和40mg氟化石墨烯转移到密封球磨罐中在300转/分下球磨两小时。
(2)将球磨后的密封球磨罐转移到手套箱中,取出样品。
(3)将样品80mg、炭黑10mg、粘结剂(PVDF)10mg的比例在手套箱中研磨,将研磨好的浆料均匀涂布于附碳铝箔上,放置于加热台上120℃烘干24h。称量裁剪的正极材料分别为4.7mg、4.6mg、4.1mg。
实施例4
(1)在手套箱中,将100mg氟化铜和100mg氟化石墨烯转移到密封球磨罐中在300转/分下球磨两小时。
(2)将球磨后的密封球磨罐转移到手套箱中,取出样品。
(3)将样品80mg、炭黑10mg、粘结剂(PVDF)10mg的比例在手套箱中研磨,将研磨好的浆料均匀涂布于附碳铝箔上,放置于加热台上120℃烘干24h。称量裁剪的正极材料分别为4.9mg、4.3mg、4.1mg。
实施例5
(1)在手套箱中,将200mg氟化石墨烯转移到密封球磨罐中在300转/分下球磨两小时。
(2)将球磨后的密封球磨罐转移到手套箱中,取出样品。
(3)将样品80mg、炭黑10mg、粘结剂(PVDF)10mg的比例在手套箱中研磨,将研磨好的浆料均匀涂布于附碳铝箔上,放置于加热台上120℃烘干24h。称量裁剪的正极材料分别为4.2mg、4.3mg、4.4mg。
将电池连接在LAND电池测试系统上,静置10min以后,进行恒电流放电性能测试,测试的放电电流为100mA g-1,放电终止电压为1.5V,测试采用扣式电池直接测量得到数据,如附图1和2为商业购买的氟化铜颗粒,附图3和4为氟化铜与氟化石墨烯复合材料。如附图5能够证明成功制备了氟化铜与氟化石墨烯复合材料。附图6表现出高的放电容量和放电平台。
根据本发明内容进行工艺参数的调整,均可实现氟化铜/氟化石墨烯复合材料的制备,经测试表现出与本发明基本一致的性能,即氟化铜与氟化石墨烯复合材料作为锂金属正极材料,放电中压为2.61-2.64V,比容量为432.2-687.5mAh g-1。其他比例的能量密度分别为氟化铜为1068Wh/kg、氟化铜/氟化石墨烯(8:2)为1391Wh/kg、氟化铜/氟化石墨烯(3:7)为1582Wh/kg、氟化铜/氟化石墨烯(5:5)能量密度最佳达到1815Wh/kg。与氟化石墨烯(1494Wh/kg)相比复合材料即提高了放电平台又提高了放电容量。以上对本发明做了示例性的描述,应该说明的是,在不脱离本发明的核心的情况下,任何简单的变形、修改或者其他本领域技术人员能够不花费创造性劳动的等同替换均落入本发明的保护范围。
Claims (4)
1.一种高能量密度的氟化铜/氟化石墨烯复合材料的制备方法,按照将氟化铜与氟化石墨烯按(0.8-9):1的比例混合,然后,在密封球磨罐中球磨,球磨好放入手套箱中取出样品。
2.根据权利要求1所述的制备方法,其特征在于,氟化铜与氟化碳可以按照质量比为1:1的比例混合。
3.根据权利要求1所述的制备方法,其特征在于,在行星球磨机上球磨,转速为300转/分,时间为2小时。
4.权利要求1所制备的氟化铜/氟化石墨烯复合材料在锂金属电池正极材料中的应用。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010822110.1A CN111952564A (zh) | 2020-08-15 | 2020-08-15 | 高能量密度的氟化铜/氟化石墨烯复合材料的制备与应用 |
US17/398,211 US20220052340A1 (en) | 2020-08-15 | 2021-08-10 | Preparation and application of copper fluoride/fluorinated graphene composite material with high energy density |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010822110.1A CN111952564A (zh) | 2020-08-15 | 2020-08-15 | 高能量密度的氟化铜/氟化石墨烯复合材料的制备与应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111952564A true CN111952564A (zh) | 2020-11-17 |
Family
ID=73342465
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010822110.1A Pending CN111952564A (zh) | 2020-08-15 | 2020-08-15 | 高能量密度的氟化铜/氟化石墨烯复合材料的制备与应用 |
Country Status (2)
Country | Link |
---|---|
US (1) | US20220052340A1 (zh) |
CN (1) | CN111952564A (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116365062A (zh) * | 2023-02-20 | 2023-06-30 | 惠州锂威新能源科技有限公司 | 一种磷化锂基复合材料及其制备方法和应用 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3536532A (en) * | 1968-04-12 | 1970-10-27 | Matsushita Electric Ind Co Ltd | Primary cell for electric batteries |
US20070072075A1 (en) * | 2005-09-28 | 2007-03-29 | Greatbatch Ltd. | ANODE-TO-ANODE CAPACITY RATIOS FOR SVO/CFx HYBRID CATHODE ELECTROCHEMICAL CELLS |
US20150311532A1 (en) * | 2014-04-25 | 2015-10-29 | Medtronic, Inc. | Batteries and cathodes containing carbon nanotubes |
CN107611403A (zh) * | 2017-09-14 | 2018-01-19 | 辽宁兰晶科技有限公司 | 一种锂/氟化碳纳米管电池及其制备方法 |
CN110112394A (zh) * | 2019-05-14 | 2019-08-09 | 中国民航大学 | 一种氟化碳/氟化金属复合正极材料的制备方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105609731A (zh) * | 2016-01-05 | 2016-05-25 | 天津大学 | 氟化铜/三氧化钼/石墨烯复合材料及其电极的制备方法 |
KR102033898B1 (ko) * | 2018-01-09 | 2019-10-18 | 한국세라믹기술원 | 면심입방 결정구조를 갖는 구리불화물 나노입자를 포함하는 전극의 제조방법 |
US20200280055A1 (en) * | 2019-02-28 | 2020-09-03 | Nanotek Instruments, Inc. | Process for producing particulates of graphene/carbon-encapsulated alkali metal, electrodes, and alkali metal battery |
-
2020
- 2020-08-15 CN CN202010822110.1A patent/CN111952564A/zh active Pending
-
2021
- 2021-08-10 US US17/398,211 patent/US20220052340A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3536532A (en) * | 1968-04-12 | 1970-10-27 | Matsushita Electric Ind Co Ltd | Primary cell for electric batteries |
US20070072075A1 (en) * | 2005-09-28 | 2007-03-29 | Greatbatch Ltd. | ANODE-TO-ANODE CAPACITY RATIOS FOR SVO/CFx HYBRID CATHODE ELECTROCHEMICAL CELLS |
US20150311532A1 (en) * | 2014-04-25 | 2015-10-29 | Medtronic, Inc. | Batteries and cathodes containing carbon nanotubes |
CN107611403A (zh) * | 2017-09-14 | 2018-01-19 | 辽宁兰晶科技有限公司 | 一种锂/氟化碳纳米管电池及其制备方法 |
CN110112394A (zh) * | 2019-05-14 | 2019-08-09 | 中国民航大学 | 一种氟化碳/氟化金属复合正极材料的制备方法 |
Non-Patent Citations (2)
Title |
---|
GUIMING ZHONG等: "High-Power-Density,High-Energy-Density Fluorinated Graphene for Primary Lithium Batteries", 《FRONTIERS IN CHEMISTRY》 * |
WEN LIU等: "Enhanced electrochemical activity of rechargeable carbon fluorides–sodium battery with catalysts", 《CARBON》 * |
Also Published As
Publication number | Publication date |
---|---|
US20220052340A1 (en) | 2022-02-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101359756B (zh) | 一种锂离子电池废料中磷酸铁锂正极材料的回收方法 | |
CN109148838B (zh) | 钠离子电池负极材料及其制备方法和应用 | |
CN107634208A (zh) | 一种锂离子电池硅碳负极材料的制备方法 | |
CN101339990B (zh) | 一种锂离子二次电池负极活性材料及其制备方法 | |
CN101577332B (zh) | 一种锂离子电池负极材料及其制备方法 | |
EP2518801A1 (en) | High manganese polycrystalline anode material, preparation method thereof and dynamic lithium ion battery | |
CN104979541A (zh) | 一种钛酸锂复合材料及其制备方法 | |
CN110980811A (zh) | 一种动力型锰酸锂的制备方法 | |
CN113161524A (zh) | 一种利用废旧磷酸铁锂电池得到的复合正极材料及其方法和应用 | |
CN104617285B (zh) | 锂离子电池负极材料Li2ZnTi3O8的制备方法 | |
CN111952564A (zh) | 高能量密度的氟化铜/氟化石墨烯复合材料的制备与应用 | |
CN117800335A (zh) | 人造石墨与碳包覆天然石墨的复合材料制备工艺 | |
CN108172830B (zh) | 正极材料及其制备方法和电池 | |
CN111477859A (zh) | 一种复合正极材料、其制备方法和水系二次电池 | |
CN116544386A (zh) | 一种淀粉基硬碳钠离子电池负极材料及其制备方法和应用 | |
CN110723721A (zh) | 一种制备锂电池硅碳负极材料的方法、负极材料和锂电池 | |
CN115621418A (zh) | 一种自修复快离子导体锂金属负极及其制备方法 | |
CN115924883A (zh) | 一种硬碳材料及其制备方法和应用 | |
CN115924878A (zh) | 一种钠离子电池用正极材料磷酸铁钠及其制备方法 | |
CN115849367A (zh) | 一种基于天然石墨原料的钠离子电池负极材料及其制备方法与钠离子电池 | |
CN112072084B (zh) | 一种复合电极材料及其制备方法和应用 | |
CN108448095A (zh) | 一种钠离子电池电极材料KTiOPO4的合成及应用 | |
CN101136473A (zh) | LiFePO4/C锂离子电池正极复合材料的制备方法 | |
CN112563475B (zh) | 一种软碳负极材料及其制备方法和用途 | |
CN114695851A (zh) | 一种复合负极材料、负极、电池及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20201117 |