JP2006024753A - 薄膜トランジスタの製造方法、薄膜トランジスタ、半導体装置の製造方法および表示装置 - Google Patents

薄膜トランジスタの製造方法、薄膜トランジスタ、半導体装置の製造方法および表示装置 Download PDF

Info

Publication number
JP2006024753A
JP2006024753A JP2004201682A JP2004201682A JP2006024753A JP 2006024753 A JP2006024753 A JP 2006024753A JP 2004201682 A JP2004201682 A JP 2004201682A JP 2004201682 A JP2004201682 A JP 2004201682A JP 2006024753 A JP2006024753 A JP 2006024753A
Authority
JP
Japan
Prior art keywords
thin film
semiconductor thin
film
insulating film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004201682A
Other languages
English (en)
Inventor
Hiroyoshi Nakamura
弘喜 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advanced LCD Technologies Development Center Co Ltd
Original Assignee
Advanced LCD Technologies Development Center Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced LCD Technologies Development Center Co Ltd filed Critical Advanced LCD Technologies Development Center Co Ltd
Priority to JP2004201682A priority Critical patent/JP2006024753A/ja
Publication of JP2006024753A publication Critical patent/JP2006024753A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Thin Film Transistor (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

【課題】 トランジスタ特性のバラツキを減少させた薄膜トランジスタの製造方法、薄膜トランジスタ、半導体装置の製造方法および表示装置を得ること。
【解決手段】 基板1上に少なくともソース領域14とチャネル領域16およびドレイン領域15を有する多結晶もしくは結晶化された結晶化半導体薄膜5が設けられ、この結晶化半導体薄膜5上にゲート絶縁膜11を介してゲート電極13が設けられた薄膜トランジスタの製造方法であって、ゲート絶縁膜11は、結晶化半導体薄膜5と略同一平面を形成するように基板1上に樹脂層10を形成したのち、この樹脂層10上および結晶化半導体薄膜5上に形成した膜である。
【選択図】図4

Description

本発明は、薄膜トランジスタの製造方法、薄膜トランジスタ、半導体装置の製造方法および表示装置に関するものである。
従来、たとえば液晶表示装置(Liquid-Crystal-Display:LCD)の画素に印加する電圧を制御するスイッチング素子、制御回路などに用いられる薄膜トランジスタ(Thin-Film-Transistor:TFT)の半導体層には、非晶質シリコン(amorphous-Silicon)層や多結晶シリコン(poly-Silicon)層が用いられている。
上記多結晶シリコン層を半導体層として形成したTFTは、非晶質シリコン層を半導体層として形成したTFTよりもチャネル領域を移動する電子又は正孔の移動度が高い。したがって、多結晶シリコン層を用いたトランジスタの方が、非晶質シリコン層を用いたトランジスタよりも、スイッチング速度が速くなる。このためLCDの画素選択回路だけではなく、LCDを駆動するための周辺駆動回路も薄膜トランジスタで構成することが可能になる。さらに、他の部品の設計マージンを広げられるなどの利点がある。また、ドライバ回路やDACなどの周辺駆動回路をディスプレイに組み入れることにより、低コスト化、高精細化、小型化が可能となる。
ガラスのような絶縁材料からなる基板又は絶縁膜上に形成された多結晶シリコンからなる半導体薄膜に薄膜トランジスタ装置を形成する製造方法は、次の通りである。上記絶縁材料基板又は絶縁膜上に非晶質シリコン層を形成し、この非晶質シリコン層にレーザ光を照射することにより上記非晶質シリコン層を多結晶シリコン層にした後に、この多結晶シリコン層に次のようにして薄膜トランジスタを形成する方法である。
この薄膜トランジスタの製造方法は、上記薄膜トランジスタ装置を形成するために上記多結晶シリコン層を所定の孤立パターンにエッチング加工する工程と、孤立パターン化された多結晶シリコン層の上にゲート絶縁層を形成する工程と、このゲート絶縁層の上にゲート電極層を形成し、このゲート電極層をゲート電極にエッチング加工する工程と、上記ゲート電極をマスクとしてソース・ドレイン領域を形成するための不純物をイオン注入する工程と、イオン注入した不純物を活性化する工程と、上記ゲート電極の上に層間絶縁層を形成する工程と、この層間絶縁層に上記薄膜トランジスタ装置のソース・ドレイン領域とソース・ドレイン電極との接続に必要なコンタクトホールを形成する工程と、このコンタクトホールにソース・ドレイン電極となる金属層を埋め込み、ソース・ドレイン電極をエッチング加工する工程とを用いて形成する方法である。
更に、多結晶シリコンからなる薄膜半導体装置を用いた液晶表示装置や有機EL表示装置では、画素電極、パシベーション層等を形成する工程を追加することによって達成されている。
上記したTFTのチャネル領域を構成する半導体材料について、多結晶シリコンは結晶粒の集合からなるため、単結晶シリコンに比べると電子または正孔の移動度が低い。また、多結晶シリコンに形成された薄膜トランジスタは、チャネル部における結晶粒界数のバラツキが問題となる。そこで、最近、電子または正孔の移動度を向上させ且つチャネル部における結晶粒界数のバラツキを少なくするために、大粒径の結晶化シリコンを生成する結晶化方法が提案されている。
本特許出願人は、多結晶シリコンよりさらに1桁以上電子又は正孔の移動度が速い大粒径結晶化シリコンの工業化の開発を実施している。大粒径結晶化シリコンとは、一つの結晶粒内に1又は複数のTFTを形成可能な大きさである。
一つの結晶粒内に1又は複数のTFTを形成できることは、トランジスタ特性が均一となり、特に多数の画素により1枚の画像を形成する表示装置においては、均一画像の表示が可能となっている。
しかし、薄膜シリコン層の結晶性の向上および大粒径化、ゲート絶縁層の薄膜化、薄膜トランジスタ装置の微細化等の要求に伴って、製造された薄膜トランジスタのトランジスタ特性がわずかに異なっていることが判った。即ち、トランジスタ特性がバラツクという課題があった。この原因を探求した結果、明らかではないが孤立パターン化された結晶化シリコン膜側壁部に形成される寄生トランジスタの影響によりトランジスタ特性がわずかに異なるものと思われる。
この状態を、図7を参照して説明する。図7(a)は、薄膜トランジスタの平面図を示し、(b)図は、(a)図のA−A’断面図を示し、(c)図は、(a)図のB−B‘断面図を示す。図7(a)には、ソース領域51とドレイン領域52間にキャリアが移動するチャネル領域53が設けられ、このチャネル領域53と直交する方向にゲート電極54が設けられている。
このゲート電極54は、チャネル領域53の側端部57aを越えて設けられている。この状態が(b)図に示されている。即ち、(b)図には、ガラス基板56上に設けられた結晶化薄膜57上に、ゲート絶縁膜58が成膜されている。このゲート絶縁膜58上に、ゲート電極54が設けられ、このゲート電極54とゲート絶縁膜58上に層間絶縁膜60が設けられている。この層間絶縁膜60に設けられたコンタクトホールを介してゲート電極端子61が設けられた状態が(b)図に示されている。
(b)図において、ゲート絶縁膜58およびゲート電極54は、結晶化薄膜57上を被覆して形成されるため、結晶化半導体薄膜57の側端部57aと側壁部57bに沿って形成されている。この結果、ゲート絶縁膜58は、側端部57aにおいて膜厚が薄く形成される傾向がある。薄膜トランジスタの微細化に伴ってゲート絶縁膜58は、極薄膜化しており、この側端部57aの膜厚の薄膜化は、電界の集中による耐圧低下を招くという問題がある。さらに、結晶化半導体薄膜57の側壁に形成される寄生トランジスタの影響と考えられるゲート電圧に対するドレイン電流特性の飽和領域でのハンプ状の歪んだ特性の発生及びそれに伴うトランジスタ特性のバラツキが発生するという問題がある。
この分析結果から、ゲート電極59が孤立パターン化された結晶化半導体薄膜57の側壁部57bに沿って、この側壁部57bを被覆しないような構造により解決できるものと考えている。この対処法としては、結晶シリコンではLOCOS技術を用いることで上記のような構造は達成可能である。しかしながら、ガラス基板の上に薄膜半導体装置を形成するような液晶表示装置や有機EL表示装置では、ガラス基板56の融点温度が比較的低温であるため高温プロセスが必要なLOCOS技術を用いることができないという問題がある。
本発明は、前述の課題に鑑みてなされたものであり、高耐圧で、トランジスタ特性の揃った薄膜トランジスタの製造方法、薄膜トランジスタ、半導体装置の製造方法および表示装置を提供することを目的とする。
前記課題を解決するために、本発明は半導体薄膜と絶縁膜を略同一平面に形成し、前記半導体薄膜上および前記絶縁膜上にゲート絶縁膜を形成することにより解決したものである。
本発明の薄膜トランジスタの製造方法は、第1形態の薄膜トランジスタの製造方法では、基板上に少なくともソース領域とチャネル領域およびドレイン領域からなる多結晶もしくは結晶化された半導体薄膜が設けられ、この半導体薄膜上にゲート絶縁膜を介してゲート電極が設けられた薄膜トランジスタの製造方法であって、
前記ゲート絶縁膜は、前記半導体薄膜と略同一平面を形成するように前記基板上に絶縁膜を形成したのちに、前記半導体薄膜上および前記絶縁膜上に形成することを特徴とする。この結果、ゲート絶縁膜は、前記半導体薄膜上に形成されるゲート絶縁膜は、側端部から側壁部に沿って形成されないため均一な厚さに形成される。このゲート絶縁膜上に形成されるゲート電極は、前記半導体薄膜の側壁部に沿って、この側壁部を被覆しないような構造に形成できるため特性が揃ったトランジスタを量産できる。
本発明の第2形態の薄膜トランジスタは、基板上に島状に設けられた少なくともソース領域とチャネル領域およびドレイン領域からなる多結晶もしくは結晶化された半導体薄膜と、この半導体薄膜と略同一平面を形成するように前記基板上に設けられた絶縁膜と、この絶縁膜上および前記半導体薄膜上に設けられたゲート絶縁膜と、このゲート絶縁膜上に設けられたゲート電極とを具備してなることを特徴とする。
本発明の第3形態の半導体装置の製造方法は、基板上に半導体薄膜と、この半導体薄膜上に保護層を形成する工程と、前記保護層および前記基板上に絶縁膜を形成する工程と、前記半導体薄膜と略同一平面を形成するように前記絶縁膜を除去する工程と、前記保護層を除去する工程と、
略同一平面化された前記半導体薄膜および前記絶縁膜上にゲート絶縁層を形成する工程と、前記ゲート絶縁層上にゲート電極を形成する工程とを具備することを特徴とする。
この発明の特徴の一つは、ゲート絶縁膜上に形成されるゲート電極は、半導体薄膜の側壁部に沿って、この側壁部を被覆しないような構造に形成することである。この発明の特徴の他の一つは、半導体薄膜の周囲に前記半導体薄膜と略同一平面を形成するように基板上に絶縁膜を形成したのちこの絶縁膜上および前記半導体薄膜上にゲート絶縁膜を形成することである。
本発明の方法によれば、トランジスタ特性の揃った薄膜半導体装置や薄膜トランジスタを得ることができる。また、高電圧が印加されても素子破壊が起こりにくく、結晶化半導体薄膜の側壁に形成される寄生トランジスタの影響を排除することができる薄膜半導体装置や薄膜トランジスタを得ることができる。
次に、本発明を、液晶表示装置を駆動する薄膜トランジスタの製造方法に適用した実施形態を、図1乃至図4を参照して説明する。図1は、薄膜トランジスタの製造工程において、ガラス基板上に結晶化半導体薄膜を製造するまでの工程を工程順に説明するための断面図である。図2は、結晶化半導体薄膜にトップゲート型トランジスタ構造のゲート電極を形成するまでの工程を工程順に説明するための断面図である。図3は、ゲート電極をパターニングして薄膜トランジスタを製造するまでの工程を工程順に説明するための断面図である。図4は、図3(d)薄膜トランジスタの構造を説明するための図である。
図1(a)に示すように、基板1は、絶縁体例えばガラス板からなる。次に、非単結晶半導体薄膜2の成膜工程を実行する。基板1上に薄膜トランジスタを形成するための非単結晶半導体薄膜2を例えばプラズマCVD法やスパッタ法により形成する。非単結晶半導体薄膜2は、基板1上に例えば非晶質シリコンもしくは多結晶シリコンからなる半導体薄膜2を膜厚30nm〜300nm例えば約200nmに形成した膜である。非単結晶半導体薄膜2は、Siの他Ge,SiGeなどの薄膜である。
次に、結晶化用保護膜3の成膜工程を実行する。半導体薄膜2上に結晶化工程時に図1(b)に示すように結晶化工程時にキャップ膜として利用される保護膜3例えば酸化シリコン膜を膜厚50nm〜400nm例えば300nmに成膜例えばプラズマCVD法により形成する。キャップ膜は、絶縁膜からなり蓄熱作用を有し、レーザ光を照射して結晶化する際、非単結晶半導体薄膜2の降温速度を緩和する膜で、例えば酸化シリコン膜である。
次に、図1(c)に示すように、非単結晶半導体薄膜2の結晶化工程を行う。この結晶化工程は、位相変調エキシマレーザ結晶化法を用いて,保護膜3の表面に逆ピーク状の光強度分布Rを有するエキシマパルスレーザ光4を照射する。上記パルスレーザ光4によるレーザ照射によって、非単結晶半導体薄膜2の照射された領域は、溶融する。この溶融領域は、パルスレーザ光4の遮断期間に降温し、凝固位置が横方向に移動し、結晶成長する。この結果、非単結晶半導体薄膜2は結晶化された結晶化半導体薄膜5に変換される。パルスレーザ光4の照射は1回でもよいが、複数回行ってもよく、また、パルスレーザ光4の照射とフラッシュランプ光の照射を組合せもよい。
次に、図1(d)に示すように、パターニング工程を実行する。結晶化工程が終了した保護膜3と結晶化された結晶化半導体薄膜5を所定の孤立パターンPにフォトリソグラフィ技術を用いてエッチングする。所定の孤立パターンPは、例えば一つのトランジスタを構成するために予め定められたパターンで、ソース領域と、チャネル領域と、ドレイン領域とが形成されるパターンである。
次に、図2(a)〜(c)に示すように、平坦化工程を実行する。平坦化工程は、例えば絶縁膜成膜工程である。この絶縁膜成膜工程は、孤立パターンPにエッチングされた保護膜3と結晶化半導体薄膜5を含む基板1上に、絶縁膜例えばベンゾシクロブテン環を有する樹脂層10を成膜例えば塗布し加熱硬化する。ベンゾシクロブテン環を有する樹脂は、平坦化性に優れていると共に光学特性も優れているために液晶表示装置に適用可能である。もちろん、ベンゾシクロブテン環を有する樹脂を塗布する前にシランカップリング剤を含む密着増強剤処理を行うことが望ましい。
次に、図2(b)に示すように、結晶化半導体薄膜5と同一平面を形成するように絶縁膜の除去工程を実行する。例えば、フッ素を含むガス(例えば、CF、SF、NF等のガス)と酸素(0)ガスを用いたガスにより選択エッチングする。プラズマエッチング処理は、ガス比で例えば、0:CF=9:1〜8:1を行うことにより、少なくとも保護膜3上の樹脂層10を除去する。この時、プラズマエッチング条件としては、塗布型樹脂層10のエッチング速度の方が保護膜3のエッチング速度よりも速くなる条件で行うことが望ましい。もちろん、保護膜3と樹脂層10のエッチング選択比を考慮して、保護膜3上の樹脂層10をエッチング除去した後に、保護膜3上以外の樹脂層10をエッチングして樹脂層10の膜厚が結晶化半導体薄膜5とほぼ等しくなるようにすることが望ましい。この結果、結晶化半導体薄膜5と樹脂層10とが略同一平面状態となり、保護膜3が突起した状態になる。
次に、図2(c)に示すように、突起した保護膜3のみをエッチング除去する。このエッチング工程は例えばフッ酸を含むエッチング法を用いて保護膜3のみをエッチング除去して結晶化半導体薄膜5を露出させる。この結果、結晶化半導体薄膜5と同一平面を形成するように樹脂層10の除去工程が終了する。次に、図2(d)に示すように、ゲート絶縁膜11の成膜工程を実行する。即ち、結晶化半導体薄膜5と樹脂層10により形成される同一平面上に例えばCVD法を用いてゲート絶縁層11例えば酸化シリコン膜を膜厚例えば約30nmに、平面状に形成する。
次に、ゲート電極の形成工程を実行する。図2(e)に示すように、ゲート絶縁膜11上にゲート電極用材料例えばMoWからなるゲート電極層12を形成する。このゲート電極層12は、ゲート電極パターニング工程によりフォトリソグラフィ技術を用いて図3(a)に示すように、ゲート絶縁膜11上の予め定められた位置にパターニングされたゲート電極13を形成する。
このゲート電極13のパターンは、例えば図4(a)に製造された薄膜トランジスタの平面図で示めされているようにソース領域、チャネル領域およびドレイン領域を結ぶ直線方向に対して直交する方向に長い形状である。このゲート電極13は、チャネル領域の端部を越えた位置まで延長して形成される。図3(a)は、図4(a)のB-B'断面図であり、図3(b)は、図4(a)のA-A'断面図である。この図3(b)の断面図から明らかなように、ゲート電極13およびゲート絶縁膜11は、結晶化半導体薄膜5の側端縁5aの側壁面5bに沿って形成されず、半導体薄膜5と同一平面に形成された樹脂層10上に形成される。
結晶化半導体薄膜5と同一平面に形成された樹脂層10上にゲート電極13およびゲート絶縁膜11が形成されることは、ゲート電極13およびゲート絶縁膜11が均一な厚さに形成される。ゲート絶縁膜11が均一な厚さに形成されることは、結晶化半導体薄膜5の側端縁5aでの絶縁を確保でき、電界集中もなく、トランジスタ特性の劣化もない、特性の揃った薄膜トランジスタを製造することができる。
次に、ソース領域、ドレイン領域の製造工程を実行する。図3(a)に示すように、ゲート電極13をマスクとしてソース・ドレイン領域を形成するための不純物イオン4を結晶化半導体薄膜5に高濃度にイオン注入する。不純物イオン4は、Nチャネルトランジスタの場合には例えばリンを、Pチャネルトランジスタの場合には例えばホウ素をイオン注入する。その後、窒素雰囲気でアニール処理(例えば、600℃で1時間)を行い、不純物を活性化して図3(c)に示すように結晶化半導体薄膜5にソース領域14、ドレイン領域15を形成する。この結果、ソース領域14およびドレイン領域15間には、キャリアが移動するチャネル領域16が形成される。
次に、図3(d)に示すように、ゲート絶縁層11及びゲート電極13上に層間絶縁層17を形成する。次に、図3(e)に示すように、この層間絶縁層17にソース電極18及びドレイン電極19と夫々ソース・ドレイン領域14、15との接続のためのコンタクトホール20及び21を形成する。
次に、図3(f)に示すように、ゲート電極 (図4(b)参照)、ソース、及びドレイン電極13、14、15となる材料例えば金属23をコンタクトホール20及び21内に充填すると共に層間絶縁層17上にも成膜する。層間絶縁層17上に成膜された金属層は、フォトリソグラフィ技術を用いて予め定められた所定のパターンにエッチングすることでソース電極24及びドレイン電極25を形成して薄膜トランジスタ26を製造する。
この薄膜トランジスタ26の平面図は、図4(a)に示す。図4(a)には、ソース電極14及びドレイン電極15間には、チャネル領域16が設けられている。このチャネル領域16と直交する方向には、ゲート電極13がゲート絶縁膜11(図示せず)を介して設けられている。ゲート電極13は、チャネル領域16の側端部5aを越えて設けられている。
ゲート絶縁膜11とゲート電極13が結晶化半導体薄膜5の側端縁5aから側壁面5bを沿うことなく結晶化半導体薄膜5と樹脂層10により形成された同一平面上に設けられている状態が図4(b)に示されている。図4(b)は、図4(a)のA−A’断面図である。図4(a)のB−B’断面図が図4(c)に示されている。図4(b)(c)には、結晶化半導体薄膜5と樹脂層10により形成された同一平面上にゲート絶縁膜11とゲート電極13が平面状に設けられている状態が示されている。
図4から分かるように本実施の形態の方法で形成された薄膜トランジスタ26のゲート電極13は結晶化半導体領域5の垂直方向の側壁面5bに沿っては形成されない。従って,本実施の形態の方法によって形成された半導体装置は、ゲート絶縁層11を介してゲート電極13と対向する結晶化半導体薄膜5の上面部のみで動作するようにすることができる。即ち、特性のバラツキのない半導体装置の薄膜トランジスタ26を得ることができる。
薄膜トランジスタ26は、図4に示すように基板1例えばガラス上に島状に設けられた少なくともソース領域14とチャネル領域16およびドレイン領域15からなる多結晶もしくは結晶化された上記半導体薄膜5と、この半導体薄膜5と同一平面を形成するように基板1上に設けられた樹脂層10と、この樹脂層10上および上記半導体薄膜5上に設けられたゲート絶縁膜11と、このゲート絶縁膜11上に設けられたゲート電極13とからなる。樹脂層10は、平坦化剤を用いることができる。
こうして製造された薄膜トランジスタ26は、液晶表示装置(ディスプレイ)やEL(エレクトロルミネッセンス)ディスプレイなどの各画素回路、駆動回路や、メモリ(SRAMやDRAM)やCPUなどの集積回路などに適用可能である。
次に、上記に大粒径の結晶化領域を形成する方法を説明する。図5は、結晶化装置の構成を概略的に示す図である。また、図6は、図5の被結晶化処理基板の内部構成を概略的に示す図である。
結晶化装置35は、非単結晶半導体薄膜2の照射部を溶融するエネルギー光を出射するレーザ光源36と、このレーザ光源36からのレーザビームの光強度を均一化するホモジナイザ37と、このホモジナイザ37からの出射光を位相変調して逆ピーク状の光強度最小分布のレーザビームを出射する位相変調素子例えば位相シフタ38と、この位相シフタ38からの逆ピーク状の光強度分布の光ビームを、上記非単結晶半導体薄膜2を有する被結晶化処理基板39に結像させる結像光学系40とからなる。
レーザ光源36は、紫外域の波長で例えば308nmの波長を有するパルス光を出射するXeClエキシマレーザ光源である。逆ピーク状の光強度最小分布の光ビームは、連続する略三角形状の光強度分布を有し、最小光強度が溶融温度以上のエネルギー光を出射する。結晶化用レーザ光源36は、上記の他、波長248nmのKrFエキシマレーザ、波長193nmのArFレーザなどのエキシマレーザが最適である。
ホモジナイザ37は、入射レーザ光の均一化装置である。ホモジナイザ37は、入射したレーザビームを水平方向に広げ線状(例えば、線長さ200mm)のレーザビームにし、さらに強度分布を均一にする装置である。たとえば、複数のX方向シリンドリカルレンズをY方向に並べ、Y方向に並んだ複数の光束を形成し、他のX方向シリンドリカルレンズで各光束を再分布させ、同様複数のY方向シリンドリカルレンズをX方向に並べ、X方向に並んだ複数の光束を形成し、他のY方向シリンドリカルレンズで各光束を再分布させる。
位相シフタ38は、例えば石英基材に段差をつけ、段差の境界でレーザ光の回折と干渉
を起こさせ、レーザ光強度に周期的な空間分布を付与するものである。位相シフタ38は、例えば段差部x=0を境界として左右で180度の位相差を付けた場合である。一般にレーザ光の波長をλとすると、屈折率nの透明媒質を透明基材上に形成して180度の位相差を付けるには、透明媒質の膜厚tは、t=λ/2(n−1)で与えられる。石英基材の屈折率を1.46とすると、XeC1エキシマレーザ光の波長が308nmであるから、180度の位相差を付けるためには334.8nmの段差をエッチング等の方法でつければよい。またSiN膜を透明媒質としてPECVD、LPCVD等で成膜する場合は、SiN膜の屈折率を2.0とすると、SiN膜を石英基材上に154nm成膜し、エッチングして段差を付ければ良い。180度の位相をつけた位相シフトマスクを通過したレーザ光の強度は、周期的強弱のパターンを示す。
この実施形態では、段差そのものを繰り返し周期的に形成したマスクが周期的位相シフ
タである。位相シフトパターンの幅とパターン間距離はともに例えば3μmである。位相
差は必ずしも180度である必要はなく、レーザ光に強弱を実現できる位相差であればよい。レーザ光は波長308nmのXeClエキシマレーザ光で、1ショットのパルス継続時間は20〜200nsである。上記条件で位相シフトマスクを、レーザ光源とガラス基板上の非晶質シリコンからなる半導体薄膜との間に挿入し、パルスレーザ光を照射すると、周期的位相シフトマスクを通過したレーザ光は段差部で回折と干渉を起こし、周期的に逆ピークパターン状の強弱の光強度分布を生成する。
この逆ピークパターン状の強弱の光強度分布は、最小光強度から最大光強度で非晶質シ
リコン膜を溶融させる強度のレーザ光強度を出力することが望ましい。ステージを移動させ、レーザ光のショットを繰り返することにより被結晶化処理基板39の広い範囲の結晶化を行うことができる。
結像光学系40は、位相シフタ38の像を等倍又は縮小例えば1/5に縮小して被結晶化処理基板39に結像させる光学レンズである。結像光学系40は、位相シフタ38と被結晶化処理基板39とを光学的に共役に配置している。換言すれば、被結晶化処理基板39は、位相シフタ38と光学的に共役な面(結像光学系の像面)に設定されている。
被結晶化処理基板39は、たとえば図6に示すように非単結晶シリコン膜の表裏面に絶縁膜で被覆した構造の被処理基板である。即ち、被結晶化処理基板39は、液晶ディスプレイ用板ガラス基板41の上に化学気相成長法(CVD)により設けられた下地絶縁膜42と、この下地絶縁膜42上にCVD法により設けられた非単結晶半導体薄膜例えば非単結晶シリコン膜43と、この非単結晶シリコン膜43上にCVD法により設けられた保護膜44とからなる。
下地絶縁膜42は、上記ガラス基板41からNaなどの不純物が非単結晶半導体薄膜である非単結晶シリコン膜43に浸透するのを防止する機能と、溶融温度が直接ガラス基板41に伝熱されるのを防止する機能と、非単結晶シリコン膜43のレーザ光により照射された領域が高温度になったときに上昇した温度を蓄熱する機能とを有する膜である。下地絶縁膜42は、例えば酸化シリコン(SiO2)膜であり、膜厚は例えば200nmである。下地絶縁膜42は、図1乃至図4において省略されている。
保護膜44は、非単結晶シリコン膜43のレーザ光により照射された領域が高温度になったときに上昇した温度を蓄熱する機能とを有する膜で、絶縁体例えば酸化シリコン(SiO2)膜である。酸化シリコン(SiO2)膜の膜厚は、100nm〜400nmが望ましい。
被処理基板39は、真空チャックや静電チャックなどにより基板ステージ(図示せず)上において予め定められた所定の位置に位置決めされて仮固定される。基板ステージは、予め定められた結晶化位置に順次移動することにより、被処理基板39を各処理位置に位置決めされる。
即ち、パルスレーザ光源36から出射されたパルス状レーザビームは、光強度が予め定められた光強度に調整された後、ホモジナイザ37に入射する。ホモジナイザ37は、入射したレーザビームを均一化処理して位相シフタ38に出射する。この位相シフタ38は、入射したレーザビームを位相変調して、逆ピークパターンの光強度分布を生成する。結像光学系40は、逆ピークパターンの光強度分布を有するレーザ光を被結晶化処理基板39に結像させる。この結果、照射部を溶融し、レーザビームの入射が遮断されたのちの降温過程において温度勾配が形成された最小温度部から凝固が開始し、この凝固位置が、移動するに応じて横方向に結晶成長する。このようにして結晶成長された結晶化領域は、1又は複数個の機能素子を収納するのに充分な大きさである。
以上説明したように上記実施形態によれば、結晶化半導体薄膜上にゲート絶縁膜を成膜する前工程に、結晶化半導体薄膜と同一平面を形成する絶縁膜を半導体薄膜の周囲に形成することにより、薄膜半導体装置や、薄膜トランジスタの特性のバラツキを減少させることができる。この結果、薄膜半導体装置や、薄膜トランジスタの特性のバラツキによる歩留低下を改善させることができる。
結晶化半導体薄膜上にゲート絶縁膜を形成する際、結晶化半導体薄膜のパターンエッジ部において、段差が生ずることなく、平坦面が形成されているため、ゲート絶縁膜の厚さムラのない薄膜半導体装置、薄膜トランジスタを製造することができる。
ゲート絶縁膜およびゲート電極は、半導体薄膜の側壁部を被覆しないような構造に形成できるため製造された素子間の特性が揃った、バラツキが少ないトランジスタを量産できる。この薄膜半導体装置などによれば、半導体薄膜と絶縁膜からなる均一な平面上に凹凸のない平面状ゲート絶縁膜およびゲート電極が形成されるので良好なトランジスタ特性の薄膜半導体装置および薄膜トランジスタを得ることができる。
さらに、融点温度が比較的低温であるガラス基板の上に表示制御するための薄膜半導体装置や薄膜トランジスタのゲート絶縁膜厚が変化することのない液晶表示装置や有機EL表示装置を製造することができる。
さらに、高温プロセスを採用することなく、結晶化半導体薄膜のパターンエッジ部でゲート絶縁膜厚が変化することがなく耐圧性に優れた薄膜半導体装置、薄膜トランジスタを製造することができる。この結果、色むらなどの画質劣化も生じない。
さらに、従来形薄膜トランジスタで問題となっている結晶化半導体薄膜5の側壁に生じる寄生トランジスタの影響も低減できる。
上記実施形態では、結晶化工程時に、非単結晶半導体薄膜2の上にキャップ膜として保護膜3を形成した場合で説明したが、保護膜3を用いずに結晶化工程を行い、パターニング工程を実行し、その後に樹脂層10で平坦化工程を行い、そして、結晶化半導体薄膜上の樹脂層10を除去するまで全体的にエッチングし、ゲート絶縁膜11を成膜するようにしてもよい。
本発明の薄膜トランジスタの製造工程において、ガラス基板上に結晶化半導体薄膜を製造するまでの工程を工程順に説明するための断面図である。 図1の工程で得られた結晶化半導体薄膜にトランジスタ構造のゲート電極を形成するまでの工程を工程順に説明するための断面図である。 図2の工程で得られたゲート電極をパターニングして薄膜トランジスタを製造するまでの工程を工程順に説明するための断面図である。 図3(d)の薄膜トランジスタの構造を説明するための図である。 図1の結晶化工程を具体的に説明するための結晶化装置の構成図である。 図1の被処理基板の実施例を説明するための断面図である。 従来の薄膜トランジスタの構成を説明するための図である。
符号の説明
1:基板、
2:非単結晶半導体薄膜、
3,44:保護膜、
4:不純物イオン、
5:結晶化半導体薄膜、
10:樹脂層、
11:ゲート絶縁膜、
13:ゲート電極、
14:ソース領域、
15:ドレイン領域、
16:チャネル領域、
17:層間絶縁膜、
23:金属、
24:ソース電極、
25:ドレイン電極、
35:結晶化装置
36:レーザ光源
37:ホモジナイザ
38:位相シフタ
39:被結晶化処理基板
40:結像光学系
41:ガラス基板
42:下地絶縁膜
43:非単結晶シリコン膜

Claims (6)

  1. 基板上に少なくともソース領域とチャネル領域およびドレイン領域からなる多結晶もしくは結晶化された半導体薄膜が設けられ、この半導体薄膜上にゲート絶縁膜を介してゲート電極が設けられた薄膜トランジスタの製造方法であって、
    前記ゲート絶縁膜は、前記半導体薄膜と略同一平面を形成するように前記基板上に絶縁膜を形成したのちに、前記半導体薄膜上および前記絶縁膜上に形成することを特徴とする薄膜トランジスタの製造方法。
  2. 前記絶縁膜は、ベンゾシクロブテン環を有する樹脂膜であることを特徴とする請求項1記載の薄膜トランジスタの製造方法。
  3. 前記半導体薄膜は、位相シフタにより位相変調されて逆ピークパターンの光強度分布を有するレーザ光を用いて結晶化されたシリコン薄膜であることを特徴とする請求項1記載の薄膜トランジスタの製造方法。
  4. 基板上に島状に設けられた少なくともソース領域とチャネル領域およびドレイン領域からなる多結晶もしくは結晶化された半導体薄膜と、
    この半導体薄膜と略同一平面を形成するように前記基板上に設けられた絶縁膜と、
    この絶縁膜上および前記半導体薄膜上に設けられたゲート絶縁膜と、
    このゲート絶縁膜上に設けられたゲート電極と
    を具備してなることを特徴とする薄膜トランジスタ。
  5. 基板上に半導体薄膜と、この半導体薄膜上に保護層を形成する工程と、
    前記保護層および前記基板上に絶縁膜を形成する工程と、
    前記半導体薄膜と略同一平面を形成するように前記絶縁膜を除去する工程と、
    前記保護層を除去する工程と、
    略同一平面化された前記半導体薄膜および前記絶縁膜上にゲート絶縁層を形成する工程と、
    前記ゲート絶縁層上にゲート電極を形成する工程と
    を具備することを特徴とする半導体装置の製造方法。
  6. 請求項1の薄膜トランジスタの製造方法により製造された薄膜トランジスタを形成してなることを特徴とする表示装置。
JP2004201682A 2004-07-08 2004-07-08 薄膜トランジスタの製造方法、薄膜トランジスタ、半導体装置の製造方法および表示装置 Pending JP2006024753A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004201682A JP2006024753A (ja) 2004-07-08 2004-07-08 薄膜トランジスタの製造方法、薄膜トランジスタ、半導体装置の製造方法および表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004201682A JP2006024753A (ja) 2004-07-08 2004-07-08 薄膜トランジスタの製造方法、薄膜トランジスタ、半導体装置の製造方法および表示装置

Publications (1)

Publication Number Publication Date
JP2006024753A true JP2006024753A (ja) 2006-01-26

Family

ID=35797810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004201682A Pending JP2006024753A (ja) 2004-07-08 2004-07-08 薄膜トランジスタの製造方法、薄膜トランジスタ、半導体装置の製造方法および表示装置

Country Status (1)

Country Link
JP (1) JP2006024753A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009065138A (ja) * 2007-08-16 2009-03-26 Semiconductor Energy Lab Co Ltd レーザ照射装置、レーザ照射方法及び半導体装置の製造方法
JP2012004231A (ja) * 2010-06-15 2012-01-05 Ihi Corp 磁性半導体用基板、磁性半導体用基板の製造方法及び磁性半導体用基板の製造装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06338614A (ja) * 1993-05-28 1994-12-06 Casio Comput Co Ltd 薄膜トランジスタおよびその製造方法
JP2000252471A (ja) * 1999-03-01 2000-09-14 Nec Corp 電界効果型トランジスタ及びその製造方法
JP2001127298A (ja) * 1999-10-26 2001-05-11 Hitachi Ltd 絶縁ゲート型半導体装置及びそれを用いた液晶表示装置
JP2003298065A (ja) * 2002-04-02 2003-10-17 Mitsubishi Electric Corp 半導体装置及びその製造方法
WO2003092061A1 (en) * 2002-04-23 2003-11-06 Advanced Lcd Technologies Development Center Co., Ltd. Crystallization device and crystallization method, and phase shift mask
JP2003318127A (ja) * 2002-04-23 2003-11-07 Advanced Lcd Technologies Development Center Co Ltd 結晶化半導体膜の製造装置および製造方法ならびに位相シフトマスク
JP2004031840A (ja) * 2002-06-28 2004-01-29 Advanced Lcd Technologies Development Center Co Ltd 結晶化装置および結晶化方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06338614A (ja) * 1993-05-28 1994-12-06 Casio Comput Co Ltd 薄膜トランジスタおよびその製造方法
JP2000252471A (ja) * 1999-03-01 2000-09-14 Nec Corp 電界効果型トランジスタ及びその製造方法
JP2001127298A (ja) * 1999-10-26 2001-05-11 Hitachi Ltd 絶縁ゲート型半導体装置及びそれを用いた液晶表示装置
JP2003298065A (ja) * 2002-04-02 2003-10-17 Mitsubishi Electric Corp 半導体装置及びその製造方法
WO2003092061A1 (en) * 2002-04-23 2003-11-06 Advanced Lcd Technologies Development Center Co., Ltd. Crystallization device and crystallization method, and phase shift mask
JP2003318127A (ja) * 2002-04-23 2003-11-07 Advanced Lcd Technologies Development Center Co Ltd 結晶化半導体膜の製造装置および製造方法ならびに位相シフトマスク
JP2004031840A (ja) * 2002-06-28 2004-01-29 Advanced Lcd Technologies Development Center Co Ltd 結晶化装置および結晶化方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009065138A (ja) * 2007-08-16 2009-03-26 Semiconductor Energy Lab Co Ltd レーザ照射装置、レーザ照射方法及び半導体装置の製造方法
JP2012004231A (ja) * 2010-06-15 2012-01-05 Ihi Corp 磁性半導体用基板、磁性半導体用基板の製造方法及び磁性半導体用基板の製造装置

Similar Documents

Publication Publication Date Title
US7691545B2 (en) Crystallization mask, crystallization method, and method of manufacturing thin film transistor including crystallized semiconductor
US8183122B2 (en) Semiconductor device including semiconductor thin film, which is subjected to heat treatment to have alignment mark, crystallizing method for the semiconductor thin film, and crystallizing apparatus for the semiconductor thin film
KR101263726B1 (ko) 폴리실리콘을 이용한 박막트랜지스터를 포함하는 어레이 기판 및 이의 제조방법
US20060246632A1 (en) Thin film transistor, thin film transistor subsrate, electronic apparatus and process for producing polycrystalline semiconductor thin film
KR100492152B1 (ko) 실리콘 결정화방법
US7011911B2 (en) Mask for polycrystallization and method of manufacturing thin film transistor using polycrystallization mask
JP2004214615A (ja) 非晶質シリコン膜の結晶化方法及び非晶質シリコンの結晶化用マスク、並びにアレイ基板の製造方法
KR20040099735A (ko) 비정질 실리콘의 결정화 공정 및 이를 이용한 스위칭 소자
US20130149819A1 (en) Thin film transistors, method of fabricating the same, and organic light-emitting diode device using the same
JP2005197656A (ja) 多結晶シリコン膜の形成方法
JP2001168346A (ja) 薄膜トランジスタ及びその製造方法
US7033915B2 (en) Method for crystallizing amorphous silicon film
KR100660814B1 (ko) 박막트랜지스터의 반도체층 형성방법
US9343306B2 (en) Method of fabricating thin film transistor array substrate having polysilicon with different grain sizes
US7026201B2 (en) Method for forming polycrystalline silicon thin film transistor
JP2006024753A (ja) 薄膜トランジスタの製造方法、薄膜トランジスタ、半導体装置の製造方法および表示装置
KR100726855B1 (ko) 반도체 장치, 전기 광학 장치, 집적회로 및 전자기기
US20050037550A1 (en) Thin film transistor using polysilicon and a method for manufacturing the same
KR101588448B1 (ko) 폴리실리콘을 이용한 박막트랜지스터를 포함하는 어레이 기판 및 이의 제조방법
KR101338104B1 (ko) 박막 트랜지스터 어레이기판 제조방법
KR100860007B1 (ko) 박막트랜지스터, 박막트랜지스터의 제조방법, 이를 구비한유기전계발광표시장치 및 그의 제조방법
JP5117000B2 (ja) 薄膜トランジスタ及び半導体装置
JP2006165510A (ja) 薄膜トランジスタ、薄膜トランジスタの製造方法および表示装置
KR100496138B1 (ko) 실리콘 결정화방법
JP2003249461A (ja) レーザ光の照射方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070420

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070420

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20091021

A131 Notification of reasons for refusal

Effective date: 20100413

Free format text: JAPANESE INTERMEDIATE CODE: A131

A977 Report on retrieval

Effective date: 20100422

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100803