CN111939892A - 一种钆改性光催化二氧化钛纳米管阵列的制备方法及应用 - Google Patents
一种钆改性光催化二氧化钛纳米管阵列的制备方法及应用 Download PDFInfo
- Publication number
- CN111939892A CN111939892A CN202010775031.XA CN202010775031A CN111939892A CN 111939892 A CN111939892 A CN 111939892A CN 202010775031 A CN202010775031 A CN 202010775031A CN 111939892 A CN111939892 A CN 111939892A
- Authority
- CN
- China
- Prior art keywords
- gadolinium
- nanotube array
- titanium dioxide
- dioxide nanotube
- nanotube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 title claims abstract description 76
- 239000002071 nanotube Substances 0.000 title claims abstract description 52
- 229910052688 Gadolinium Inorganic materials 0.000 title claims abstract description 30
- 239000004408 titanium dioxide Substances 0.000 title claims abstract description 27
- 230000001699 photocatalysis Effects 0.000 title claims abstract description 20
- 238000002360 preparation method Methods 0.000 title claims abstract description 12
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 title claims description 22
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 24
- 230000003647 oxidation Effects 0.000 claims abstract description 16
- 238000000034 method Methods 0.000 claims abstract description 13
- 239000000126 substance Substances 0.000 claims abstract description 7
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 27
- 239000010936 titanium Substances 0.000 claims description 24
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 20
- 229910052719 titanium Inorganic materials 0.000 claims description 20
- MWFSXYMZCVAQCC-UHFFFAOYSA-N gadolinium(iii) nitrate Chemical compound [Gd+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O MWFSXYMZCVAQCC-UHFFFAOYSA-N 0.000 claims description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 8
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 8
- 238000009210 therapy by ultrasound Methods 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 8
- 238000005498 polishing Methods 0.000 claims description 7
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims description 6
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 claims description 5
- 239000003792 electrolyte Substances 0.000 claims description 5
- RJOJUSXNYCILHH-UHFFFAOYSA-N gadolinium(3+) Chemical compound [Gd+3] RJOJUSXNYCILHH-UHFFFAOYSA-N 0.000 claims description 5
- 238000000137 annealing Methods 0.000 claims description 4
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 3
- 230000015556 catabolic process Effects 0.000 claims description 3
- 238000001816 cooling Methods 0.000 claims description 3
- 238000006731 degradation reaction Methods 0.000 claims description 3
- 229910017604 nitric acid Inorganic materials 0.000 claims description 3
- 238000004506 ultrasonic cleaning Methods 0.000 claims description 3
- 238000005406 washing Methods 0.000 claims description 3
- 239000005416 organic matter Substances 0.000 claims description 2
- 238000002242 deionisation method Methods 0.000 claims 1
- RBTBFTRPCNLSDE-UHFFFAOYSA-N 3,7-bis(dimethylamino)phenothiazin-5-ium Chemical compound C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 RBTBFTRPCNLSDE-UHFFFAOYSA-N 0.000 abstract description 11
- STZCRXQWRGQSJD-GEEYTBSJSA-M methyl orange Chemical compound [Na+].C1=CC(N(C)C)=CC=C1\N=N\C1=CC=C(S([O-])(=O)=O)C=C1 STZCRXQWRGQSJD-GEEYTBSJSA-M 0.000 abstract description 11
- 229940012189 methyl orange Drugs 0.000 abstract description 11
- 229960000907 methylthioninium chloride Drugs 0.000 abstract description 11
- -1 gadolinium ions Chemical class 0.000 abstract description 9
- 238000001782 photodegradation Methods 0.000 abstract description 9
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical class [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 abstract description 8
- 239000000463 material Substances 0.000 abstract description 7
- 238000013033 photocatalytic degradation reaction Methods 0.000 abstract description 6
- 230000008569 process Effects 0.000 abstract description 6
- YYYARFHFWYKNLF-UHFFFAOYSA-N 4-[(2,4-dimethylphenyl)diazenyl]-3-hydroxynaphthalene-2,7-disulfonic acid Chemical compound CC1=CC(C)=CC=C1N=NC1=C(O)C(S(O)(=O)=O)=CC2=CC(S(O)(=O)=O)=CC=C12 YYYARFHFWYKNLF-UHFFFAOYSA-N 0.000 abstract description 4
- 239000003054 catalyst Substances 0.000 abstract description 3
- 239000010865 sewage Substances 0.000 abstract description 3
- 231100000956 nontoxicity Toxicity 0.000 abstract description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 abstract 1
- 238000006243 chemical reaction Methods 0.000 description 11
- 230000003287 optical effect Effects 0.000 description 9
- WXLFIFHRGFOVCD-UHFFFAOYSA-L azophloxine Chemical compound [Na+].[Na+].OC1=C2C(NC(=O)C)=CC(S([O-])(=O)=O)=CC2=CC(S([O-])(=O)=O)=C1N=NC1=CC=CC=C1 WXLFIFHRGFOVCD-UHFFFAOYSA-L 0.000 description 7
- 239000013078 crystal Substances 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000002524 electron diffraction data Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 244000137852 Petrea volubilis Species 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- 238000000441 X-ray spectroscopy Methods 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- LDDQLRUQCUTJBB-UHFFFAOYSA-N ammonium fluoride Chemical compound [NH4+].[F-] LDDQLRUQCUTJBB-UHFFFAOYSA-N 0.000 description 1
- 238000002048 anodisation reaction Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 235000019441 ethanol Nutrition 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000010815 organic waste Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000011941 photocatalyst Substances 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000006557 surface reaction Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000005287 template synthesis Methods 0.000 description 1
- 238000004627 transmission electron microscopy Methods 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/10—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- B01J21/063—Titanium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/34—Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
- B01J37/348—Electrochemical processes, e.g. electrochemical deposition or anodisation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/30—Treatment of water, waste water, or sewage by irradiation
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/26—Anodisation of refractory metals or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/308—Dyes; Colorants; Fluorescent agents
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/34—Organic compounds containing oxygen
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/36—Organic compounds containing halogen
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/38—Organic compounds containing nitrogen
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/40—Organic compounds containing sulfur
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2305/00—Use of specific compounds during water treatment
- C02F2305/10—Photocatalysts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/30—Wastewater or sewage treatment systems using renewable energies
- Y02W10/37—Wastewater or sewage treatment systems using renewable energies using solar energy
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Toxicology (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Crystallography & Structural Chemistry (AREA)
- Electrochemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Composite Materials (AREA)
- Plasma & Fusion (AREA)
- Metallurgy (AREA)
- Catalysts (AREA)
Abstract
一种钆改性光催化二氧化钛纳米管阵列的制备方法及应用,在利用二次阳极氧化法制备二氧化钛纳米管的过程中,通过同步掺杂入不同浓度的钆离子,获得改性的二氧化钛纳米管阵列材料。改性的纳米管管长由22.5μm增长到105.6μm,管径95‑100nm。以甲基橙、酸性大红、亚甲基蓝为被降解物,在紫外光的照射下,掺杂钆离子的改性材料的光降解率相比之前由79.8%上升到了98.8%,大大提高了催化剂的光催化效果,亲水性能明显增强。通过此法制备TiO2改性材料,在氧化钛纳米管阵列形成的同时进行钆离子掺杂,掺杂效率高,操作简便无毒害,氧化钛纳米管阵列可回收重复利用,在有机物的光催化降解及污水处理方面有远大应用前景。
Description
技术领域
本发明属于纳米材料领域,具体涉及一种钆改性高光催化性能的二氧化钛(TiO2)纳米管阵列的制备方法及应用。
背景技术
光催化氧化技术作为一种新兴的绿色高级氧化技术,因其反应条件温和、操作简便、效率高而能耗低、环境友好等特点,已被广泛应用于含有机废液的污水处理中。TiO2材料作为一种无机光敏半导体材料,具有光催化活性高、稳定性好、无毒害、成本低等优点,在诸多半导体材料中脱颖而出,受到了广泛关注。而TiO2纳米管在二氧化钛系列产品中,具有更大的比表面积和更高的表面能,独特的有序性可以有效提高电子-空穴对的界面分离能力,表现出绝佳的光催化性能。
目前来说,成功制备TiO2纳米管的方法主要包括模板合成法、水热合成法以及阳极氧化法。二次阳极氧化法通过两次外电流作用,以肖特基势垒牢固结合纳米管与金属钛导电基板,相比一次氧化,二次氧化技术在一次氧化后增加了清洗过程,除去了一次氧化过程中形成的氧化膜及杂质,使得二次氧化形成的纳米管阵列排列更加规整、致密、纯度更高。然而,纯TiO2作为光催化剂仍存在光源利用率低,光谱响应范围小等短板,从而降低光催化性能。
发明内容
本发明的目的在于提供一种钆改性光催化二氧化钛纳米管阵列的制备方法及应用。
本发明目的通过以下技术方案实现。
本发明所述的一种钆改性光催化二氧化钛纳米管阵列的制备方法,包括以下步骤。
(1)处理过的高纯钛片作为Ti源(阳极),去离子H2O作为O源,35~55V电压下,在氟化铵的乙二醇溶液中反应1h;取出钛片,纯水中超声5min。
(2)在电解液中加入一定浓度的硝酸钆溶液,在25~35℃环境下第二次阳极氧化的同时进行钆离子掺杂,后取出在乙二醇中超声2min,乙醇洗涤。
(3)取出钛片,于460~540℃空气环境下退火2h,冷却至室温,获得稀土元素钆掺杂的锐钛矿相TiO2纳米管阵列。
步骤(1)所述处理过的高纯钛片指经过超声清洗以及在体积比为1:2:5或1:3:5的氢氟酸、硝酸、纯水中化学抛光处理。
步骤(2)所述的同时进行化学掺杂是指在氧化钛纳米管阵列形成的同时进行钆离子掺杂,两者同步进行。
所述的氟化铵的乙二醇溶液浓度为0.05mol/L-0.25mol/L,硝酸钆溶液的浓度为0.05mol/L-0.3mol/L。
所述的TiO2纳米管阵列为锐钛矿相单晶纳米管。所述的稀土元素钆掺杂改性后的TiO2纳米管的管长为22.5μm-105.6μm,管径95 nm -100 nm。
本发明的另一个目的是上述钆改性光催化二氧化钛纳米管阵列在有机物降解中的应用。
研究发现,相比纯TiO2,稀土元素钆的掺杂修饰能够大大提高光催化性能与亲水性能。整个制备过程条件温和,工艺简单,过程可控且环境友好。在电场的作用下,一方面,三价钆离子更容易掺杂进入TiO2晶格内代替钛原子,引起晶格缺陷,产生光生电子-空穴对的空位陷阱,捕获光生电子与空穴迁移至TiO2表面反应生成具有强氧化性的羟基自由基,在光照下具备了降解有机物的能力;另一方面,钆离子的进入使得Ti离子离开晶格的驱动力变得更大,更容易形成TiF4 -,也即,提高了对Ti片的蚀刻速率,使得纳米管阵列形成速度明显提高。同时,钆离子的进入带来了新的杂能级,从而能隙带减小,紫外光照射时,位于价带的电子受到激发首先跃迁到杂能级上,而后吸收能量至导带,这就扩大了光谱响应范围,提高了光能利用率。掺杂了钆离子的纳米材料还具备一定的磁学性质,某种程度上能够加强回收利用率,可以预见这种改性的催化剂在有机物的光催化降解及污水处理方面具备远大的应用前景。
本发明的有益效果。
(1)使用二次阳极氧化技术制备TiO2纳米管阵列,并在第二次氧化反应时直接进行稀土元素钆的掺杂,使得氧化钛纳米管阵列的形成与钆的掺杂同步进行,该方法大大缩短了反应进程,能在较短的时间内获得形貌更加致密整齐、光催化性能更加优良的改性二氧化钛纳米管阵列。
(2)钛片作为基底材料与反应物,避免了新引入前驱体造成污染的问题,同时环境友好,便于回收二次利用。
(3)将不同浓度的稀土元素钆掺杂到TiO2纳米管中,实验研究证明钆的改性大大提高了催化剂的光催化性能与亲水性能。
(4)利用甲基橙、酸性大红、亚甲基蓝进行了光催化降解实验,实验结果真实可靠,可用于实际应用参考。
(5)通过控制反应的制备条件,可实现对TiO2纳米管阵列的形貌控制。
附图说明
图1:本发明的反应装置示意图。
图2:不同实施例的TiO2纳米管阵列扫描电子显微镜图。
图3 :TiO2纳米管阵列的透射电子显微镜图。
图4:钆修饰的TiO2纳米管阵列的X射线能量散射谱。
图5:钆修饰的TiO2纳米管阵列的电子衍射图。
具体实施方式
下面结合实施例对本发明作进一步详细的描述。
应当注意的是,下述实施例中描述的技术特征或者技术特征的组合不应当被认为是孤立的,它们可以被相互组合从而达到更好的技术效果。
实施例一。
使用砂纸对高纯钛片打磨以进行物理抛光处理,并将打磨后的钛片分别置于丙酮、无水乙醇、去离子水中超声清洗15min;将氢氟酸、硝酸、超纯水按照体积比1:2:5配置成化学抛光液,并将超声后的钛片置于抛光液中反应30s以进行化学抛光处理;最后将钛片再次置于丙酮中超声3分钟,使用无水乙醇、纯水反复洗涤,后置于干燥箱中烘干备用。
配置氟化铵的乙二醇溶液作为电解液,具体为0.1mol/L的NH4F、体积分数为10%的去离子水及乙二醇。按图1所示的阳极氧化反应示意图搭建实验装置,高纯钛片置于阳极,在电解液中35V电压下氧化1h;取出钛片,纯水中超声5min以去除表面氧化层;在电解液中加入0.05mol/L的硝酸钆溶液,25℃下再次将钛片阳极氧化1h,后取出在乙二醇中超声2min;使用无水乙醇洗涤,自然风干;将钛片于500℃下退火两小时,冷却至室温,获得稀土元素钆掺杂的锐钛矿相TiO2纳米管阵列。
分别使用甲基橙、酸性大红、亚甲基蓝溶液作为模拟污染物进行光催化降解反应。配置初始浓度为30mg/L的待降解溶液,将钆离子掺杂之后的TiO2纳米管样品剪至10mm*10mm大小并置于其中,在光化学反应仪(紫外,500W,365nm)中进行光催化降解实验。每隔20min取上层清液离心处理,离心速度为3000r/min,取上层离心液在分光光度计中测定吸光度,得到具体的降解效果数据;使用光学接触角进行亲水性能测定,结果数据见附表。
实施例二。
与实施例一相比,本实施例的不同之处在于NH4F浓度为0.05mol/L,反应电压为45V,第二次氧化反应的温度为30℃,硝酸钆溶液的浓度为0.1mol/L,其余部分完全相同,对甲基橙、酸性大红、亚甲基蓝溶液的光降解率以及光学接触角数据见附表。
实施例三。
与实施例一相比,本实施例的不同之处在于NH4F浓度为0.2mol/L,反应电压为55V,第二次氧化反应的温度为35℃,退火温度为550℃,硝酸钆溶液的浓度为0.2mol/L,其余部分完全相同,对甲基橙、酸性大红、亚甲基蓝溶液的光降解率以及光学接触角数据见附表。
实施例四。
与实施例一相比,本实施例的不同之处在于NH4F浓度为0.25mol/L,反应电压为55V,第二次氧化反应的温度为35℃,硝酸钆溶液的浓度为0.3mol/L,其余部分完全相同,对甲基橙、酸性大红、亚甲基蓝溶液的光降解率以及光学接触角数据见附表。
实施例五。
与实施例一相比,本实施例的不同之处在于反应电压为55V,第二次氧化反应的温度为35℃,硝酸钆溶液的浓度为0.1mol/L,其余部分完全相同,对甲基橙、酸性大红、亚甲基蓝溶液的光降解率以及光学接触角数据见附表。
实施例六。
与实施例一相比,本实施例的不同之处在于反应电压为55V,第二次氧化反应的温度为30℃,硝酸钆溶液的浓度为0.2mol/L,其余部分完全相同,对甲基橙、酸性大红、亚甲基蓝溶液的光降解率以及光学接触角数据见附表。
实施例七。
与实施例一相比,本实施例的不同之处在于NH4F浓度为0.2mol/L,反应电压为45V,第二次氧化反应的温度为30℃,硝酸钆溶液的浓度为0.2mol/L,其余部分完全相同,对甲基橙、酸性大红、亚甲基蓝溶液的光降解率以及光学接触角数据见附表。
实施例八。
与实施例一相比,本实施例的不同之处在于反应电压为45V,第二次氧化反应的温度为30℃,硝酸钆溶液的浓度为0.1mol/L,其余部分完全相同,对甲基橙、酸性大红、亚甲基蓝溶液的光降解率以及光学接触角数据见附表。
对比例一。
本对比例的一种二氧化钛纳米管的制备,与实施例一相比,不同之处在于本实验没有进行钆离子的修饰改性,其余部分完全相同,对甲基橙、酸性大红、亚甲基蓝溶液的光降解率以及光学接触角数据见附表。
测试结果。
附表各实施例及对比例的表征数据及实验数据。
微观下的TiO2纳米管的形貌及管长直径等数据由场发射扫描电子显微镜及透射电子显微镜观察。
TiO2纳米管的元素组成由X射线光谱仪分析。
TiO2纳米管的晶面数据由电子衍射图谱测量。
由图2扫描电镜图可知,我们成功制备了排列致密整齐的TiO2纳米管阵列,纳米管成型良好,规整有序。相比未掺杂钆元素,在钆元素的浓度为0.1mol/L时,纳米管的管长由22.5μm增长到了105.6μm,管径达到了100nm。
由图3单根纳米管的透射电子显微镜图可知,制备出的样品为管状结构,表面光滑且均匀。
由图4纳米管的X射线能量散射谱图可知,纳米管由Ti元素和O元素组成,稀土元素Gd成功地掺杂进入了纳米管的阵列之中。Cu元素和C元素分别来自电镜测试使用的碳膜和铜网。
图5的TiO2纳米管电子衍射图显示出4个清晰可见的衍射环,经计算可得其晶格面间距分别为0.35、0.24、0.19和0.17 nm,分别与锐钛矿相TiO2的(101)、(004)、(200)、(105)晶面对应;证明制备的TiO2纳米管为单晶锐钛矿相。
最后应当说明,以上实施例仅是示例性的,本领域的普通技术人员应当理解,在不脱离本发明精神和范围的情况下,可以对本文的实施例进行条件的改变或药品的替换,故不应以本文的实施例作为本发明权利要求范围的限定。
Claims (5)
1.一种钆改性光催化二氧化钛纳米管阵列的制备方法,其特征是包括以下步骤:
(1)处理过的高纯钛片作为Ti源,去离子H2O作为O源,35~55V电压下,在氟化铵的乙二醇溶液中反应1h;取出钛片,纯水中超声5min;
(2)在电解液中加入一定浓度的硝酸钆溶液,在25~35℃环境下第二次阳极氧化的同时进行钆离子掺杂,后取出在乙二醇中超声2min,乙醇洗涤;
(3)取出钛片,于460~540℃空气环境下退火2h,冷却至室温,获得稀土元素钆掺杂的锐钛矿相TiO2纳米管阵列。
2.根据权利要求1所述的一种钆改性光催化二氧化钛纳米管阵列的制备方法,其特征是步骤(1)所述处理过的高纯钛片指经过超声清洗以及在体积比为1:2:5或1:3:5的氢氟酸、硝酸、纯水中化学抛光处理。
3.根据权利要求1所述的一种钆改性光催化二氧化钛纳米管阵列的制备方法,其特征是步骤(2)所述的同时进行化学掺杂是指在氧化钛纳米管阵列形成的同时进行钆离子掺杂。
4.根据权利要求1所述的一种钆改性光催化二氧化钛纳米管阵列的制备方法,其特征是所述的氟化铵的乙二醇溶液浓度为0.05mol/L-0.25mol/L,硝酸钆溶液的浓度为0.05mol/L-0.3mol/L。
5.权利要求1、2、3或4钆改性光催化二氧化钛纳米管阵列的制备方法制备的钆改性光催化二氧化钛纳米管阵列在有机物降解中的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010775031.XA CN111939892B (zh) | 2020-08-05 | 2020-08-05 | 一种钆改性光催化二氧化钛纳米管阵列的制备方法及应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010775031.XA CN111939892B (zh) | 2020-08-05 | 2020-08-05 | 一种钆改性光催化二氧化钛纳米管阵列的制备方法及应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111939892A true CN111939892A (zh) | 2020-11-17 |
CN111939892B CN111939892B (zh) | 2023-03-14 |
Family
ID=73339452
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010775031.XA Active CN111939892B (zh) | 2020-08-05 | 2020-08-05 | 一种钆改性光催化二氧化钛纳米管阵列的制备方法及应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111939892B (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112691664A (zh) * | 2020-12-08 | 2021-04-23 | 中冶赛迪技术研究中心有限公司 | 一种Fe2O3/TiO2纳米光催化剂薄膜复合材料及其制备方法 |
CN113398910A (zh) * | 2021-05-21 | 2021-09-17 | 魏富春 | 一种抗菌性废水处理剂及其制备方法 |
CN113413877A (zh) * | 2021-06-03 | 2021-09-21 | 内蒙古农业大学 | 一种ZIF-8@TiO2-Gd复合材料及其制备方法和应用 |
CN113813983A (zh) * | 2021-10-18 | 2021-12-21 | 哈尔滨商业大学 | 一种铒修饰的氮化碳基催化剂及制备方法和用途 |
CN115893531A (zh) * | 2022-11-23 | 2023-04-04 | 安徽大学 | 一种La、Rh共掺的SrTiO3纳米管阵列及其制备方法和应用 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101562214A (zh) * | 2009-05-07 | 2009-10-21 | 河南师范大学 | 二氧化钛纳米管阵列掺杂方法 |
CN102485969A (zh) * | 2010-12-06 | 2012-06-06 | 长沙理工大学 | 氮、钆共掺杂二氧化钛纳米管阵列的制备方法 |
CN103071479A (zh) * | 2011-10-25 | 2013-05-01 | 上海纳米技术及应用国家工程研究中心有限公司 | 双稀土元素镧和钆共掺杂二氧化钛纳米管的制备方法 |
US20140291591A1 (en) * | 2013-03-28 | 2014-10-02 | Intellectual Discovery Co., Ltd. | Nanocomposite structure, electrode including the nanocomposite structure, manufacturing method of the electrode, and electrochemical device including the electrode |
CN108677208A (zh) * | 2018-05-29 | 2018-10-19 | 四川理工学院 | 一种锰修饰二氧化钛纳米管增强光电响应的制备方法 |
-
2020
- 2020-08-05 CN CN202010775031.XA patent/CN111939892B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101562214A (zh) * | 2009-05-07 | 2009-10-21 | 河南师范大学 | 二氧化钛纳米管阵列掺杂方法 |
CN102485969A (zh) * | 2010-12-06 | 2012-06-06 | 长沙理工大学 | 氮、钆共掺杂二氧化钛纳米管阵列的制备方法 |
CN103071479A (zh) * | 2011-10-25 | 2013-05-01 | 上海纳米技术及应用国家工程研究中心有限公司 | 双稀土元素镧和钆共掺杂二氧化钛纳米管的制备方法 |
US20140291591A1 (en) * | 2013-03-28 | 2014-10-02 | Intellectual Discovery Co., Ltd. | Nanocomposite structure, electrode including the nanocomposite structure, manufacturing method of the electrode, and electrochemical device including the electrode |
CN108677208A (zh) * | 2018-05-29 | 2018-10-19 | 四川理工学院 | 一种锰修饰二氧化钛纳米管增强光电响应的制备方法 |
Non-Patent Citations (6)
Title |
---|
LIANG SHI ET AL.: "Synthesis and characterization of gadolinium-doped nanotubular titania", 《JOURNAL OF ALLOYS AND COMPOUNDS》 * |
RUI LI ET AL.: "Preparation of Gd-Doped TiO2 Nanotube Arrays by", 《CATALYSTS》 * |
孙莉等: "掺杂二氧化钛纳米管光催化降解制药废水", 《工业用水与废水》 * |
王岩: "《TiO2纳米管阵列的可控制备及气敏性能研究》", 31 December 2014 * |
蔡伟民: "《环境光催化材料与光催化净化技术》", 31 January 2011 * |
谢艳娜等: "有序TiO2纳米管阵列的光催化特性", 《微纳电子技术》 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112691664A (zh) * | 2020-12-08 | 2021-04-23 | 中冶赛迪技术研究中心有限公司 | 一种Fe2O3/TiO2纳米光催化剂薄膜复合材料及其制备方法 |
CN113398910A (zh) * | 2021-05-21 | 2021-09-17 | 魏富春 | 一种抗菌性废水处理剂及其制备方法 |
CN113413877A (zh) * | 2021-06-03 | 2021-09-21 | 内蒙古农业大学 | 一种ZIF-8@TiO2-Gd复合材料及其制备方法和应用 |
CN113813983A (zh) * | 2021-10-18 | 2021-12-21 | 哈尔滨商业大学 | 一种铒修饰的氮化碳基催化剂及制备方法和用途 |
CN113813983B (zh) * | 2021-10-18 | 2023-08-22 | 哈尔滨商业大学 | 一种铒修饰的氮化碳基催化剂及制备方法和用途 |
CN115893531A (zh) * | 2022-11-23 | 2023-04-04 | 安徽大学 | 一种La、Rh共掺的SrTiO3纳米管阵列及其制备方法和应用 |
CN115893531B (zh) * | 2022-11-23 | 2024-04-02 | 安徽大学 | 一种La、Rh共掺的SrTiO3纳米管阵列及其制备方法和应用 |
Also Published As
Publication number | Publication date |
---|---|
CN111939892B (zh) | 2023-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111939892B (zh) | 一种钆改性光催化二氧化钛纳米管阵列的制备方法及应用 | |
Pasikhani et al. | The effect of the anodization voltage on the geometrical characteristics and photocatalytic activity of TiO2 nanotube arrays | |
CN107497456B (zh) | 层状氯氧化铋可见光催化剂的制备方法及其应用 | |
CN111054399B (zh) | 一种微波合成氧空位BiOCl/Bi2O3催化剂及其制备方法、应用 | |
CN113019409B (zh) | 一种Bi2O2CO3/BiOCl催化剂的制备方法及其应用 | |
CN110327956A (zh) | 一种氧化铜与氮化碳复合的异质结光催化剂的制备方法 | |
CN106745474A (zh) | 可见光响应的三氧化钨‑钒酸铋异质结薄膜电极制备方法 | |
Ghayeb et al. | Effect of silver sulfide decorating on structural, optical and photo catalytic properties of iron-doped titanium dioxide nanotubes films | |
CN109183124B (zh) | 一种窄禁带黑氧化锆纳米管薄膜及其制备方法 | |
Cao et al. | Concave ultrathin BiOBr nanosheets with the exposed {001} facets: room temperature synthesis and the photocatalytic activity | |
CN103320839A (zh) | 去除有机污染物的二氧化钛纳米管阵列光电极的制备方法 | |
CN108772077A (zh) | 一种AgIO3/Ag2O异质结光催化材料及其制备方法和应用 | |
CN115110115B (zh) | 一种C、N共掺杂TiO2基复合薄膜光电极及其制备方法和应用 | |
CN108677208B (zh) | 一种锰修饰二氧化钛纳米管增强光电响应的制备方法 | |
Wang et al. | Photocatalysis performance of Nb-doped TiO2 film in situ growth prepared by a micro plasma method | |
CN107557810A (zh) | 一种Z型异质结Cu2O_石墨烯_α‑Fe2O3纳米管阵列光催化剂及其制备 | |
CN110013843B (zh) | 一种铌钽酸铋/氧化铌异质结、制备方法及其应用 | |
Fu et al. | Fabrication of Ni‐Doped PbTiO3‐Coated TiO2 Nanorod Arrays for Improved Photoelectrochemical Performance | |
CN106222725B (zh) | 一种WSe2/TiO2复合纳米薄膜材料及其制备方法 | |
Zhao et al. | Preparation and UV–Vis photodegradation of gaseous benzene by TiO 2 nanotube arrays supporting V 2 O 5 nanoparticles | |
JP2005075662A (ja) | チタニアナノ微結晶集合体、その製造方法、及び光触媒 | |
Li et al. | Synthesis of Molecular Imprinted BiVO4 with Enhanced Adsorption and Photocatalytic Properties Towards Target Contaminants | |
Kunya et al. | Synthesis and Deposition of ZnO NRs/TiO2 on Zinc Oxide Seed Layer for Dye Synthesize Solar Cell | |
CN102260898A (zh) | 一种p25包覆的二氧化钛纳米管阵列电极材料制备工艺 | |
KR20190023891A (ko) | 유기화합물 분해를 위한 산화갈륨을 포함하는 복합체 촉매 및 그 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |