CN101915556A - 可用于低反射率光学球面面形检测的偏振点衍射干涉系统 - Google Patents

可用于低反射率光学球面面形检测的偏振点衍射干涉系统 Download PDF

Info

Publication number
CN101915556A
CN101915556A CN 201010224868 CN201010224868A CN101915556A CN 101915556 A CN101915556 A CN 101915556A CN 201010224868 CN201010224868 CN 201010224868 CN 201010224868 A CN201010224868 A CN 201010224868A CN 101915556 A CN101915556 A CN 101915556A
Authority
CN
China
Prior art keywords
wave plate
quarter
wavefront
diffraction
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 201010224868
Other languages
English (en)
Other versions
CN101915556B (zh
Inventor
杨甬英
王道档
刘�东
卓永模
许嘉俊
吴永前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Institute of Optics and Electronics of CAS
Original Assignee
Zhejiang University ZJU
Institute of Optics and Electronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU, Institute of Optics and Electronics of CAS filed Critical Zhejiang University ZJU
Priority to CN2010102248681A priority Critical patent/CN101915556B/zh
Publication of CN101915556A publication Critical patent/CN101915556A/zh
Application granted granted Critical
Publication of CN101915556B publication Critical patent/CN101915556B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明公开了一种可用于低反射率光学球面面形检测的偏振点衍射干涉测量系统。由于实际抛光加工过程中光学球面的反射率低,高精度干涉检测系统需要具有条纹对比度可调的功能,以得到理想的干涉条纹对比度。本发明解决了在保证球面面形检测精度的同时,实现干涉条纹对比度可调的问题。本发明的技术特点在于:基于可实现高精度检测的点衍射干涉系统,通过引入偏振光学元件调整光束偏振态,建立可实现调节干涉条纹对比度的偏振点衍射干涉系统;通过对干涉系统中各元件的功能特点分析,提出了相应的结构设计及系统误差校正方法,以实现高精度的球面面形检测。本发明为低反射率光学球面面形的高精度检测提供了一种可行的检测方法。

Description

可用于低反射率光学球面面形检测的偏振点衍射干涉系统
技术领域
本发明涉及一种可用于低反射率光学球面面形检测的偏振点衍射干涉系统。
背景技术
随着光学成像以及光学加工要求的不断提高,对于球面等光学面形的检测精度也提出了更高的要求。在斐索干涉仪及泰曼-格林干涉仪等干涉检测系统中,都需要由一个具有较高面形精度的光学元件获得一参考波面,进而与含有待测面形信息的检测波面进行比较,由此得到待测面形数据。因而,参考元件的面形精度直接限制了传统干涉系统所能实现的检测精度。目前一些诸如美国的ZYGO和WYKO等商业干涉仪,由于受参考面形精度的限制,其面形检测精度PV值也只能达到λ/20~λ/50(光波长λ一般为632.8nm)。因而,由参考面形得到参考波面的干涉检测方法难以满足超精密球面光学元件的面形检测需求。
点衍射干涉仪则利用小孔衍射来获取理想的球面波,并将衍射波前的一部分作为参考波前,另一部分作为检测波前,进而可实现球面面形的高精度检测,这是一种可行的方法。利用小孔衍射原理获得理想球面波前,避免了使用实际的参考面形,并可以达到衍射极限性能的分辨率。若将衍射波前对应的光强设为1,则对应的参考光强也为1;对于抛光加工过程中的低反射率待测球面而言,其反射率只有4%左右,则经其反射后得到的检测光强也就仅有0.04,因此产生干涉的参考光和检测光的光强比仅约为1∶0.04,进而导致得到干涉条纹的对比度较差。干涉条纹对比度不理想给条纹的处理带来了困难,甚至会降低检测精度。
针孔点衍射法中的衍射针孔可以加工到亚微米量级甚至更小的尺寸,由此可获得大数值孔径范围内的理想衍射球面波前,进而可应用于数值孔径为0.65等大数值孔径球面的高精度检测。但在目前国内外已公开的针孔点衍射干涉检测技术中,都未能实现干涉条纹对比度的可调,并且对于低反射率球面面形的测量,主要是通过在待测面形上镀全反膜的方法,以得到理想的干涉条纹对比度。而对于仍处于抛光加工阶段的光学球面元件的在线检测要求而言,对其进行镀膜处理是一个不可取的方法。因此,在针孔点衍射干涉检测系统中,针对任意大小数值孔径的低反射率待测球面,在保证检测精度的同时,实现干涉条纹对比度可调,这也是一个难点,而利用本发明所提出的可用于低反射率光学球面面形检测的偏振点衍射干涉系统,则很好的解决了该问题。
发明内容
本发明的目的是解决现有针孔点衍射干涉仪难以实现干涉条纹对比度可调的问题,提供一种可用于低反射率光学球面面形检测的偏振点衍射干涉系统。
可用于低反射率光学球面面形检测的偏振点衍射干涉系统包括线偏振激光器、二分之一波片、准直扩束系统、显微物镜、衍射掩膜板、四分之一波片、待测球面、压电微位移器、准直透镜、检偏器、成像透镜、探测器;线偏振激光器经二分之一波片调节得到线偏振光,再经准直扩束系统产生平行光,经显微物镜会聚到衍射掩膜板的衍射针孔上,衍射球面波前的其中一部分作为参考波前W1,另一部分作为检测波前W2,检测波前W2通过一快轴方向与x轴成45°夹角的四分之一波片后经待测球面反射,反射光波再次通过四分之一波片后得到偏振方向与参考波前W1垂直的线偏振光波前W2′,再经衍射掩膜板上的金属反射膜层反射,得到检测波前W2″,参考波前W1和检测波前W2″经准直透镜后变为平面波,再经检偏器后产生干涉,经成像透镜在探测器上得到干涉条纹,通过调节检偏器透光轴方向,即可调整检测光和参考光之间的相对光强,进而实现干涉条纹对比度可调;利用压电微位移器对待测球面进行多步移相测量,即可实现待测球面面形的高精度测量。
所述的四分之一波片为真零级四分之一波片,真零级四分之一波片包括平凸玻璃基底和粘合于平凸玻璃基底的平面上的波片薄膜两部分。
所述的平凸玻璃基底的误差校正方法为:利用可达微米量级调整精度的平移台,移动四分之一波片和待测球面,调节四分之一波片S6到衍射针孔的距离L1和待测球面S7到衍射针孔的距离L2,直至观察到检测系统中干涉条纹形状变化至直条纹,然后利用光线追迹方法得到平凸玻璃基底所引入的波前像差数据WP,并将其作为系统误差存储于数据处理系统中,进而在实际测量中对其进行校正。
所述的波片薄膜的误差校正方法为:根据光线追迹方法得到波片薄膜对不同入射方向光线所引入的相位延迟量,进而得到对应的偏振像差分布WS,并将其作为系统误差存储于数据处理系统中,在实际测量中对其进行校正,即
W0=W-WP-WS
式中,W为实际测得的波前数据,WP和WS分别为四分之一波片S6的平凸玻璃基底所引入波前像差数据和波片薄膜部分所引入的偏振像差,W0为消除四分之一波片S6所引入波前像差影响后的待测球面波前数据。
本发明通过引入偏振光学元件,利用对光束偏振态的变换调整,实现整个球面面形检测系统干涉条纹的对比度可调,进而可应用于低反射率球面面形的高精度检测;并且该用于球面面形检测的点衍射干涉仪结构简单、易于装配,为球面面形的高精度检测提供了一种简单可行的检测方法。
附图说明
图1是用于光学球面面形检测的偏振点衍射干涉系统示意图。
图2是点衍射掩膜板结构示意图。
图3是检测光路中的四分之一波片结构示意图。
图4是检测光路中四分之一波片的平凸玻璃基底引入波前像差。
图5是检测光路中四分之一波片的波片薄膜引入偏振像差。
图中:线偏振激光器S1、二分之一波片S2、准直扩束系统S3、显微物镜S4、衍射掩膜板S5、四分之一波片S6、待测球面S7、压电微位移器S8、准直透镜S9、检偏器S10、成像透镜S11、探测器S12。
具体实施方式
如图1所示,可用于低反射率光学球面面形检测的偏振点衍射干涉系统,包括线偏振激光器S1、二分之一波片S2、准直扩束系统S3、显微物镜S4、衍射掩膜板S5、四分之一波片S6、待测球面S7、压电微位移器S8、准直透镜S9、检偏器S10、成像透镜S11、探测器S12;线偏振激光器S1经二分之一波片S2调节得到线偏振光,再经准直扩束系统S3产生平行光,经显微物镜(S4)会聚到衍射掩膜板S5的衍射针孔上。其中,衍射掩膜板S5的结构如图2所示,通过在玻璃基底S5a上镀金属反射膜层S5b,并利用会聚离子束蚀刻法(Focused Ion Beam Etching,FIBE)在金属膜层S5b上加工一个圆度较为理想的衍射针孔S5c。图1中,来自显微物镜S4的会聚波前经衍射针孔后会得到较为理想的衍射球面波前。衍射球面波前的其中一部分作为参考波前W1,另一部分作为检测波前W2,检测波前W2通过一快轴方向与x轴成45°夹角的四分之一波片S6后经待测球面S7反射,反射光波再次通过四分之一波片S6后得到偏振方向与参考波前W1垂直的线偏振光波前W2′,再经衍射掩膜板S5上的金属反射膜层反射,得到检测波前W2″(如图2所示),参考波前W1和检测波前W2″经准直透镜S9后变为平面波,再经检偏器S10后产生干涉,经成像透镜S11在探测器S12上得到干涉条纹,通过调节检偏器S10透光轴方向,即可调整检测光和参考光之间的相对光强,进而实现干涉条纹对比度可调;利用压电微位移器S8对待测球面(S7)进行多步移相测量,即可实现待测球面S7面形的高精度测量。
在可用于低反射率光学球面面形检测的偏振点衍射干涉系统中,针对待测球面具有较低反射率的情况,为实现干涉条纹对比度可调的功能,在光路引入偏振光学元件以实现光束偏振态的变换,并通过调节检偏器的透光轴方向,即可调整检测光和参考光之间的相对光强,进而达到调整干涉条纹对比度的目的。其中光源前的二分之一波片S2主要是实现光束的光矢量方向的调整;检测光路中的四分之一波片S6主要是对衍射球面波前的检测波前部分的偏振态进行变换,并且其快轴方向与x轴成45°夹角,检测波前在经待测球面反射前后共两次经过四分之一波片,其偏振态变为偏振方向与参考波前(即针孔衍射球面波前)相垂直的线偏振光;位于成像透镜S11和准直透镜S9之间的检偏器S10可用于调节干涉条纹的对比度,通过调整其透光轴方向,可调整参考光和检测光的相对光强,进而实现干涉条纹的对比度可调。
可用于低反射率光学球面面形检测的偏振点衍射干涉系统在检测光路中采用了四分之一波片S6,而对于发散的球面检测波前而言,在四分之一波片S6不同入射方向上的光线会引入不同的相位延迟量,进而引入偏振像差。该偏振像差的分布除了与各方向光线的入射角有关外,还同时取决于入射光线相对波片快(慢)轴的方位角。为减小检测光路中四分之一波片S6对于球面波前的影响,所述的四分之一波片S6为真零级四分之一波片,这是因为真零级波片具有延迟量对波长敏感度低、温度稳定性高、接受有效角度大等诸多优点。真零级波片通常是由波片薄膜粘合在平板玻璃基底上,但对于球面发散波前而言,平板玻璃基底会引入较大的波前像差。为减小检测光路中波片的玻璃基底对球面发散波前所引入的像差,将玻璃基底加工成平凸玻璃基底。图3所示为可用于低反射率光学球面面形检测的偏振点衍射干涉系统检测光路中四分之一波片S6的结构示意图,图中的真零级四分之一波片包括平凸玻璃基底和粘合于平凸玻璃基底的平面上的波片薄膜两部分。
检测光路中四分之一波片S6的平凸玻璃基底的误差校正方法为:利用可达微米量级调整精度的平移台,移动四分之一波片S6和待测球面S7,调节四分之一波片S6到衍射针孔的距离L1和待测球面S7到衍射针孔的距离L2,直至观察到检测系统中干涉条纹形状变化至直条纹,然后利用光线追迹方法得到平凸玻璃基底所引入的波前像差数据WP,并将其作为系统误差存储于数据处理系统中,进而在实际测量中对其进行校正。
检测光路中四分之一波片S6的波片薄膜的误差校正方法为:根据光线追迹方法得到波片薄膜对不同入射方向光线所引入的相位延迟量,进而得到对应的偏振像差分布WS,并将其作为系统误差存储于数据处理系统中,在实际测量中对其进行校正,即
W0=W-WP-WS
式中,W为实际测得的波前数据,WP和WS分别为四分之一波片S6的平凸玻璃基底所引入波前像差数据和波片薄膜部分所引入的偏振像差,W0为消除四分之一波片S6所引入波前像差影响后的待测球面波前数据。
实施例
实施例中被测球面S7是一曲率半径为180mm、数值孔径(NA)为0.65的球面。线偏振激光器S1经二分之一波片S2得到线偏振光,并经准直扩束系统S3产生平行光,经倍率为20×、NA为0.4显微物镜S4会聚到衍射掩膜板S5的衍射针孔上,得到较为理想的衍射球面波前。其中图2所示的衍射掩膜板采用的是石英玻璃基底S5a,在其上镀一厚度为200nm的铬金属反射膜S5b(对应632.8nm波长的折射率为2.65+3i),并利用会聚离子束蚀刻法(Focused Ion Beam Etching,FIBE)在金属膜层上加工一个圆度较为理想的衍射针孔S5c,其直径取为0.5μm。由标量衍射理论可知,直径为0.5μm的衍射针孔能实现可测球面的最大NA高于0.75,因而可满足本实施例中NA为0.65的球面测量。
针孔衍射球面波前的其中一部分作为参考波前W1,另一部分作为检测波前W2。检测波前W2通过一快轴方向与x轴成45°夹角的四分之一波片S6后经待测球面S7反射,并再次经过四分之一波片S6,得到的检测波前W2′为一偏振方向与参考波前W1相垂直的线偏振光。为减小检测光路中四分之一波片S6对于球面发散波前的影响,四分之一波片S6为真零级四分之一波片,对应的双折射材料为石英晶体,对应于632.8nm光波长的情况,其no=1.54264,ne=1.55170。同时,为减小四分之一波片S6的玻璃基底对球面发散波前所引入的像差,将玻璃基底设计为凸面的曲率半径为353.802mm、中心厚度取为2mm的K9玻璃材料的平凸玻璃基底,并且将凸面朝向衍射针孔,其中四分之一波片S6的波片薄膜粘合在平凸玻璃基底的平面上,如图3所示。
检测波前W2′经衍射掩膜板S5上金属反射膜层S5b反射后得到检测波前W2″(如图2所示),检测波前W2″和参考波前W1经准直透镜S9后变换为平面波,再经过检偏器S10后产生干涉,通过成像透镜S11在探测器S12上得到干涉条纹。通过调节检偏器S10透光轴的方向,可调节参考光和检测光之间的相对光强,进而可实现干涉条纹对比度的调整。利用压电微位移器S8对待测球面S7进行多步移相测量,即可实现待测球面S7面形的高精度测量。
利用可达微米量级调整精度的平移台,移动检测光路中的四分之一波片S6和待测球面S7,调节四分之一波片S6到衍射针孔的距离L1和待测球面S7到衍射针孔的距离L2,同时观察检测系统中干涉条纹的变化,当四分之一波片S6到衍射针孔的距离L1和待测球面S7到衍射针孔的距离L2调节至检测要求所需的距离时,可以观察到干涉直条纹,否则条纹就会弯曲。当四分之一波片S6到衍射针孔的距离L1和待测球面S7到衍射针孔的距离L2分别调节至10mm和180.267mm时,可观察检测系统中干涉条纹为直条纹,利用光线追迹方法得到四分之一波片S6的平凸玻璃基底对检测波前所引入波前像差分布如图4所示,其中波长λ为632.8nm。由图4可知,四分之一波片S6中平凸玻璃基底引入的波前像差RMS值为0.002λ。
而四分之一波片S6中的波片薄膜对于发散的检测波前在不同入射方向上会引入不同相位延迟量,进而引入偏振像差,且该像差的分布除了与各方向光线的入射角有关外,还同时取决于入射光线相对波片快(慢)轴的方位角。根据光线追迹方法,得到四分之一波片S6的波片薄膜对检测波前所引入的偏振像差如图5所示。由图5可知,四分之一波片S6中波片薄膜引入的偏振像差RMS值为0.008λ。
在高精度球面面形检测中,可将检测光路中四分之一波片S6的平凸玻璃基底以及波片薄膜对检测波前引入的像差分布作为系统误差储存于处理系统中,在后续处理中对其进行校正。利用该检测系统对待测球面S7进行测量,测量数据经数据处理系统存储存校正后,可实现RMS值优于0.0003λ的面形检测精。

Claims (4)

1.一种可用于低反射率光学球面面形检测的偏振点衍射干涉系统,其特征在于包括线偏振激光器(S1)、二分之一波片(S2)、准直扩束系统(S3)、显微物镜(S4)、衍射掩膜板(S5)、四分之一波片(S6)、待测球面(S7)、压电微位移器(S8)、准直透镜(S9)、检偏器(S10)、成像透镜(S11)、探测器(S12);线偏振激光器(S1)经二分之一波片(S2)调节得到线偏振光,再经准直扩束系统(S3)产生平行光,经显微物镜(S4)会聚到衍射掩膜板(S5)的衍射针孔上,衍射球面波前的其中一部分作为参考波前W1,另一部分作为检测波前W2,检测波前W2通过一快轴方向与x轴成45°夹角的四分之一波片(S6)后经待测球面(S7)反射,反射光波再次通过四分之一波片(S6)后得到偏振方向与参考波前W1垂直的线偏振光波前W2′,再经衍射掩膜板(S5)上的金属反射膜层反射,得到检测波前W2″,参考波前W1和检测波前W2″经准直透镜(S9)后变为平面波,再经检偏器(S10)后产生干涉,经成像透镜(S11)在探测器(S12)上得到干涉条纹,通过调节检偏器(S10)透光轴方向,即可调整检测光和参考光之间的相对光强,进而实现干涉条纹对比度可调;利用压电微位移器(S8)对待测球面(S7)进行多步移相测量,即可实现待测球面(S7)面形的高精度测量。
2.根据权利要求1所述的一种可用于低反射率光学球面面形检测的偏振点衍射干涉系统,其特征在于,所述的四分之一波片(S6)为真零级四分之一波片,真零级四分之一波片包括平凸玻璃基底和粘合于平凸玻璃基底的平面上的波片薄膜两部分。
3.根据权利要求2所述的一种可用于低反射率光学球面面形检测的偏振点衍射干涉系统,其特征在于,所述的平凸玻璃基底的误差校正方法为:利用可达微米量级调整精度的平移台,移动四分之一波片(S6)和待测球面(S7),调节四分之一波片(S6)到衍射针孔的距离L1和待测球面(S7)到衍射针孔的距离L2,直至观察到检测系统中干涉条纹形状变化至直条纹,然后利用光线追迹方法得到平凸玻璃基底所引入的波前像差数据WP,并将其作为系统误差存储于数据处理系统中,进而在实际测量中对其进行校正。
4.根据权利要求2所述的一种可用于低反射率光学球面面形检测的偏振点衍射干涉系统,其特征在于,所述的波片薄膜的误差校正方法为:根据光线追迹方法得到波片薄膜对不同入射方向光线所引入的相位延迟量,进而得到对应的偏振像差分布WS,并将其作为系统误差存储于数据处理系统中,在实际测量中对其进行校正,即
W0=W-WP-WS
式中,W为实际测得的波前数据,WP和WS分别为四分之一波片(S6)的平凸玻璃基底所引入波前像差数据和波片薄膜部分所引入的偏振像差,W0为消除四分之一波片(S6)所引入波前像差影响后的待测球面波前数据。
CN2010102248681A 2010-07-09 2010-07-09 可用于低反射率光学球面面形检测的偏振点衍射干涉系统 Expired - Fee Related CN101915556B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010102248681A CN101915556B (zh) 2010-07-09 2010-07-09 可用于低反射率光学球面面形检测的偏振点衍射干涉系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010102248681A CN101915556B (zh) 2010-07-09 2010-07-09 可用于低反射率光学球面面形检测的偏振点衍射干涉系统

Publications (2)

Publication Number Publication Date
CN101915556A true CN101915556A (zh) 2010-12-15
CN101915556B CN101915556B (zh) 2011-11-09

Family

ID=43323121

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010102248681A Expired - Fee Related CN101915556B (zh) 2010-07-09 2010-07-09 可用于低反射率光学球面面形检测的偏振点衍射干涉系统

Country Status (1)

Country Link
CN (1) CN101915556B (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102735185A (zh) * 2012-06-19 2012-10-17 中国计量学院 球面干涉检测中待测球面调整误差的高精度校正方法
CN102829733A (zh) * 2012-08-03 2012-12-19 中国计量学院 一种条纹对比度可调的大数值孔径点衍射干涉装置及方法
CN104296676A (zh) * 2014-09-29 2015-01-21 中国科学院光电研究院 基于低频差声光移频器移相的外差点衍射干涉仪
CN104390603A (zh) * 2014-11-19 2015-03-04 哈尔滨工业大学 微球面型短相干点衍射干涉测量系统及测量方法
CN105300272A (zh) * 2015-10-27 2016-02-03 中国科学院上海光学精密机械研究所 基于微偏振片阵列的动态点衍射干涉仪
CN106247973A (zh) * 2015-12-29 2016-12-21 中国科学院长春光学精密机械与物理研究所 一种凸非球面镜面形检测系统及检测方法
CN106338379A (zh) * 2015-12-21 2017-01-18 中国科学院长春光学精密机械与物理研究所 一种微缩投影系统波像差检测系统及波像差检测方法
CN108332653A (zh) * 2018-01-16 2018-07-27 浙江大学 对比度可调点衍射干涉系统中波片设计及误差校正方法
CN108362222A (zh) * 2018-01-29 2018-08-03 南京理工大学 基于多向倾斜载频的非零位新型点衍射干涉测量系统
CN108801173A (zh) * 2018-04-20 2018-11-13 浙江大学 基于纳米线波导的点衍射干涉检测系统
CN111043958A (zh) * 2013-06-27 2020-04-21 科磊股份有限公司 计量学目标的极化测量及对应的目标设计
CN111912791A (zh) * 2020-07-28 2020-11-10 歌尔光学科技有限公司 膜材检测装置及检测方法
CN112629436A (zh) * 2020-11-20 2021-04-09 西安交通大学 一种基于自适应光学波前校正的高次非球面检测方法及系统
CN113465540A (zh) * 2021-07-07 2021-10-01 西安交通大学 一种针孔点衍射干涉测量系统用孔板相移解相位方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020044287A1 (en) * 2000-02-17 2002-04-18 Nikon Corporation Point diffraction interferometer, manufacturing method for reflecting mirror, and projection exposure apparatus
JP2006017485A (ja) * 2004-06-30 2006-01-19 Nikon Corp 面形状測定装置および測定方法、並びに、投影光学系の製造方法、投影光学系及び投影露光装置
US20060039007A1 (en) * 2004-08-20 2006-02-23 Kim Seung W Vibration-insensitive interferometer
CN101672632A (zh) * 2009-10-10 2010-03-17 北京理工大学 一种光学球面面形的光纤点衍射移相干涉测量方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020044287A1 (en) * 2000-02-17 2002-04-18 Nikon Corporation Point diffraction interferometer, manufacturing method for reflecting mirror, and projection exposure apparatus
JP2006017485A (ja) * 2004-06-30 2006-01-19 Nikon Corp 面形状測定装置および測定方法、並びに、投影光学系の製造方法、投影光学系及び投影露光装置
US20060039007A1 (en) * 2004-08-20 2006-02-23 Kim Seung W Vibration-insensitive interferometer
CN101672632A (zh) * 2009-10-10 2010-03-17 北京理工大学 一种光学球面面形的光纤点衍射移相干涉测量方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《光电工程》 19991231 杨甬英等 用于超光滑表面无损检测的光学轮廓仪 第26卷, 第6期 2 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102735185A (zh) * 2012-06-19 2012-10-17 中国计量学院 球面干涉检测中待测球面调整误差的高精度校正方法
CN102829733A (zh) * 2012-08-03 2012-12-19 中国计量学院 一种条纹对比度可调的大数值孔径点衍射干涉装置及方法
CN102829733B (zh) * 2012-08-03 2015-03-11 中国计量学院 一种条纹对比度可调的大数值孔径点衍射干涉装置及方法
US11060845B2 (en) 2013-06-27 2021-07-13 Kla Corporation Polarization measurements of metrology targets and corresponding target designs
CN111043958B (zh) * 2013-06-27 2021-11-16 科磊股份有限公司 计量学目标的极化测量及对应的目标设计
CN111043958A (zh) * 2013-06-27 2020-04-21 科磊股份有限公司 计量学目标的极化测量及对应的目标设计
CN104296676B (zh) * 2014-09-29 2017-04-26 中国科学院光电研究院 基于低频差声光移频器移相的外差点衍射干涉仪
CN104296676A (zh) * 2014-09-29 2015-01-21 中国科学院光电研究院 基于低频差声光移频器移相的外差点衍射干涉仪
CN104390603B (zh) * 2014-11-19 2017-06-06 哈尔滨工业大学 微球面型短相干点衍射干涉测量系统及测量方法
CN104390603A (zh) * 2014-11-19 2015-03-04 哈尔滨工业大学 微球面型短相干点衍射干涉测量系统及测量方法
CN105300272A (zh) * 2015-10-27 2016-02-03 中国科学院上海光学精密机械研究所 基于微偏振片阵列的动态点衍射干涉仪
CN106338379A (zh) * 2015-12-21 2017-01-18 中国科学院长春光学精密机械与物理研究所 一种微缩投影系统波像差检测系统及波像差检测方法
CN106247973A (zh) * 2015-12-29 2016-12-21 中国科学院长春光学精密机械与物理研究所 一种凸非球面镜面形检测系统及检测方法
CN108332653A (zh) * 2018-01-16 2018-07-27 浙江大学 对比度可调点衍射干涉系统中波片设计及误差校正方法
CN108362222A (zh) * 2018-01-29 2018-08-03 南京理工大学 基于多向倾斜载频的非零位新型点衍射干涉测量系统
CN108801173A (zh) * 2018-04-20 2018-11-13 浙江大学 基于纳米线波导的点衍射干涉检测系统
CN111912791A (zh) * 2020-07-28 2020-11-10 歌尔光学科技有限公司 膜材检测装置及检测方法
CN111912791B (zh) * 2020-07-28 2023-12-22 歌尔光学科技有限公司 膜材检测装置及检测方法
CN112629436A (zh) * 2020-11-20 2021-04-09 西安交通大学 一种基于自适应光学波前校正的高次非球面检测方法及系统
CN112629436B (zh) * 2020-11-20 2021-11-19 西安交通大学 一种基于自适应光学波前校正的高次非球面检测方法
CN113465540A (zh) * 2021-07-07 2021-10-01 西安交通大学 一种针孔点衍射干涉测量系统用孔板相移解相位方法
CN113465540B (zh) * 2021-07-07 2022-10-25 西安交通大学 一种针孔点衍射干涉测量系统用孔板相移解相位方法

Also Published As

Publication number Publication date
CN101915556B (zh) 2011-11-09

Similar Documents

Publication Publication Date Title
CN101915556B (zh) 可用于低反射率光学球面面形检测的偏振点衍射干涉系统
CN102829733B (zh) 一种条纹对比度可调的大数值孔径点衍射干涉装置及方法
JP3926264B2 (ja) 凹面及びホログラムを有する非球面測定装置及び方法
CN109211934B (zh) 基于干涉显微的微球面缺陷检测装置及其检测方法
CN102385170B (zh) 一种高精度测量调整光学镜片中心偏差的光学系统
CN104949630A (zh) 一种大数值孔径条纹对比度可调节的点衍射干涉装置
CN110057543A (zh) 基于同轴干涉的波面测量装置
CN102401630B (zh) 空间移相菲索球面干涉仪
CN202329545U (zh) 空间移相菲索球面干涉仪
CN103063158A (zh) 球端面锥形透镜的面形测量方法
Zhu et al. 600-mm aperture simultaneous phase-shifting Fizeau interferometer
CN109164517A (zh) 一种产生远距离高分辨贝塞尔光束的双胶合轴锥镜及方法
CN110160443B (zh) 一种用于瞬态三坐标测量的光纤点衍射干涉装置及方法
US8576408B2 (en) Surface figure test method for large convex optical surfaces
CN108801173B (zh) 基于纳米线波导的点衍射干涉检测系统
CN109458959B (zh) 一种变倾角相移掠入射干涉仪测量装置及方法
Hao et al. High-accuracy long distance alignment using single-mode optical fiber and phase plate
CN110907137A (zh) 基于闪耀光栅拼接技术的检测结构及其拼接误差调整方法
CN105806493B (zh) 基于空间相位调制的紧凑非等光程光纤点衍射干涉仪
CN109458944A (zh) 基于同步共轭差分干涉的平面绝对检验装置及其检测方法
JP2008107144A (ja) 屈折率分布測定装置及び測定方法
Wang et al. Polarization point-diffraction interferometer for high-precision testing of spherical surface
US20210123716A1 (en) Common path mode fiber tip diffraction interferometer for wavefront measurement
CN102426406B (zh) 一种同时测量调整光学镜片两面中心偏差的光学系统
US8294904B2 (en) Fizeau lens having aspheric compensation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20111109