CN111902946A - 制造半导体装置的方法 - Google Patents

制造半导体装置的方法 Download PDF

Info

Publication number
CN111902946A
CN111902946A CN201980021413.9A CN201980021413A CN111902946A CN 111902946 A CN111902946 A CN 111902946A CN 201980021413 A CN201980021413 A CN 201980021413A CN 111902946 A CN111902946 A CN 111902946A
Authority
CN
China
Prior art keywords
forming
layer
amorphous silicon
trench
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201980021413.9A
Other languages
English (en)
Inventor
洪瑛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority claimed from PCT/KR2019/002508 external-priority patent/WO2019182262A1/ko
Publication of CN111902946A publication Critical patent/CN111902946A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • H01L27/1274Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
    • H01L27/1281Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor by using structural features to control crystal growth, e.g. placement of grain filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66757Lateral single gate single channel transistors with non-inverted structure, i.e. the channel layer is formed before the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/66772Monocristalline silicon transistors on insulating substrates, e.g. quartz substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02672Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using crystallisation enhancing elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Recrystallisation Techniques (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明提供一种根据示范性实施例的用于制造半导体装置的方法,包括以下步骤:在衬底上形成绝缘层;在垂直于衬底的平面的第二方向上在绝缘层中形成预定深度的沟槽,沟槽在平行于衬底的平面的第一方向上延伸;在第一方向上形成多个平行非晶硅带,多个平行非晶硅带在与第一方向相交的第二方向上从沟槽的内部延伸;在非晶硅带的侧面上使用绝缘材料层形成间隔件;以及在沟槽中的非晶硅层中形成晶核位点,同时通过热处理来使非晶硅带结晶,以及通过使非晶硅带从晶核位点纵向地横向晶粒生长来形成多晶硅层。

Description

制造半导体装置的方法
技术领域
本公开涉及一种半导体装置,且更确切地说,涉及一种LTPS半导体装置。
背景技术
有源矩阵有机发光二极管(AM-OLED)显示器已主要应用于移动装置,例如最近的智能手机。作为这种AM-OLED显示器的像素开关元件,具有高迁移率(mobility)和高可靠性的低温多晶硅薄膜晶体管(low temperature polycrystalline silicon thin filmtransistor,LTPS TFT)是适合的。
准分子激光退火(Excimer Laser Annealing,ELA)主要应用于硅的结晶以制造低温多晶硅薄膜晶体管(LTPS TFT)。这种LTPS TFT具有如上文所描述的高迁移率和高可靠性,但在应用于大面积显示器时可能无法维持特定程度的晶粒均一性(crystal grainuniformity)。因此,在通过应用LTPS TFT来制造大面积显示器时,良率的增加是有限制的。
发明内容
技术问题
提供一种制造具有半导体层晶粒均一性的半导体装置的方法。
还提供一种制造适合于大面积装置的多晶硅半导体装置的方法。
问题的技术解决方案
根据本公开的一方面,一种制造半导体装置的方法可包含:
在衬底上形成绝缘层;
在衬底上的绝缘层中形成预设深度的沟槽;
在沟槽的纵向方向上平行地形成多个非晶硅带,所述多个非晶硅带从沟槽的内部延伸以与沟槽相交;
在非晶硅带中的每一个的侧面上形成间隔件以保护非晶硅带的边缘;以及
通过热处理来使非晶硅带结晶以形成多晶硅带,其中晶体成核位点形成在沟槽中的非晶硅层中的每一个中,且随后在非晶硅带中的每一个的纵向方向上从晶体成核位点中的每一个诱导横向晶粒生长(lateral grain growth)。
准分子激光退火(Excimer Laser Annealing,ELA)可应用为热处理且将非晶硅完全地熔融到沟槽内部的非晶硅的一部分。
方法可进一步包含在热处理之前形成覆盖非晶硅层的罩盖层。
硅带和沟槽可在彼此正交的方向上延伸。
形成沟槽可包含:在衬底上形成具有预设宽度的沟槽的绝缘层;以及在绝缘层上沉积预设厚度的覆盖层以减小沟槽的宽度。
形成硅带可包含:在绝缘层上且在沟槽的内壁和底部上形成预设厚度的非晶硅层;
通过图案化非晶硅层来获得多个平行硅带;
在形成有硅带的绝缘层上和沟槽中形成绝缘材料层;以及
通过回蚀来移除绝缘材料层的在非晶硅层上的一部分,其中绝缘材料层的一部分保留在硅带的两个边缘处且保留在沟槽的内壁上,以形成保护硅带的两个边缘和非晶硅层的在沟槽的内壁上的一部分的间隔件。
方法可进一步包含在第二方向上在硅层的两个边缘上形成绝缘材料的间隔件。
形成间隔可包含:在非晶硅带的整个表面上形成预设厚度的绝缘材料层;以及通过利用回蚀(etch back)预设厚度的绝缘材料层而使绝缘材料保留在硅带的侧边缘上来获得间隔件。
间隔可由从SiO2、SiNx、SiONx、AlOx以及HfOx中选出的一个形成。
方法可进一步包含:在使硅带结晶之后,图案化沟道,形成栅极绝缘层,形成栅极,在栅极的两个侧面上针对硅层掺杂源极/漏极,以及激活源极/漏极。
方法可进一步包含使沟槽中的硅层与绝缘层上的硅层电绝缘。
AlN层可形成在沟槽的底部上。
公开内容的有利效应
根据本公开的实例实施例,在于衬底上制造多个半导体装置的工艺中,多个晶体生成位点排列成一行,且人工地调整多个非晶硅带的结晶方向,由此形成单晶粒硅沟道(single grain silicon channel)。例如TFT的半导体装置具有在人工调整的方向上生长的单晶粒硅沟道,且因此,装置间(device-to-device)特性的差异减少,由此改进半导体装置的特性均一性(uniformity)且增大产品良率。根据如上文所描述的实例实施例的制造半导体装置的方法可在不需要新设备的情况下向现有工艺(例如ELA)中添加例如沟槽形成的工艺。实例实施例可应用于制造大面积AM-OLED以及应用于制造用于智能手机的现有AM-OLED。
附图说明
图1a到图1g绘示根据一实例实施例的形成多晶硅沟道的工艺。
图2a到图2e绘示根据另一实例实施例的形成多晶硅沟道的工艺的一部分。
图3为使用根据一实例实施例获得的单晶粒硅带作为半导体沟道的单沟道TFT的示意性横截面图。
图4为使用根据另一实例实施例获得的单晶粒硅带作为半导体沟道的单沟道TFT的示意性横截面图。
图5a和图5b为象征性地绘示多沟道TFT中的多沟道和栅极的布置结构的平面图和三维图。
具体实施方式
下文中,将参考附图详细描述本公开的实例实施例。然而,本公开的实施例可修改成各种形式,且本公开的范围不应理解为受限于下文所描述的实施例。本公开的实施例可解译为提供以向所属领域的一般技术人员进一步彻底地解释本公开的精神。图中的相同附图标号表示相同元件。示意性地绘制图中的各种元件和区域。因此,本公开的精神不受限于附图中所绘制的相对大小或间隔。
尽管术语第一、第二等可在本文中用于描述各种元件,但这些元件不应受限于这些术语。这些术语仅用于将一个元件与另一元件区分开来。举例来说,在不脱离本公开的范围的情况下,可将第一元件称为第二元件,且相反地,可将第二元件称为第一元件。
本文中所使用的术语仅出于描述特定实施例的目的,且并不意欲限制实例实施例。如本文中所使用,除非上下文另外明确指示,否则单数形式也意欲包含复数形式。应进一步理解,在用于本说明书中时,术语“包括(comprises)”和/或“具有(have)”指定存在所陈述的特征、整数、步骤、操作、元件和/或组件,但不排除存在或添加一个或多个其它特征、整数、步骤、操作、元件、组件和/或其群组。
除非另外定义,否则本文中所使用的所有术语(包含技术术语和科学术语)都具有与实例实施例所属的领域的一般技术人员通常所理解的含义相同的含义。应进一步理解,例如常用词典中所定义的术语等术语应解译为具有与所述术语在相关技术的上下文中的含义一致的含义,且将不在理想化或过度正式意义上进行解译,除非本文中明确地如此定义。
在某一实施例可以不同方式实施时,特定处理次序可与所描述次序不同地执行。举例来说,连续描述的两个工艺可实质上同时执行或可以与所描述次序相反的次序执行。
因此,将预期到,作为例如制造技术和/或公差的结果而与图解的形状的差异。因此,实例实施例不应当解释为限于本文中所示出的区域的特定形状,而是可包含例如由制造引起的形状偏差。如本文中所使用,术语“和/或”包含相关联的所列项中的一个或多个的任何及所有组合。如本文中所使用的术语“衬底(substrate)”可意指衬底自身或包含衬底与形成于其表面上的预定层或膜的堆叠结构。如本文中所使用,“衬底的表面”可意指衬底自身的暴露表面,或形成于衬底上的预定层或膜的外部表面。描述为“在……上方(above)”或“在……上(on)”之物不仅可包含直接在……上接触的那些,且还可包含在……上方非接触的那些。
根据一实例实施例的制造半导体装置的方法具有以下特性。填充于在一个方向上延伸的沟槽中的非晶硅在ELA工艺中熔融,且随后首先冷却以将初始成核位点(nucleationsite)人工地排列成行,且其晶体生长从沟槽的底部行进到顶部。沿着一个方向上的沟槽以多个窄带的形式并列地被预图案化(pre-pattern)的非晶硅也在ELA工艺中熔融,且沿着在沟槽中首先结晶的晶种(seed)横向地生长为单晶粒硅(single grain sillicon)。在这一生长过程中,晶粒由被预图案化为带到带类型(band ot strip type)的硅层过滤,且因此,硅层具有单晶粒硅。
下文中,将详细描述制造单晶粒半导体装置的方法。
图1a到图1h绘示形成待应用于半导体装置的多晶硅沟道的工艺。图1a到图1h的左图为横截面图,且图1a到图1h的右图为对应部分的平面图。
如图1a中所示,绝缘层(11)形成在衬底(10)上。衬底(10)的材料不限于特定材料,且可选择玻璃、塑料或类似物。绝缘层(11)可由SiO2形成,厚度为约1微米。然而,根据另一实施例,绝缘层(11)可具有由SiO2、SiNx以及SiNOx中的一个形成的单层或由相同材料或不同材料形成的多层的结构。
此处,根据另一实施例,在绝缘层(11)形成在衬底(10)上之前,可沉积AlN。氮化铝在晶体生长期间充当晶种层(seed layer)。在沉积非晶硅层之前,AlN在将随后描述的竖直于衬底平面下方的沟槽(11a)的底部处暴露,且暴露的AlN有助于随后的多晶硅生长。
如图1b中所示,在随机第一方向上延伸的沟槽(11a)以预设宽度形成在绝缘层(11)中。在由于图案化方法的限制而并未获得目标沟槽(11a)的竖直宽度时,
方法可继续行进到下一阶段C)以使在当前阶段处获得的沟槽(11a)的宽度进一步变窄。不然的话,方法可跳到下一阶段D)。在本发明实施例中,执行下一阶段C,且确定沟槽(11a)的宽度在当前阶段例如为1.5微米。
如图1c中所示,覆盖层(11')形成在绝缘层(11)上。这一阶段为用于如上文所描述使竖直沟槽(11a)的宽度进一步变窄的选择性阶段。为使沟槽(11a)的宽度变窄,在绝缘层(11)上形成厚度为例如700纳米的覆盖层(11')。覆盖层(11')为绝缘层(11)的元件且延伸到沟槽(11a)的内部。因此,沟槽(11a)的宽度减小了覆盖层(11')的厚度,例如从约1.5微米减小到约100纳米。
如图1d中所示,非晶硅层(a-Si)在衬底(10)的绝缘层(11)或覆盖层(11')的整个表面上沉积到为例如约50纳米到约100纳米的预设厚度。根据这一沉积,用非晶硅层(a-Si)填充沟槽(11a)的内部。
如图1e中所示,通过图案化非晶硅层(a-Si)来平行地形成多个窄且长的带(12a)。多个硅带(12a)在第二方向上延伸,确切地说,在正交于本发明实施例中的第一方向的第二方向上延伸,所述第二方向不同于作为沟槽(11a)的延伸方向的第一方向。另外,硅带(12a)彼此以规律间隔并列布置。硅带(12a)的布置与作为制造目标的半导体装置的布置位置有关。举例来说,硅带(12a)中的每一个与用于显示装置的每一像素的开关元件(TFT和驱动器TFT)的位置对应。总体上,沟槽(11a)中的非晶硅连接到与其正交的硅带(12a)中的一个。
如图1f中所示,在硅带(12a)的两个边缘上利用比硅带(12a)具有更高熔点的绝缘材料(例如SiO2)形成间隔件(13)。根据一实例实施例,可经由通过绝缘材料的整个表面沉积而形成绝缘层以及用于绝缘材料层的回蚀工艺(etch back process)来获得间隔件(13)。举例来说,SiO2可在形成有硅带(12a)的衬底(10)的整个上部表面上沉积至150纳米的厚度,且经由回蚀完全蚀刻150纳米的厚度,由此通过在硅带(12a)的两个侧面上的未经蚀刻的残留物而获得间隔件(13)。形成间隔件(13)的工艺在本发明半导体制造过程中为选择性的。然而,可执行当前阶段以防止熔融的硅带(12a)由于将随后描述的阶段处的晶体生长过程中的高能量而损坏。图1f中的部分A为沿着图1f的线I-I截取的横截面图。
如图1g中所示,经由对硅带(12a)进行加热-熔融-冷却过程来执行硅带(12a)的结晶。硅带(12a)的损坏可能在硅带(12a)(非晶硅)因高能量而熔融时发生,确切地说,可在接近于沟槽(11a)的热量经集中的部分中发生。此处,呈硅带(12a)的两个侧面上的障壁(dam)形式的包围整个硅带(12a)的间隔件(13)限制其中的熔融的非晶硅以防止在横向方向上发生流动,且从硅带(12a)的边缘吸收热量以防止硅带(12a)损坏。
在这一状态下,熔融的非晶硅冷却且结晶,晶核产生于具有最快冷却速率的在沟槽(11a)内部的硅中,且晶粒生长(grain growth)从此处行进。在这一结晶过程中,由非晶硅制成的硅带(12a)变成具有一个晶粒边界的由单晶粒硅(single grain silicon)制成的多晶硅层(12b)。在晶粒生长的初始阶段处,竖直晶粒生长(vertical grain growth)在沟槽(11a)内部行进,且随后横向晶粒生长(lateral grain growth)从沟槽(11a)的顶部行进。在如上文所描述对结晶进行热处理之前,当另外在形成有硅带(12a)的堆叠结构的整个表面上利用SiO2或类似物形成罩盖层(capping layer)时,其中罩盖层可热保护熔融的硅层的硅层,由此抑制热损失并提升热处理效果。
ELA可应用为热处理方法,且在通过ELA对硅带(12a)进行热处理时,沟槽(11a)内部的非晶硅可完全地熔融。
在如上文所描述通过ELA或类似物执行热处理之前,需要执行例如脱氢工艺的预处理,以不产生可能在堆叠结构中释放例如氢气的气体的元素。另外,在执行ELA时,可单次(single shot)、两次(two shot)或多次(multi-shot)执行ELA。此处,在硅带(12a)的宽度维持在小于或等于某一值时,在窄宽度的硅带的纵向方向上执行的晶体生长过程中产生多个晶粒。在这种生长过程的持续时间内,多个晶粒之间发生竞争。经由这一过程,一个晶粒保留(survival)下来,且其余晶粒吸收到所述一个晶粒中,由此通过所述一个晶粒获得硅带(12b)。
在AlN暴露于沟槽(11a)的内部底部处且接触非晶硅时,如上文所描述,AlN在结晶的初始阶段处充当晶种层。视需要,可利用γAl2O3氧化及表面处理AlN。在这种情况下,在执行ELA时,控制竖直硅(vertical Si)生长的配向(orientation),且因此,在横向生长(lateral growth)期间也控制硅的配向。另外,AlN具有高导热性,且因此在横向晶粒生长期间有助于增大粒度(grain size)。
图2a到图2e为依序绘示根据另一实施例的形成多晶硅沟道的工艺的横截面图。
在上文所描述的实施例中,覆盖层用于减小提供晶体成核位点的沟槽的宽度。在本发明实施例中,稍微改变处理次序以形成细线宽的竖直硅层,其中在没有前述覆盖层的情况下通过窄沟槽形成晶体成核位点。
如图2a中所示,在衬底(10)上利用SiO2或类似物形成绝缘层(11)。
如图2b中所示,在绝缘层(11)中形成在第一方向延伸的沟槽(11b)。此处,沟槽(11b)可具有比上文所描述的实施例中的沟槽更大的宽度。
如图2c中所示,在绝缘层(11)上形成薄非晶硅层(a-Si)。此处,非晶硅层(a-Si)的厚度可具有与将随后获得的多晶硅沟道的厚度对应的值,例如为50纳米的值。因此,非晶硅层(a-Si)形成在绝缘层(11)上且形成在沟槽(11b)的内壁和底部上。因此,沟槽(11b)的宽度通过形成在其内壁上的非晶硅a-Si而稍微减小。如上文所描述,通过图案化非晶硅层(a-Si)来在沟槽(11b)外部的绝缘层(11)上形成在不同于第一方向的第二方向上延伸的多个非晶硅带(12a)。
如图2d中所示,绝缘材料层(16)形成在形成有硅带(12a)的衬底(10)上方。绝缘材料层(16)可由例如SiO2的耐热绝缘层形成。
如图2e中所示,通过蚀刻工艺来回蚀绝缘材料层(16),以暴露在沟槽(11b)外部的由绝缘材料层(16)覆盖的硅带(12a)的表面。在图2e中,部分"B"是沿着线II-II截取的横截面图。根据这种回蚀,垂直于蚀刻剂的入射方向的部分的绝缘材料,所述绝缘材料保留在沟槽(11b)的竖直内壁上且保留在硅带(12a)的两个边缘处,由此形成沟槽部分处的间隔(16a)和硅带(12a)的两个边缘部分处的间隔件(16b,13)。在沟槽(11b)内部的竖直非晶硅和其连接的硅带(12a)在热处理期间熔融时,间隔件(16a,16b)防止硅带(12a)损坏。
这种状态可与在上文所描述的实施例中的热处理之前的图1e的状态对应。因此,在图2e的工艺完成之后,执行如图1g的描述中的使非晶硅结晶的工艺,以制造目标半导体装置。
经由上述工艺,可通过使用多晶硅带来获得单晶粒TFT,且可通过将多个平行硅带应用于一个装置来制造多沟道TFT。在多沟道TFT的情况下,每一沟道的单晶粒的配向方向为随机的,但在统计上,装置间(device-to-device)特性中的变化(variation)减少。
在经由上述工艺获得单晶粒硅带之后,可经由后续工艺制造各种类型的半导体装置。在制造TFT时,可经由通用工艺执行例如形成栅极绝缘层和栅极、掺杂及激活源极和漏极、形成钝化层以及形成源极电极和漏极电极等工艺。
图3为使用经由如上文所描述的工艺获得的单晶粒硅带作为半导体沟道的单沟道TFT的示意性横截面图。
参考图3,绝缘层(11)形成在衬底(10)上,经由上文所描述的工艺获得的在所述绝缘层(11)上的单晶粒硅带(12b)图案化且应用为沟道(21)。源极区(S)和漏极区(D)通过掺杂设置于沟道(21)的两个侧面上,且栅极绝缘层(26)和栅极(22)依序设置在沟道(21)上方。栅极(22)由钝化层(25)覆盖,且连接到源极区(S)和漏极区(D)的源极电极(23)和漏极电极(24)形成在钝化层(25)中。在这种结构中,源极区(S)和漏极区(D)以及其对应的源极电极(23)和漏极电极(24)可能相互改变其位置。
通过将硅带(12b)图案化到适当长度来获得沟道(21)。沟道(21)通过隔离区(A)而与沟槽(11a)的竖直单晶粒硅带(12b)'隔离。这是为了保护TFT免受因竖直单晶粒硅引起的寄生电容(parasitic capacitance)影响。
根据另一实施例,如图4中所示,源极电极(23)和漏极电极(24)形成在钝化层(25)中。源极电极(23)定位于沟槽(11a)正上方且连接到沟槽(11a)的竖直单晶粒硅(12b')。通过掺杂及激活,沟槽(11a)中的竖直单晶粒硅(12b')为导电区。
图5a和图5b为示意性地绘示多沟道TFT的多沟道和栅极的布置结构的平面图和三维图。
参考图5a和图5b,根据上文所描述的实例实施例,绝缘层(11)形成在衬底(10)上,且在其上设置由一个栅极(22)控制的多个沟道,且在本发明实施例中,设置两个沟道。通过两个平行多晶硅层(12b)设置两个沟道,且在并未由栅极(22)覆盖的沟道的两个侧面上设置源极区域(S)和漏极区域(D)。如上文所描述的间隔件(13)形成在两个多晶硅层(12b)的两个侧面的纵向边缘处。两个多晶硅层(12b)可物理连接到沟槽(11a)的多晶硅(12b')且可在后续工艺中与TFT区域的硅隔离。
根据本发明,多个平行多晶硅层可结晶且通过形成在延伸的竖直沟槽中的晶体成核位点而横向生长,且可不仅应用于制造TFT、CMOS以及类似物,且还可应用于制造PIN以及类似物。在制造呈精细纳米线形式的多晶硅层时,所述多晶硅层可应用于制造生物传感器、光学传感器、元光学装置(meta optical device)以及类似物。另外,形成在沟槽中的多晶硅可用于制造竖直TFT且可用于存储器或二极管装置。
已参考图中所示的实施例描述根据实例实施例的制造半导体装置的方法以帮助理解本公开,但这仅是实例。所属领域的一般技术人员应理解,来自所述实例的各种修改和其它等效实施例是可能的。因此,本公开的技术范围应由所附权利要求书界定。

Claims (12)

1.一种制造半导体装置的方法,所述方法包括:
在衬底上形成绝缘层;
在所述衬底上的所述绝缘层中形成预设深度的沟槽;
在所述沟槽的纵向方向上平行地形成多个非晶硅带,所述非晶硅带从所述沟槽的内部延伸以与所述沟槽相交;
在所述非晶硅带中的每一个的侧面上形成间隔件以保护所述非晶硅带中的每一个的边缘;以及
通过热处理来使所述非晶硅带结晶以形成多晶硅层,其中晶体成核位点形成在所述沟槽中的所述非晶硅层中的每一个中,且随后在所述非晶硅带中的每一个的纵向方向上从所述晶体成核位点中的每一个诱导横向晶粒生长。
2.根据权利要求1所述的制造半导体装置的方法,还包括:
在所述热处理之前形成覆盖所述非晶硅的罩盖层。
3.根据权利要求1所述的制造半导体装置的方法,其中在所述非晶硅带的两个侧面上形成所述间隔件包括:
在形成有所述非晶硅带的所述衬底的整个表面上形成绝缘材料层;以及
通过回蚀来部分地移除所述绝缘材料层,其中所述非晶硅带的所述侧面上的所述绝缘材料层保留作为所述间隔件。
4.根据权利要求1所述的制造半导体装置的方法,还包括:
在形成所述非晶硅带之前,在所述沟槽的底部上形成AlN层。
5.根据权利要求4所述的制造半导体装置的方法,还包括:
通过在所述绝缘层上形成覆盖层来减小形成在所述绝缘层中的所述沟槽的宽度。
6.根据权利要求1所述的制造半导体装置的方法,还包括:
在所述绝缘层上及所述沟槽的内部表面中形成非晶硅层;
通过图案化所述非晶硅层来在所述绝缘层上形成多个平行硅带;
在所述硅带上及所述沟槽的内部表面上形成绝缘材料层;以及
通过回蚀工艺来移除所述绝缘材料层的一部分,其中所述绝缘材料层的一部分保留在所述硅带的两个边缘处及所述沟槽的竖直内壁上,以形成在热处理期间保护所述非晶硅带的间隔件。
7.根据权利要求5所述的制造半导体装置的方法,还包括:
通过图案化所述多晶硅层来形成沟道;
在所述沟道上方形成栅极绝缘层和栅极;
通过掺杂所述沟道的两个侧面来形成源极区和漏极区;
形成覆盖所述栅极的钝化层;以及
在所述钝化层上形成电连接到设置于所述沟道的两个侧面上的所述源极区和所述漏极区的源极电极和漏极电极。
8.根据权利要求7所述的制造半导体装置的方法,其中所述源极区或所述漏极区形成在所述沟槽的多晶硅上。
9.根据权利要求7所述的制造半导体装置的方法,还包括:
使所述沟槽中的所述多晶硅与两个侧面上设置有所述源极区和所述漏极区的沟道隔离。
10.根据权利要求6所述的制造半导体装置的方法,还包括:
通过图案化所述多晶硅层来形成沟道;
在所述沟道上方形成栅极绝缘层和栅极;
通过掺杂所述沟道的两个侧面来形成源极区和漏极区;
形成覆盖所述栅极的钝化层;以及
在所述钝化层上形成电连接到设置于所述沟道的两个侧面上的所述源极区和所述漏极区的源极电极和漏极电极。
11.根据权利要求10所述的制造半导体装置的方法,其中所述源极区或所述漏极区形成在所述沟槽中的多晶硅上。
12.根据权利要求10所述的制造半导体装置的方法,还包括:
使所述沟槽中的所述多晶硅与两个侧面上设置有源极和漏极的沟道隔离。
CN201980021413.9A 2018-03-23 2019-03-05 制造半导体装置的方法 Pending CN111902946A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR20180034096 2018-03-23
KR10-2018-0034096 2018-03-23
KR1020180122770A KR20190111722A (ko) 2018-03-23 2018-10-15 반도체 소자의 제조 방법
KR10-2018-0122770 2018-10-15
PCT/KR2019/002508 WO2019182262A1 (ko) 2018-03-23 2019-03-05 반도체 소자의 제조 방법

Publications (1)

Publication Number Publication Date
CN111902946A true CN111902946A (zh) 2020-11-06

Family

ID=68422682

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980021413.9A Pending CN111902946A (zh) 2018-03-23 2019-03-05 制造半导体装置的方法

Country Status (2)

Country Link
KR (2) KR20190111722A (zh)
CN (1) CN111902946A (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010038176A (ko) * 1999-10-22 2001-05-15 이계철 트렌치 구조 및 덮개층을 이용한 박막 트랜지스터 제조방법
US20030183875A1 (en) * 2001-12-28 2003-10-02 Atsuo Isobe Semiconductor device and semiconductor device production system
US20040248346A1 (en) * 2003-06-02 2004-12-09 Orbotech Ltd Inducing semiconductor crystallization using a capillary structure
US20050233510A1 (en) * 2004-04-01 2005-10-20 Seiko Epson Corporation Semiconductor device, electro-optical device, integrated circuit and electronic equipment
US20070048912A1 (en) * 2005-08-26 2007-03-01 Takashi Noguchi Method of forming single crystalline silicon layer, structure including the same, and method of fabricating thin film transistor using the same
JP2007189106A (ja) * 2006-01-13 2007-07-26 Seiko Epson Corp 半導体装置の製造方法、半導体装置、集積回路、電気光学装置、電子機器
JP2008060532A (ja) * 2006-08-04 2008-03-13 Seiko Epson Corp 半導体装置
US20160027636A1 (en) * 2013-03-15 2016-01-28 Yale University Large-area, laterally-grown epitaxial semiconductor layers

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0170509B1 (ko) * 1995-10-27 1999-02-01 김주용 마스크롬 제조방법
KR100426210B1 (ko) * 2000-11-11 2004-04-03 피티플러스(주) 실리콘 박막 결정화 방법
JP4626796B2 (ja) * 2002-10-09 2011-02-09 セイコーエプソン株式会社 電気光学装置の製造方法及び電子機器
JP3942100B2 (ja) * 2003-06-23 2007-07-11 國立交通大學 低温多結晶シリコン薄膜トランジスタ能動層のレーザー再結晶方法
JP2012004411A (ja) * 2010-06-18 2012-01-05 Sharp Corp 半導体装置の製造方法、半導体装置、および表示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010038176A (ko) * 1999-10-22 2001-05-15 이계철 트렌치 구조 및 덮개층을 이용한 박막 트랜지스터 제조방법
US20030183875A1 (en) * 2001-12-28 2003-10-02 Atsuo Isobe Semiconductor device and semiconductor device production system
US20040248346A1 (en) * 2003-06-02 2004-12-09 Orbotech Ltd Inducing semiconductor crystallization using a capillary structure
US20050233510A1 (en) * 2004-04-01 2005-10-20 Seiko Epson Corporation Semiconductor device, electro-optical device, integrated circuit and electronic equipment
US20070048912A1 (en) * 2005-08-26 2007-03-01 Takashi Noguchi Method of forming single crystalline silicon layer, structure including the same, and method of fabricating thin film transistor using the same
JP2007189106A (ja) * 2006-01-13 2007-07-26 Seiko Epson Corp 半導体装置の製造方法、半導体装置、集積回路、電気光学装置、電子機器
JP2008060532A (ja) * 2006-08-04 2008-03-13 Seiko Epson Corp 半導体装置
US20160027636A1 (en) * 2013-03-15 2016-01-28 Yale University Large-area, laterally-grown epitaxial semiconductor layers

Also Published As

Publication number Publication date
KR20200085721A (ko) 2020-07-15
KR20190111722A (ko) 2019-10-02
KR102219343B1 (ko) 2021-02-24

Similar Documents

Publication Publication Date Title
KR100785020B1 (ko) 하부 게이트 박막 트랜지스터 및 그 제조방법
US7611932B2 (en) Method of manufacturing a thin film transistor
JP2006114913A (ja) 薄膜トランジスタ及びその製造方法
TWI322446B (en) Mask for polycrystallization and method of manufacturing thin film transistor using polycrystallization mask
KR20080010781A (ko) 박막 트랜지스터 제조방법
US20180301480A1 (en) Flexible Organic Light Emitting Diode Display and Manufacturing Method Thereof
KR100915073B1 (ko) 반도체막의 결정화 방법 및 이 방법에 의해 결정화된반도체막
US7803699B2 (en) Polysilicon thin film transistor and method of fabricating the same
KR100785019B1 (ko) 하부 게이트 박막 트랜지스터 및 그 제조방법
KR102363930B1 (ko) 단결정립 나노와이어 제조 방법 및 이를 적용하는 반도체 소자의 제조 방법
KR100282233B1 (ko) 박막트랜지스터 및 그 제조방법
JP2007067399A (ja) 単結晶シリコン層の形成方法、及びこれを利用した薄膜トランジスタの製造方法
US11342448B2 (en) Method for manufacturing semiconductor device
CN111902946A (zh) 制造半导体装置的方法
US7026201B2 (en) Method for forming polycrystalline silicon thin film transistor
CN111902943B (zh) 制造半导体纳米线及纳米线半导体装置的方法
KR101075261B1 (ko) 다결정 실리콘 박막의 제조방법
US8507331B2 (en) Method of adjusting gap between bumps in pixel region and method of manufacturing display device using the method
KR100751315B1 (ko) 박막 트랜지스터, 박막 트랜지스터 제조 방법 및 이를구비한 평판 디스플레이 소자
JP2006024753A (ja) 薄膜トランジスタの製造方法、薄膜トランジスタ、半導体装置の製造方法および表示装置
JP2014060184A (ja) 低温ポリシリコン膜の形成方法及び薄膜トランジスタの製造方法
JP2005051172A (ja) 薄膜トランジスタおよびその製造方法
JP2007042980A (ja) 結晶質半導体膜およびその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination