CN111912791B - 膜材检测装置及检测方法 - Google Patents

膜材检测装置及检测方法 Download PDF

Info

Publication number
CN111912791B
CN111912791B CN202010741958.1A CN202010741958A CN111912791B CN 111912791 B CN111912791 B CN 111912791B CN 202010741958 A CN202010741958 A CN 202010741958A CN 111912791 B CN111912791 B CN 111912791B
Authority
CN
China
Prior art keywords
film
detection
light
light source
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010741958.1A
Other languages
English (en)
Other versions
CN111912791A (zh
Inventor
王婷婷
张茹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Goertek Optical Technology Co Ltd
Original Assignee
Goertek Optical Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Goertek Optical Technology Co Ltd filed Critical Goertek Optical Technology Co Ltd
Priority to CN202010741958.1A priority Critical patent/CN111912791B/zh
Publication of CN111912791A publication Critical patent/CN111912791A/zh
Application granted granted Critical
Publication of CN111912791B publication Critical patent/CN111912791B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明公开一种膜材检测装置及检测方法,所述膜材检测装置包括偏振检测仪,旋转支架以及检测光源,待测膜材设于所述旋转支架上,所述检测光源发出的光线在传输至所述旋转支架上的待测膜材后,透射或反射传输至所述偏振检测仪。本发明提供一种膜材检测装置及检测方法,解决了无法准确确定复合膜材中不同膜层之间的轴向角度差,无法直观对复合膜材的质量进行评价的问题。

Description

膜材检测装置及检测方法
技术领域
本发明涉及光学检测技术领域,尤其涉及一种膜材检测装置及检测方法。
背景技术
在现有的成像技术领域中,尤其是虚拟现实领域中,通常会采用折叠光路的方式减小光学系统的体积,而为了实现折叠光路的方案,需要在光学透镜的表面镀膜或贴附膜材,以实现光线的偏振方向的变化。
在光学透镜的表面贴附膜材的方式工艺简单,并且具有较高的可操作性。膜材的轴向直接影响折叠光路的光线传输效率,目前贴附膜材的方式主要是首先确定单层膜的轴向后,根据膜层轴向进行贴合,但是对于复合膜材,由于无法准确的确定复合膜材中不同膜层之间的轴向角度差,从而无法直观的对复合膜材的质量进行评价,导致无法准确判断复合膜材对折叠光路光学系统的影响。
上述内容仅用于辅助理解本发明的技术方案,并不代表承认上述内容是现有技术。
发明内容
本发明提供一种膜材检测装置及检测方法,旨在解决现有技术中无法准确确定复合膜材中不同膜层之间的轴向角度差,无法直观对复合膜材的质量进行评价的问题。
为实现上述目的,本发明提出了一种膜材检测装置,所述膜材检测装置包括偏振检测仪,旋转支架以及检测光源,待测膜材设于所述旋转支架上,所述检测光源发出的光线在传输至所述旋转支架上的待测膜材后,透射或反射传输至所述偏振检测仪。
可选的,所述膜材检测装置还包括参考相位延迟器,所述参考相位延迟器设于所述检测光源与所述旋转支架之间。
可选的,所述膜材检测装置还包括偏振片,所述偏振片的吸收轴与所述参考相位延迟器的延迟轴的夹角为45度。
可选的,所述检测光源为激光光源。
可选的,所述旋转支架上开设有通光孔,所述检测光源发出的光线经过所述待测膜材后,透过所述通光孔传输至所述偏振检测仪。
为实现上述目的,本申请提出一种膜材检测方法,应用于如上述任一项实施方式所述的膜材检测装置,所述膜材检测方法包括:
将待测膜材设置在所述旋转支架上;
转动所述旋转支架,获取进入所述偏振检测仪的光线的检测信息;
根据所述检测信息确定所述待测膜材中的轴向信息。
可选的,所述膜材检测装置还包括偏振片,所述偏振片设于所述检测光源与所述旋转支架之间,所述将待测膜材设置在所述旋转支架上的步骤,之前还包括:
调整所述偏振片的偏振方向至预设方向;
所述根据所述检测信息确定所述待测膜材中的轴向信息的步骤包括:
根据所述预设方向与所述检测信息确定所述待测膜材的轴向信息。
可选的,所述膜材检测装置还包括参考相位延迟器,所述参考相位延迟器设于所述待测膜材与所述偏振片之间,所述调整所述偏振片的偏振方向至预设方向的步骤,之后还包括:
调整所述参考相位延迟器的设置方向,以使所述检测光源发出的光线在经过所述参考相位延迟器后转变为圆偏振光。
可选的,所述膜材检测方法还包括:
将所述待测膜材贴附于光学透镜的表面;
设置所述光学透镜在所述旋转支架上,所述待测膜材贴附于所述光学透镜远离所述检测光源的一侧;
执行转动所述旋转支架,获取进入所述偏振检测仪的光线的检测信息的步骤。
可选的,所述膜材检测方法还包括:
获取所述偏振检测仪的偏振排布值;
当所述偏振排布值大于或等于预设排布值时,执行所述将待测膜材设置在所述旋转支架上的步骤。
本申请提出一种膜材检测装置,所述膜材检测装置包括偏振检测仪,旋转支架以及检测光源,待测膜材设于所述旋转支架上,具体的,所述检测光源发出的光线在传输至所述旋转支架上的待测膜材后,通过透射或反射的方式传输至所述偏振检测仪,所述偏振检测仪根据检测到的光线的偏振态或光强度,确定所述待测膜材的准确轴向。当所述待测膜材设于所述旋转支架上时,通过旋转所述旋转支架,能够改变所述待测膜材的偏振方向,使光线随着所述旋转支架的转动而发生变化,并根据光线的光强度或偏振态变化判断所述待测膜材的相对角度,从而解决了现有技术中无法准确确定复合膜材中不同膜层之间的轴向角度差,无法直观对复合膜材的质量进行评价的问题。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1是本发明膜材检测装置的机构示意图;
图2是本发明实施例方案涉及的硬件运行环境的终端结构示意图;
图3是本发明膜材检测方法实施例1的流程示意图;
图4是本发明膜材检测方法实施例2的流程示意图;
图5是本发明膜材检测方法实施例3的流程示意图;
图6是本发明膜材检测方法实施例4的流程示意图;
图7是本发明膜材检测方法实施例5的流程示意图。
附图标号说明:
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明,本发明实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,在本发明中如涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“连接”、“固定”等应做广义理解,例如,“固定”可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
另外,本发明各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
如图1所示,图1是本发明实施例方案涉及的硬件运行环境的装置结构示意图。
如图1所示,该装置可以包括:控制器1001,例如CPU,网络接口1004,用户接口1003,存储器1005,通信总线1002。其中,通信总线1002用于实现这些组件之间的连接通信。用户接口1003可以包括显示屏(Display)、输入单元比如键盘(Keyboard),可选用户接口1003还可以包括标准的有线接口、无线接口。网络接口1004可选的可以包括标准的有线接口、无线接口(如WI-FI接口)。存储器1005可以是高速RAM存储器,也可以是稳定的存储器(non-volatile memory),例如磁盘存储器。存储器1005可选的还可以是独立于前述控制器1001的存储装置。
本领域技术人员可以理解,图1中示出的装置结构并不构成对装置的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
如图1所示,作为一种计算机存储介质的存储器1005中可以包括操作系统、网络通信模块、用户接口模块以及应用程序。
在图1所示的服务器中,网络接口1004主要用于连接后台服务器,与后台服务器进行数据通信;用户接口1003主要用于连接客户端(用户端),与客户端进行数据通信;而控制器1001可以用于调用存储器1005中存储的应用程序,并执行以下操作:
将待测膜材设置在所述旋转支架上;
转动所述旋转支架,获取进入所述偏振检测仪的光线的检测信息;
根据所述检测信息确定所述待测膜材中的轴向信息。
进一步地,控制器1001可以调用存储器1005中存储的应用程序,还执行以下操作:
调整所述偏振片的偏振方向至预设方向;
所述根据所述检测信息确定所述待测膜材中的轴向信息的步骤包括:
根据所述预设方向与所述检测信息确定所述待测膜材的轴向信息。
进一步地,控制器1001可以调用存储器1005中存储的应用程序,还执行以下操作:
调整所述参考相位延迟器的设置方向,以使所述检测光源发出的光线在经过所述参考相位延迟器后转变为圆偏振光。
进一步地,控制器1001可以调用存储器1005中存储的应用程序,还执行以下操作:
将所述待测膜材贴附于光学透镜的表面;
设置所述光学透镜在所述旋转支架上,所述待测膜材贴附于所述光学透镜远离所述检测光源的一侧;
执行转动所述旋转支架,获取进入所述偏振检测仪的光线的检测信息的步骤。
进一步地,控制器1001可以调用存储器1005中存储的应用程序,还执行以下操作:
获取所述偏振检测仪的偏振排布值;
当所述偏振排布值大于或等于预设排布值时,执行所述将待测膜材设置在所述旋转支架上的步骤。
本申请提供一种膜材检测装置及检测方法。
请参照图1,所述膜材检测装置包括:所述膜材检测装置包括偏振检测仪30,旋转支架20以及检测光源10,待测膜材设于所述旋转支架20上,所述检测光源10发出的光线在传输至所述旋转支架20上的待测膜材后,透射或反射传输至所述偏振检测仪30。
本申请提出一种膜材检测装置,所述膜材检测装置包括偏振检测仪30,旋转支架20以及检测光源10,待测膜材设于所述旋转支架20上,具体的,所述检测光源10发出的光线在传输至所述旋转支架上的待测膜材后,通过透射或反射的方式传输至所述偏振检测仪30,所述偏振检测仪30根据检测到的光线的偏振态或光强度,确定所述待测膜材的准确轴向。当所述待测膜材设于所述旋转支架20上时,通过旋转所述旋转支架20,能够改变所述待测膜材的偏振方向,使光线随着所述旋转支架20的转动而发生变化,并根据光线的光强度或偏振态变化判断所述待测膜材的相对角度,从而解决了现有技术中无法准确确定复合膜材中不同膜层之间的轴向角度差,无法直观对复合膜材的质量进行评价的问题。
在可选的实施方式中,所述膜材检测装置中还包括参考相位延迟器,所述参考相位延迟器设于所述检测光源10与所述旋转支架20之间,具体的,在测量所述待测膜材的轴向信息时,为了方便调整所述检测光源10的出射光线的偏振方向,在所述检测光源10与所述旋转支架之间设置所述参考相位延迟器。
具体的,当所述检测光源10发出的光线为线偏振光,并且需要用于检测所述待测膜材的光线为圆偏振光时,可以设置所述参考相位延迟器的快轴与所述检测光源10的出射光线呈45度夹角。
当所述检测光源10发出的光线为椭圆偏振光,并且需要用于检测所述待测膜材的光线为线偏振光时,可以设置所述参考相位延迟器的快轴与所述要求的光线的偏振方向呈45度夹角,从而保证所述检测光源10发出的椭圆偏振光在经过所述参考相位延迟器后转变为线偏振光。
在可选的实施方式中,所述膜材检测装置还包括偏振片50,所述偏振片50设于所述参考相位延迟器与所述旋转支架20之间,所述偏振片50的吸收轴与所述参考相位延迟器的延迟轴的夹角为45度。具体的,当用于检测所述待测膜材的光线为线偏振光,并且线偏振光的偏振方向与所述检测光源10发出的线偏振光的偏振方向不相同时,可以在所述膜材检测装置中增设所述偏振片50。
当所述检测光源10发出的光线为线偏振光,并且该线偏振光的偏振方向与用于检测所述待测膜材的线偏振光的偏振方向不同时,可以首先将所述线偏振光通过所述参考相位延迟器转变为圆偏振光或椭圆偏振光后,在使圆偏振光或椭圆偏振光通过所述偏振片50,通过设置所述线偏振片50的偏振方向,使圆偏振光或椭圆偏振光转变为与用于检测所述待测膜材的线偏振光的偏振方向相同的光线。
当所述检测光源10发出的光线为椭圆偏振光,可以直接使该椭圆偏振光通过所述偏振片50,从而使经过所述偏振片50的光线与用于检测所述待测膜材的线偏振光的偏振方向相同,从而方便后续对所述待测膜材进行检测。
优选实施方式中,所述检测光源10为激光光源,具体的,所述激光光源发出的光线为单色线偏振光,相比与其他光源,激光光源发出的光线具有较高的单色性与偏振度,从而能够提高所述膜材检测装置的测量精度。
在可选的实施方式中,所述旋转支架20上开设有通光孔,所述通孔光的开设方向与所述检测光源10的出光方向相同,具体的,在将所述待测膜材设置在所述旋转支架20上时,所述检测光源10发出的光线可以透过所述待测膜材后传输至所述偏振检测仪30,通过所述偏振检测仪确定所述待测膜材的轴向信息。
于另一具体的实施方式中,所述检测光源10发出的光线在传输至所述待测膜材,被所述待测膜材反射并传输至所述偏振检测仪,通过测量反射光线的光强度或光线的偏振方向确定所述待测膜材的轴向信息。
实施例1
为实现上述目的,本申请提出一种膜材检测方法。
请参照图3,所述膜材检测方法应用于如上述任一项实施方式中所述的膜材检测装置,所述膜材检测方法
S100,将待测膜材设置在所述旋转支架20上;
S200,转动所述旋转支架20,获取进入所述偏振检测仪30的光线的检测信息;
S300,根据所述检测信息确定所述待测膜材中的轴向信息。
其中,所述检测信息为所述偏振检测仪30对接收到的光线检测后得到的参数,具体的,所述检测信息可以为光线的光强度或偏振方向中的至少一种。
其中,所述轴向信息是指所述待测膜材的功能膜的轴向信息,具体的,当所述待测膜材为偏振膜时,所述待测膜材的轴向信息为偏振膜的偏振方向,当所述待测膜材为偏振反射膜时,所述待测膜材的轴向信息为偏振反射膜的透射方向或反射方向,当所述待测膜材为相位延迟膜时,所述待测膜材的轴向信息为相位延迟膜的快轴方向或慢轴方向。
其中,所述待测膜材可以通过边缘固定或粘接的方式固定在所述旋转支架20上,所述检测光源10发出的光线在传输至所述待测膜材后,透过所述待测膜材或经过所述待测膜材发射的光线传输至所述偏振检测仪,通过转动所述旋转支架20,能够改变所述旋转支架20上的所述待测膜材的偏振方向,从而使光线经过所述待测膜材后传输至所述偏振检测仪30的光线的光强度偏振态随着旋转支架20的角度变化而变化。
在一具体的实施方式中,当所述待测膜材为单层膜,并且为偏振膜时,通过将所述偏振膜固定在所述旋转支架20上,所述偏振检测仪30设置在所述待测膜材的出光侧,所述检测光源10发出的光线在经过所述待测膜材后传输至所述偏振检测仪30,当所述旋转支架20转动时,所述偏振检测仪30能够直接检测接收到的光线的偏振方向,并且所述偏振检测仪30检测到的光线的偏振方向即为所述偏振膜的偏振方向。
在另一具体实施方式中,当所述待测膜材为单层膜,并且为偏振反射膜时,所述检测光源10发出的光线在经过所述偏振反射膜后,透射经过所述偏振反射膜的光线被所述偏振检测仪30接收,因此可以通过所述偏振检测仪30检测到的光线的偏振方向确定所述偏振反射膜的轴向,具体的,所述偏振检测仪30检测到的光线的偏振方向与所述偏振反射膜的透射方向相同。
在另一具体实施方式中,当所述待测膜材为单层膜,并且为偏振反射膜时,光线在经过偏振反射膜,当光线的偏振方向与偏振反射膜的透射方向相同时,光线透过所述偏振反射膜,当光线的偏振方向与偏振反射膜的反射方向相同时,光线被所述偏振反射膜反射。因此,所述检测光源10发出的光线在经过所述偏振反射膜,所述偏振检测仪30检测到的透过所述偏振反射膜的光线的光强度随着旋转支架20的转动而变化,当所述偏振检测仪30检测到的光强度最大时,偏振反射膜的透过方向与所述检测光源10发出的光线的偏振方向相同,当所述偏振检测仪检测到的光强度最小时,偏振反射膜的反射方向与所述检测光源10发出的光线的偏振方向相同。
实施例2
请参照图4,所述膜材检测装置还包括偏振片50,所述偏振片50设于所述检测光源10与所述旋转支架20之间,所述步骤S100,之前还包括:
S400,调整所述偏振片50的偏振方向至预设方向;
所述根据所述检测信息确定所述待测膜材中的轴向信息的步骤包括:
S310,根据所述预设方向与所述检测信息确定所述待测膜材的轴向信息。
其中,在设置所述偏振片50的偏振方向为预设方向时,可以确定所述检测光源10通过所述偏振片50后的光线的偏振方向与所述偏振片50的偏振方向相同,因此可以根据光线的已知偏振方向对所述待测膜材进行检测。
在一具体实施方式中,当所述待测膜材为相位延迟膜时,在对所述待测膜材进行检测时,所述检测光源10发出的光线经过所述偏振片50后,光线的偏振方向与所述偏振片50的预设方向相同,因此在转动所述旋转支架20时,检测通过所述待测膜材并进入所述偏振检测仪30的光线的偏振态,当所述偏振检测仪30检测到的光线的偏振态为右旋圆偏振光时,表示所述相位延迟膜的快轴与所述偏振片50的偏振方向呈45度夹角,当所述偏振检测仪30检测到的光线的偏振态为左旋圆偏振光时,表示所述相位延迟膜的快轴与所述偏振片50的偏振方向呈-45度夹角。
实施例3
请参照图5,在实施例2中,所述膜材检测装置还包括参考相位延迟器40,所述参考相位延迟器40设于所述待测膜材与所述偏振片50之间,所述步骤S400,之后还包括:
S500,调整所述参考相位延迟器40的设置方向,以使所述检测光源10发出的光线在依次经过所述偏振片50以及所述参考相位延迟器40之转变为圆偏振光。
其中,当需要通过圆偏振光对所述待测膜材进行检测时,在所述检测光源10发出的光线经过所述偏振片50后,需要调整所述参考相位延迟器40,使所述经过所述偏振片50的光线在经过所述参考相位延迟器40后转变为右旋圆偏振光或左旋圆偏振光,从而方便对所述待测膜材的检测。
在一具体实施方式中,当所述待测膜材为相位延迟膜时,还可以将所述检测光线设置为圆偏振光的方式对所述待测膜材进行检测,具体的,透过所述参考相位延迟器40的圆偏振光在经过所述待测膜材时,转变为线偏振光,因此可以通过所述偏振检测仪30检测光线的偏振方向确定所述相位延迟膜的延迟轴方向,当透过所述参考相位延迟器40的光线为右旋圆偏振光时,那么相位延迟膜的快轴与所述偏振检测仪30检测到的光线的偏振方向呈45度夹角,当透过所述参考相位延迟器40的光线为左旋圆偏振光时,那么相位延迟膜的快轴与所述偏振检测仪30检测到的光线的偏振方向呈-45度夹角。
实施例4,
请参照图6,所述膜材检测方法还包括:
S600,将所述待测膜材贴附于光学透镜的表面;
S700,设置所述光学透镜在所述旋转支架20上,所述待测膜材贴附于所述光学透镜远离所述检测光源10的一侧;
S200,执行转动所述旋转支架20,获取进入所述偏振检测仪30的光线的检测信息的步骤。
其中,当所述待测膜材为由偏振反射膜以及相位延迟膜组成的复合膜材时,为了对相位延迟膜的延迟轴方向进行确定,可以将所述待测膜材贴附与光学透镜的一侧表面,所述光学透镜相对的另一侧表面贴附或镀制分光膜,从而通过所述光学透镜模拟折叠光路,再将所述光学透镜设置在所述旋转支架20上,并且所述待测膜材设置于所述光学透镜远离所述检测光源10的一侧,所述检测光源10发出的光从镀制或贴附有分光膜的一侧表面进入所述光学透镜,并在所述偏振反射膜与相位延迟膜的组合作用下在所述光学透镜内部折返,因此当光线从所述光学透镜远离所述检测光源10的一侧表面射出所述光学透镜,并传输至所述偏振检测仪时,可以通过转动所述旋转支架20,获取所述偏振检测仪检测到的光强度,当光强度最大时,表示所述待测膜材中的相位延迟膜的慢轴方向与参考相位延迟器40的慢轴方向相垂直。
优选的,由于光线在所述光学透镜内发生折返,在调整所述光学透镜的摆放位置时,为了避免光线被所述光学透镜反射回所述检测光源10的一侧,导致所述检测光源10损坏或影响所述检测光源10的正常工作,在将所述光学透镜设置在所述旋转支架20上后,通过微调的方式,使经过所述光学透镜后反射回所述检测光源10的光线偏离所述检测光源10的出光孔,从而避免经过所述光学透镜后反射回的光线对所述检测光源10产生不良影响。
在通过所述膜材检测装置对所述待测膜材进行检测时,可以根据所述待测膜材的膜层组合选择不同的检测方案。
在一具体的实施方式中,所述待测膜材为偏振膜与偏振反射膜的组合,对所述待测膜材中的偏振反射膜进行轴向测试时,所述检测光源10发出的光线首先经过所述偏振膜后,再经过所述偏振反射膜,所述偏振检测仪30检测的透过所述偏振反射膜的光线的偏振方向即为所述偏振反射膜的透射方向;
当对所述待测膜材中的偏振膜进行轴向测试时,所述检测光源10发出的光线首先经过所述偏振反射膜后在经过所述偏振膜,所述偏振检测仪30检测到的透过所述偏振膜的光线的偏振方向即为所述偏振膜的偏振方向。
在另一具体的实施方式中,所述待测膜材为偏振膜、偏振反射膜以及相位延迟膜的复合膜材时,在对所述复合膜材中的偏振膜进行测试时,使所述检测光源10发出的光线经过所述复合膜材后传输至所述偏振检测仪30,其中,所述复合膜材中的偏振膜靠近所述偏振检测仪30设置,所述偏振检测仪30检测到的光线的偏振方向即为所述复合膜材中的所述偏振膜的透射轴方向;
在对所述复合膜材中的相位延迟膜进行测试时,使所述复合膜材的所述检测光源10发出的光线依次通过偏振片、参考相位延迟器后以及复合膜材后,传输至所述偏振检测仪30,在检测过程中,通过转动所述旋转支架20,使所述偏振检测仪30接收到不同的光强度,当所述偏振检测仪30接收到的光线的光强度最大时,表示所述待测膜材中的相位延迟膜的慢轴方向与参考相位延迟器40的慢轴方向相垂直;
在对所述复合膜材中的偏振反射膜进行测试时,所述检测光源10发出的光线为线偏振光,并使所述检测光源10发出的光线在经过所述复合膜材中的所述偏振膜后转变为线偏振光,线偏振光经过所述偏振反射膜后转变为与所述偏振反射膜的透射方向相同的线偏振光,该光线经过所述相位延迟膜后被所述偏振检测仪30接收,通过所述偏振检测仪30检测到的偏振度确定所述复合膜材中的所述相位延迟膜与所述偏振反射膜的轴向角度差。
在另一具体的实施方式中,所述待测膜材为偏振反射膜与相位延迟膜的组合,当对所述待测膜材中的偏振反射膜进行轴向测试时,所述检测光源10发出的光线首先经过所述相位延迟膜后,再经过所述偏振反射膜,所述偏振检测仪检测的透过所述偏振反射膜的光线的偏振方向即为所述偏振反射膜的透射方向;
当对所述待测膜材中的相位延迟膜进行轴向测试时,所述检测光源10发出的光线首先经过所述偏振反射膜后,再经过所述相位延迟膜,可以根据所述偏振检测仪30检测到的光线的旋性确定所述相位延迟膜与所述偏振反射膜之间的夹角。当所述偏振检测仪30检测到的光线为圆偏振光时,可通过圆偏光的偏振度确定所述复合膜材中的所述相位延迟膜与所述偏振反射膜的轴向角度差。
实施例5
请参照图7,可选的,为了保证所述膜材检测装置测量的准确性,所述膜材检测方法还包括:
S800,获取所述偏振检测仪30的偏振排布值;
S900,当所述偏振排布值大于或等于预设排布值时,执行所述将待测膜材设置在所述旋转支架20上的步骤。
其中,在将所述待测膜材设置在所述旋转支架20上前,获取所述偏振检测仪30的偏振排布值,具体的,所述偏振排布值用于评价所述偏振检测仪30检测到的光线在不同区域的偏振方向的变化程度,当偏振排布值越大时,表示所述偏振检测仪30检测到的光线的偏振均匀性越好,当偏振排布值越小时,表示所述偏振检测仪30检测到的光线的偏振均匀性越差。在一具体实施方式中,所述预设排布值为98%,当所述偏振检测仪30检测到的所述偏振排布值大于98%时,表示所述偏振检测仪30接收到的光线的偏振均匀性符合检测要求,可以继续执行后续的膜材检测过程。
为实现上述目的,本申请还提出一种计算机可读存储介质,所述计算机可读存储介质上存储有膜层检测程序,所述膜层检测程序被处理器执行时实现如上述任一项实施方式所述的膜层检测方法的步骤。
在一些可选的实施方式中,所述处理器可以是中央处理单元(CentralProcessing Unit,CPU),还可以是其它通用处理器、数字信号处理器(Digital SignalProcessor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所述存储器可以是设备的内部存储单元,例如设备的硬盘或内存。所述存储器也可以是设备的外部存储设备,例如设备上配备的插接式硬盘,智能存储卡(Smart MediaCard,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,所述存储器还可以既包括设备的内部存储单元也包括外部存储设备。所述存储器用于存储所述计算机程序以及设备所需的其它程序和数据。所述存储器还可以用于暂时地存储已经输出或者将要输出的数据。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

Claims (7)

1.一种膜材检测装置,其特征在于,所述膜材检测装置包括偏振检测仪,旋转支架以及检测光源,待测膜材设于所述旋转支架上,所述检测光源发出的光线在传输至所述旋转支架上的待测膜材后,反射传输至所述偏振检测仪;
所述膜材检测装置还包括光学透镜,所述光学透镜设于所述旋转支架上,所述待测膜材贴附于所述光学透镜远离所述检测光源的一侧,所述光学透镜接近所述检测光源的一侧贴附或镀制分光膜,所述待测膜材为由偏振反射膜与相位延迟膜组成的复合膜材;
所述膜材检测装置还包括参考相位延迟器,所述参考相位延迟器设于所述检测光源与所述旋转支架之间;
所述膜材检测装置还包括偏振片,所述偏振片设于所述检测光源与所述参考相位延迟器之间,所述偏振片的吸收轴与所述参考相位延迟器的延迟轴的夹角为45度。
2.如权利要求1所述的膜材检测装置,其特征在于,所述检测光源为激光光源。
3.如权利要求1所述的膜材检测装置,其特征在于,所述旋转支架上开设有通光孔,所述检测光源发出的光线经过所述待测膜材后,透过所述通光孔传输至所述偏振检测仪。
4.一种膜材检测方法,其特征在于,应用于如权利要求1至3中任一项所述的膜材检测装置,所述膜材检测装置沿光线传输方向依次包括检测光源、偏振片、参考相位延迟器、旋转支架以及偏振检测仪,所述膜材检测方法包括:
将待测膜材设置在所述旋转支架上,根据所述待测膜材的种类确定所述待测膜材在所述旋转支架上的朝向;
转动所述旋转支架,获取进入所述偏振检测仪的光线的检测信息;
根据所述检测信息确定所述待测膜材中的轴向信息;
所述膜材检测方法还包括:
将所述待测膜材贴附于光学透镜的表面;
设置所述光学透镜在所述旋转支架上,所述待测膜材贴附于所述光学透镜远离所述检测光源的一侧,所述光学透镜接近所述检测光源的一侧贴附或镀制分光膜;
微调所述旋转支架,使所述光学透镜反射的光线偏离所述检测光源的出光孔;
执行转动所述旋转支架,获取进入所述偏振检测仪的光线的检测信息的步骤。
5.如权利要求4所述的膜材检测方法,其特征在于,所述膜材检测装置还包括偏振片,所述偏振片设于所述检测光源与所述旋转支架之间,所述将待测膜材设置在所述旋转支架上的步骤,之前还包括:
调整所述偏振片的偏振方向至预设方向;
所述根据所述检测信息确定所述待测膜材中的轴向信息的步骤包括:
根据所述预设方向与所述检测信息确定所述待测膜材的轴向信息。
6.如权利要求5所述的膜材检测方法,其特征在于,所述膜材检测装置还包括参考相位延迟器,所述参考相位延迟器设于所述待测膜材与所述偏振片之间,所述调整所述偏振片的偏振方向至预设方向的步骤,之后还包括:
调整所述参考相位延迟器的设置方向,以使所述检测光源发出的光线在经过所述参考相位延迟器后转变为圆偏振光。
7.如权利要求4所述的膜材检测方法,其特征在于,所述膜材检测方法还包括:
获取所述偏振检测仪的偏振排布值;
当所述偏振排布值大于或等于预设排布值时,执行所述将待测膜材设置在所述旋转支架上的步骤。
CN202010741958.1A 2020-07-28 2020-07-28 膜材检测装置及检测方法 Active CN111912791B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010741958.1A CN111912791B (zh) 2020-07-28 2020-07-28 膜材检测装置及检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010741958.1A CN111912791B (zh) 2020-07-28 2020-07-28 膜材检测装置及检测方法

Publications (2)

Publication Number Publication Date
CN111912791A CN111912791A (zh) 2020-11-10
CN111912791B true CN111912791B (zh) 2023-12-22

Family

ID=73286613

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010741958.1A Active CN111912791B (zh) 2020-07-28 2020-07-28 膜材检测装置及检测方法

Country Status (1)

Country Link
CN (1) CN111912791B (zh)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101915556A (zh) * 2010-07-09 2010-12-15 浙江大学 可用于低反射率光学球面面形检测的偏振点衍射干涉系统
CN201903703U (zh) * 2010-11-24 2011-07-20 信义玻璃工程(东莞)有限公司 一种调节光线强度的玻璃装置
CN203965318U (zh) * 2013-12-17 2014-11-26 长春博信光电子有限公司 光学镜片镀膜层用检测装置
JP2015096641A (ja) * 2013-11-15 2015-05-21 株式会社オプトラン 薄膜形成装置および薄膜形成方法
CN107195795A (zh) * 2017-06-07 2017-09-22 武汉天马微电子有限公司 可折叠显示面板和可折叠显示装置
WO2018045280A1 (en) * 2016-09-01 2018-03-08 3M Innovative Properties Company Machine direction line film inspection
CN109477931A (zh) * 2016-07-01 2019-03-15 大日本印刷株式会社 光学层叠体和显示装置
CN110320668A (zh) * 2019-07-04 2019-10-11 歌尔股份有限公司 光学系统及具有其的虚拟现实设备
CN209802633U (zh) * 2019-11-14 2019-12-17 歌尔股份有限公司 光学检测装置
CN110579339A (zh) * 2019-08-30 2019-12-17 歌尔股份有限公司 偏振角度校准方法、装置、设备、光学系统及存储介质
CN110806266A (zh) * 2019-11-11 2020-02-18 北京理工大学 一种偏振态检测系统中偏振态分析器的选择方法
CN111413751A (zh) * 2020-03-31 2020-07-14 青岛歌尔声学科技有限公司 贴膜装置、贴膜方法及计算机可读存储介质
CN111443491A (zh) * 2020-04-30 2020-07-24 京东方科技集团股份有限公司 一种光学显示系统及控制方法、显示装置

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101915556A (zh) * 2010-07-09 2010-12-15 浙江大学 可用于低反射率光学球面面形检测的偏振点衍射干涉系统
CN201903703U (zh) * 2010-11-24 2011-07-20 信义玻璃工程(东莞)有限公司 一种调节光线强度的玻璃装置
JP2015096641A (ja) * 2013-11-15 2015-05-21 株式会社オプトラン 薄膜形成装置および薄膜形成方法
CN203965318U (zh) * 2013-12-17 2014-11-26 长春博信光电子有限公司 光学镜片镀膜层用检测装置
CN109477931A (zh) * 2016-07-01 2019-03-15 大日本印刷株式会社 光学层叠体和显示装置
WO2018045280A1 (en) * 2016-09-01 2018-03-08 3M Innovative Properties Company Machine direction line film inspection
CN107195795A (zh) * 2017-06-07 2017-09-22 武汉天马微电子有限公司 可折叠显示面板和可折叠显示装置
CN110320668A (zh) * 2019-07-04 2019-10-11 歌尔股份有限公司 光学系统及具有其的虚拟现实设备
CN110579339A (zh) * 2019-08-30 2019-12-17 歌尔股份有限公司 偏振角度校准方法、装置、设备、光学系统及存储介质
CN110806266A (zh) * 2019-11-11 2020-02-18 北京理工大学 一种偏振态检测系统中偏振态分析器的选择方法
CN209802633U (zh) * 2019-11-14 2019-12-17 歌尔股份有限公司 光学检测装置
CN111413751A (zh) * 2020-03-31 2020-07-14 青岛歌尔声学科技有限公司 贴膜装置、贴膜方法及计算机可读存储介质
CN111443491A (zh) * 2020-04-30 2020-07-24 京东方科技集团股份有限公司 一种光学显示系统及控制方法、显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
红外成像光学系统进展与展望;王岭雪;《红外技术》;第41卷(第1期);1-12 *

Also Published As

Publication number Publication date
CN111912791A (zh) 2020-11-10

Similar Documents

Publication Publication Date Title
EP3588024A1 (en) Mobile terminal
JPS6134442A (ja) 試料表面ないしは試料の表面膜層の物理的特性を検査するためのエリプソメトリ測定法とその装置
US9316539B1 (en) Compact spectrometer
US9316540B1 (en) Compact spectrometer
CN111736376B (zh) 检测装置、检测方法及计算机可读存储介质
JP2004205500A (ja) 複屈折測定装置及び複屈折測定方法
CN110132852A (zh) 一种透射反射Mueller矩阵偏振显微成像系统
CN104864815B (zh) 校准椭偏测量中应力元件带来的误差影响的方法
JP2001511514A (ja) 光弾性変調器を用いる波長板リターデーションの測定方法及び装置
CN111912791B (zh) 膜材检测装置及检测方法
CN113447126B (zh) 一种空间调制偏振检测系统及设计方法
CN111413751B (zh) 贴膜装置、贴膜方法及计算机可读存储介质
Negara et al. Imaging ellipsometry for curved surfaces
CN112326561B (zh) 椭偏仪及其测试方法、装置、计算机存储介质
US11079220B1 (en) Calibration of azimuth angle for optical metrology stage using grating-coupled surface plasmon resonance
KR20170134567A (ko) 광대역 비색수차 복합 파장판의 교정방법과 장치 및 상응하는 측정 시스템
KR100336696B1 (ko) 편광 분석장치 및 편광 분석방법
CN109781317B (zh) 光学玻璃应力检测系统及检测方法
CN109459138A (zh) 基于四次光强测量的Mueller型椭偏仪椭偏参数测量方法及装置
CN113777048B (zh) 一种共轴超快光谱椭偏仪及测量方法
JP2019109074A (ja) 測定装置及び測定方法
JP5991230B2 (ja) 位相差測定方法及び装置
KR20130065186A (ko) 3차원 필름의 주축과 위상차의 측정장치 및 측정방법
JPH055699A (ja) 異方性薄膜の屈折率及び膜厚測定方法
CN112747899A (zh) 一种偏振元件的测量方法及测量装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant