CN111841339A - 一种用于氢气分离的复合膜及其制备方法和应用 - Google Patents

一种用于氢气分离的复合膜及其制备方法和应用 Download PDF

Info

Publication number
CN111841339A
CN111841339A CN202010715878.9A CN202010715878A CN111841339A CN 111841339 A CN111841339 A CN 111841339A CN 202010715878 A CN202010715878 A CN 202010715878A CN 111841339 A CN111841339 A CN 111841339A
Authority
CN
China
Prior art keywords
alloy
composite membrane
hydrogen
support body
vanadium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010715878.9A
Other languages
English (en)
Inventor
李新中
黄浩然
李新华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhu China Hydrogen New Energy Technology Co ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN202010715878.9A priority Critical patent/CN111841339A/zh
Publication of CN111841339A publication Critical patent/CN111841339A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0072Inorganic membrane manufacture by deposition from the gaseous phase, e.g. sputtering, CVD, PVD
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/105Support pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • C01B3/503Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion characterised by the membrane
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5057Carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0635Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/46Sputtering by ion beam produced by an external ion source
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/22Thermal or heat-resistance properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明提供了一种用于氢气分离的复合膜及其制备方法和应用。本发明的复合膜包括支撑体,在所述支撑体的两侧分别设有碳化钒薄膜;其中,支撑体可以为致密金属、致密金属合金、多孔金属或多孔陶瓷,碳化钒薄膜中钒与碳的摩尔比可以为(1‑4):1。本发明的复合膜具有优异的氢催化解离性能,在高温环境中表现出良好的稳定性,具有氢渗透性好、产氢效率高、操作温度范围宽、成本低等优势,在高纯氢生产领域具有广阔的应用前景。

Description

一种用于氢气分离的复合膜及其制备方法和应用
技术领域
本发明涉及氢气分离技术领域,尤其是涉及一种用于氢气分离的复合膜及其制备方法和应用。
背景技术
近年来,世界范围内的环境问题使得有必要寻找新的清洁能源来替代传统的化石燃料。氢气作为一种零排放燃料,可作为清洁能源的载体,已引起广泛关注。膜法生产高纯氢在化工、石化等行业是一种可行的、高效的方法。
在氢分离膜中,钯膜和钯合金膜虽然表现出良好的透氢性能(高的透氢性和独特的选氢性),然而具有如下缺陷:1)纯Pd膜暴露在H2、温度低于300℃环境下会发生α-β相变,导致氢脆;2)高温热处理可能会导致Pd基合金膜产生裂纹/针孔;3)提纯环境中的杂质气体与钯合金表面的竞争吸附和形成钯化合物,导致Pd中毒。因此,钯/钯合金膜的热稳定性和化学稳定性是其商业化应用的主要障碍之一。此外,钯金属储量少、价格昂贵,进一步限制了该合金膜的商业化应用。因此,丞待寻找能够替代Pd合金的非贵金属材料。
体心立方(bcc)的铌、钽、钒等金属的理论氢渗透率高于面心立方(fcc)钯金属,且成本比钯要低2-3个数量级,限制其发展的因素是,它们相对于钯金属对氢解离的催化活性可以忽略不计。目前,这个问题典型的解决方法是在本体膜金属的两侧镀一层薄薄的铂族金属氢解离催化剂层。钯和钯合金是最常用的催化剂层,然而其增加了膜的成本,且因氢解离催化剂层的渗透性较低,从而降低了氢的传输速率。更重要的是,由于高温导致Pd和BCC金属之间的金属间扩散,逐渐降低了氢的渗透性,从而这些金属催化剂的使用限制了膜的可操作温度范围。
鉴于此,特提出本发明。
发明内容
本发明的目的在于提供一种用于氢气分离的复合膜及其制备方法和应用,该复合膜具有优异的氢催化解离性能,在高温环境中表现出良好的稳定性,具有氢渗透性好、产氢效率高、操作温度范围宽、成本低等优势。
本发明提供一种用于氢气分离的复合膜,其特征在于,包括支撑体,在所述支撑体的两侧分别设有碳化钒薄膜。
在本发明中,所述碳化钒薄膜的结晶度高,晶粒尺寸小,晶界密度大;研究表明:具有上述特性的碳化钒薄膜具有良好的氢渗透性和高温稳定性。
本发明对形成上述碳化钒薄膜的方式不作严格限制;例如可以通过采用磁控溅射的方式在支撑体的两侧分别形成碳化钒薄膜,特别是在磁控溅射时,可以控制支撑体温度为25-600℃,优选为200-600℃,更优选为400-600℃;在上述条件下制备的碳化钒薄膜的结晶度高,晶粒尺寸小,晶界密度大,有利于提高复合膜的氢渗透性和高温稳定性。
本发明对所述碳化钒薄膜中钒与碳的摩尔比不作严格限制,例如可以为(1-4):1,优选为1:1。
在本发明中,所述支撑体的材质可以为致密金属、致密金属合金、多孔金属或多孔陶瓷;其中,所述致密金属可以为V、Nb、Ta、Mo、Ni、Ti、Pd或Pt;所述致密金属合金为V-Ni合金、V-Gr合金、V-Cu合金、V-Fe合金、V-Al合金、V-Co合金、V-Mo合金、V-W合金、V-Ti-Ni合金、V-Fe-Al合金、V-Mo-W合金、Nb-Ti-Ni合金、Nb-Ti-Co合金或Nb-Mo-W合金;所述多孔金属可以为多孔不锈钢或多孔钛铝合金;所述多孔陶瓷可以为多孔氧化铝、多孔氧化锆或沸石。
亦即:所述支撑体为致密金属层、致密金属合金层、多孔金属层或多孔陶瓷层;其中,所述致密金属层为钒金属层、铌金属层、钽金属层、钼金属层、镍金属层、钛金属层、钯金属层或铂金属层;所述致密金属合金层为钒镍合金层、钒铜合金层、钒铁合金层、钒铝合金层、钒-钴合金层、钒钼合金层、钒钨合金层、钒钛镍合金层、钒铁铝合金层、钒钼钨合金层、铌钛镍合金层、铌钛钴合金层或铌钼钨合金层;所述多孔金属层为多孔不锈钢层或多孔钛铝合金层;所述多孔陶瓷层为多孔氧化铝层、多孔氧化锆层或沸石层。
在本发明中,所述支撑体的厚度可以为20-2000μm;对所述支撑体的具体形状不作严格限制,所述支撑体例如可以为片状或管状。
在本发明中,所述碳化钒薄膜的厚度可以为5-500nm,优选为10-60nm。
本发明的复合膜的氢传输速率≥2×103sccm m-2s-1,优选为8×103-12×103sccmm-2s-1;进一步地,所述复合膜的操作温度为400-750℃,优选为500-600℃;此外,所述复合膜的氢渗透流量≥1×10-8mol H2 m-1s-1Pa-0.5,优选为(5-10)×10-8mol H2 m-1s-1Pa-0.5
本发明还提供上述用于氢气分离的复合膜的制备方法,包括:在支撑体的两侧分别形成碳化钒薄膜。
本发明对形成碳化钒薄膜的方法不作严格限制,例如可以采用离子束溅射、磁控溅射、电子束蒸发、脉冲沉积、分子束外延或原子层沉积等方法。
进一步地,在形成碳化钒薄膜之前还可以包括:对支撑体表面进行清洗。对清洗方式不作严格限制,例如可以采用利用离子束对支撑体表面进行清洗;清洗条件可以包括:支撑体温度为25-600℃;支撑体负偏压为0-300V;通入氩气流量为3-10sccm;工作压强为0.5-3Pa;持续轰击为时间为10-30min。
进一步地,在对支撑体表面进行清洗之前还可以包括:对支撑体进行预处理;其中,所述预处理可以包括:依次采用丙酮和无水乙醇超声清洗支撑体5-15min,重复2-3次,然后使用去离子水冲洗1-2分钟,再进行干燥。
在一实施方式中,可以采用磁控溅射在支撑体的两侧分别形成碳化钒薄膜;具体地,所述磁控溅射的条件包括:溅射腔内真空度小于10-4Pa;支撑体温度为25-600℃;支撑体负偏压为0-500V;通入氩气流量为20-30sccm;工作压强为0.5-4Pa;持续轰击时间为5-120min;优选地,可以控制支撑体温度为200-600℃,进一步为400-600℃。
本发明还提供上述复合膜或根据上述制备方法制备的复合膜在氢气分离和/或氢气纯化中的应用。
相对于现有技术,本发明至少具有以下优点:
1、本发明提供的氢分离复合膜,避免使用贵金属Pd及其合金,降低了复合膜的成本;
2、本发明的复合膜具有较高的氢催化解离性能,提高了复合膜的氢渗透性;
3、本发明的复合膜在高温环境中仍然表现出良好的稳定性,解决了复合膜的操作温度范围窄的问题;
4、本发明的复合膜具有优异的氢催化解离性能,提高了复合膜分离提纯氢时的渗透性及产氢效率,在高纯氢生产领域具有广阔的应用前景。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明复合膜的结构示意图;
图2为本发明复合膜的渗氢过程示意图;
图3为本发明复合膜的单侧截面SEM图;
图4为本发明复合膜表面XRD图;
图5为实施例1-3和对照例1-2的复合膜的渗氢流量图;
图6为的试验例复合膜的渗氢持久图。
附图标记说明:
1:支撑体;2:碳化钒薄膜。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也包括复数形式,此外,还应当理解的是,当在本说明中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
下面将结合实施例对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
如图1所示,本实施例的用于氢气分离的复合膜包括支撑体1,在支撑体1的两侧分别设有碳化钒薄膜2;其中,支撑体1为市售纯钒箔圆片,厚度为100μm,直径为20mm,表面抛光处理;碳化钒薄膜2中钒与碳的摩尔比为1:1。
本实施例的用于氢气分离的复合膜的制备方法如下:
1、支撑体预处理
依次采用分析纯丙酮和无水乙醇对钒箔超声清洗10min,重复2-3次,再使用去离子水冲洗1分钟,最后放在平养皿中并置于干燥箱内于120℃下烘干。
2、支撑体清洗
将上述预处理好的钒箔和碳化钒(原子比1:1)靶材分别安置在磁控溅射镀膜腔室的样品台和靶头上,使用分子泵将腔室的真空度抽至10-4Pa以下,设置电子束流50mA,氩气流速5sccm,腔室压力0.5Pa,使用氩离子束对钒箔表面清洗30min。
3、镀碳化钒薄膜
将钒箔加热至400℃,设置偏压为0,溅射功率为50W,腔室压力1.0Pa,对碳化钒靶材预溅射5min,对靶材表面污染物清洗处理完成后,将溅射功率提高到200W,时间20min,将钒箔表面镀一层碳化钒薄膜。
随后,将钒箔翻面,重复上述步骤,将钒箔另一侧镀一层碳化钒薄膜,取出,即制得复合膜。
复合膜的渗氢过程如图2所示,实物截面SEM图如图3所示,表面表征XRD如图4所示。图3结果表明:磁控溅射碳化钒膜的致密性良好;图4结果表明:磁控溅射制备得到钒碳比为1:1的碳化钒膜,基体温度400℃条件下,碳化钒膜结晶度最高。
利用渗氢装置进行渗氢实验,得到的氢渗透性能与温度的关系如图5所示。图5结果表明:本实施例的复合膜在各温度下的氢渗透性能优于Pd,氢渗透性随着温度的增加不断增加,特别是在873K下的氢渗透性
Figure BDA0002598083360000061
为9.5×10-8mol H2 m-1s-1Pa-0.5,基本接近理论值,具有优异的高温氢渗透性能和高温稳定性。
实施例2
参照实施例1的制备方法,除步骤3在镀膜时将钒箔加热至200℃之外,其余步骤和参数与实施例1相同。
本实施例的复合膜的表面表征XRD如图4所示;从图4可以看出磁控溅射制备得到钒碳比为1:1的碳化钒膜,基体温度200℃条件下,制得碳化钒膜结晶度最低。
本实施例的复合膜的氢渗透性能与温度的关系见图5;图5结果表明:本实施例的复合膜在873K下氢渗透性
Figure BDA0002598083360000071
为4.5×10-8mol H2 m-1s-1Pa-0.5,远远高于Pa,具有优异的高温氢渗透性能。
实施例3
参照实施例1的制备方法,除步骤3在镀膜时将钒箔的温度控制为室温之外,其余步骤和参数与实施例1相同。
本实施例的复合膜的表面表征XRD如图4所示;图4结果表明:磁控溅射制备得到钒碳比为1:1的碳化钒膜,基体温度为室温条件下,碳化钒膜结晶度相对较高,具有较高的晶界密度,有利于氢原子在膜中的传输。
本实施例的复合膜的氢渗透性能与温度的关系见图5;图5结果表明,本实施例的复合膜在各温度下的氢渗透性能优于Pd,氢渗透性随着温度的增加不断增加,特别是在873K下的氢渗透性
Figure BDA0002598083360000072
为8.9×10-8mol H2 m-1s-1Pa-0 . 5,基本接近理论值,具有优异的高温氢渗透性能和高温稳定性。
对照例1
本对照例的用于氢气分离的复合膜包括支撑体,在支撑体的两侧分别设有Pd薄膜;其中,支撑体为市售纯钒箔圆片,厚度为100μm,直径为20mm,表面抛光处理。
本对照例的用于氢气分离的复合膜的制备方法如下:
1、支撑体预处理
依次采用分析纯丙酮和无水乙醇对钒箔超声清洗10min,重复2-3次,再使用去离子水冲洗1分钟,最后放在平养皿中并置于干燥箱内于120℃下烘干。
2、支撑体清洗
将上述预处理好的钒箔和纯Pd靶材分别安置在磁控溅射镀膜腔室的样品台和靶头上,使用分子泵将腔室的真空度抽至10-4Pa以下,设置电子束流50mA,氩气流速5sccm,腔室压力0.5Pa,使用氩离子束对钒箔表面清洗20min。
3、镀Pd薄膜
将钒箔加热至400℃,设置偏压为0,溅射功率为50W,腔室压力1.0Pa,对Pd靶材预溅射5min,对靶材表面污染物清洗处理完成后,将溅射功率提高到200W,时间20min,将钒箔表面镀一层Pd薄膜。
随后,将钒箔翻面,重复上述步骤,将钒箔另一侧镀一层Pd薄膜,取出,即制得复合膜。
利用渗氢装置进行渗氢实验,得到的氢渗透性能与温度的关系如图5所示。图5结果表明:本实施例的复合膜在高温下的氢渗透性能优于本对照例的Pd基复合膜,尽管Pd基复合膜具有一定的渗透性,但是其高温稳定性差,易中毒失效,且价格昂贵。
对照例2
本对照例的用于氢气分离的复合膜包括支撑体,在支撑体的两侧分别设有Mo2C薄膜;其中,支撑体为市售纯钒箔圆片,厚度为100μm,直径为20mm,表面抛光处理。
本对照例的用于氢气分离的复合膜的制备方法如下:
1、支撑体预处理
依次采用分析纯丙酮和无水乙醇对钒箔超声清洗10min,重复2-3次,再使用去离子水冲洗1分钟,最后放在平养皿中并置于干燥箱内于120℃下烘干。
2、支撑体清洗
将上述预处理好的钒箔和碳化钼靶材(Mo2C)分别安置在磁控溅射镀膜腔室的样品台和靶头上,使用分子泵将腔室的真空度抽至10-4Pa以下,设置电子束流50mA,氩气流速5sccm,腔室压力0.5Pa,使用氩离子束对钒箔表面清洗20min。
3、镀Mo2C薄膜
将钒箔加热至400℃,设置偏压为0,溅射功率为50W,腔室压力1.0Pa,对碳化钼靶材预溅射5min,对靶材表面污染物清洗处理完成后,将溅射功率提高到200W,时间20min,将钒箔表面镀一层Mo2C薄膜。
随后,将钒箔翻面,重复上述步骤,将钒箔另一侧镀一层Mo2C薄膜,取出,即制得复合膜。
利用渗氢装置进行渗氢实验,得到的氢渗透性能与温度的关系如图5所示。图5结果表明:本对照例的Mo2C基复合膜在高温下的氢渗透性能不及实施例的VC基复合膜。
试验例
采用实施例1的复合膜进行氢气纯化试验,试验方法如下:
利用氢渗透设备和复合膜材料形成一套氢气纯化器件,渗氢模具分为上下游两个部分,复合膜片放置在两部分模具中间。为了使模具气密性良好,并防止紧固过程中膜片受到较大的应力集中,在膜片下游侧放置一片多孔镍支撑体,两侧用外径20mm,内径12mm的镍合金垫片密封,并进行气密性检查。用螺栓将复合膜试样紧固在上下游模具内,随后再将模具上下游端口接到设备上。管路接好后,将管道和模具内抽为真空状态,在该条件以5℃/min加热到873K并保温30min,使模具内部及复合膜片各部分温度均匀,然后关闭真空阀,充入0.15MPa的含氢混合气。当复合膜片吸氢达到饱和时,压力示数稳定,开始氢渗透性能测试:上游压力从0.15MPa开始增加,间隔0.05MPa,直至增加到0.8MPa,每个压力下记下稳定的氢渗透流量数值,下游压力始终维持在0.1MPa。
此外,测试复合膜片氢渗透流量的稳定性,方法为:取另一未做过氢渗透的复合膜,前期准备步骤同上所述,在进行氢渗透测试时,温度保持873K,上游压力保持0.8MPa,下游压力保持0.1MPa,进行6个小时的氢渗透测试,记录氢渗透流量随时间的变化,结果如图6所示。
经气相质谱测试后,最后得到的氢气的纯度大于99.999%。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

1.一种用于氢气分离的复合膜,其特征在于,包括支撑体,在所述支撑体的两侧分别设有碳化钒薄膜;
优选地,所述碳化钒薄膜中钒与碳的摩尔比为(1-4):1,更优选为1:1。
2.根据权利要求1所述的复合膜,其特征在于,所述支撑体的材质为致密金属、致密金属合金、多孔金属或多孔陶瓷;
优选地,所述致密金属为V、Nb、Ta、Mo、Ni、Ti、Pd或Pt;
优选地,所述致密金属合金为V-Ni合金、V-Gr合金、V-Cu合金、V-Fe合金、V-Al合金、V-Co合金、V-Mo合金、V-W合金、V-Ti-Ni合金、V-Fe-Al合金、V-Mo-W合金、Nb-Ti-Ni合金、Nb-Ti-Co合金或Nb-Mo-W合金;
优选地,所述多孔金属为多孔不锈钢或多孔钛铝合金;
优选地,所述多孔陶瓷为多孔氧化铝、多孔氧化锆或沸石。
3.根据权利要求1所述的复合膜,其特征在于,所述支撑体的厚度为20-2000μm;
优选地,所述支撑体为片状或管状。
4.根据权利要求1所述的复合膜,其特征在于,所述碳化钒薄膜的厚度为5-500nm,优选为10-60nm。
5.根据权利要求1所述的复合膜,其特征在于,所述复合膜的氢传输速率≥2×103sccmm-2s-1,优选为8×103-12×103sccm m-2s-1
优选地,所述复合膜的操作温度为400-750℃,更优选为500-600℃;
优选地,所述复合膜的氢渗透流量≥1×10-8molH2m-1s-1Pa-0.5,更优选为(5-10)×10- 8mol H2m-1s-1Pa-0.5
6.权利要求1-5任一所述的用于氢气分离的复合膜的制备方法,其特征在于,包括:在支撑体的两侧分别形成碳化钒薄膜;
优选地,形成碳化钒薄膜的方法为离子束溅射、磁控溅射、电子束蒸发、脉冲沉积、分子束外延或原子层沉积。
7.根据权利要求6所述的制备方法,其特征在于,在形成碳化钒薄膜之前还包括:对支撑体表面进行清洗;
优选地,采用离子束对支撑体表面进行清洗;
优选地,清洗条件包括:支撑体温度为25-600℃,支撑体负偏压为0-300V,通入氩气流量为3-10sccm,工作压强为0.5-3Pa,持续轰击时间为10-30min。
8.根据权利要求7所述的制备方法,其特征在于,在对支撑体表面进行清洗之前还包括:对支撑体进行预处理;
优选地,所述预处理包括:依次采用丙酮和无水乙醇超声清洗支撑体5-15min,重复2-3次,然后使用去离子水冲洗1-2分钟,再进行干燥。
9.根据权利要求6所述的制备方法,其特征在于,采用磁控溅射在支撑体的两侧分别形成碳化钒薄膜;
优选地,所述磁控溅射的条件包括:溅射腔内真空度小于10-4Pa、支撑体温度为25-600℃、支撑体负偏压为0-500V、通入氩气流量为20-30sccm、工作压强为0.5-4Pa、持续轰击为时间为5-120min;
优选地,控制支撑体温度为200-600℃,更优选为400-600℃。
10.权利要求1-5任一所述的复合膜或根据权利要求6-9任一制备方法制备的复合膜在氢气分离和/或氢气纯化中的应用。
CN202010715878.9A 2020-07-23 2020-07-23 一种用于氢气分离的复合膜及其制备方法和应用 Pending CN111841339A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010715878.9A CN111841339A (zh) 2020-07-23 2020-07-23 一种用于氢气分离的复合膜及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010715878.9A CN111841339A (zh) 2020-07-23 2020-07-23 一种用于氢气分离的复合膜及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN111841339A true CN111841339A (zh) 2020-10-30

Family

ID=72950639

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010715878.9A Pending CN111841339A (zh) 2020-07-23 2020-07-23 一种用于氢气分离的复合膜及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN111841339A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113209838A (zh) * 2021-06-21 2021-08-06 曾祥燕 一种用于氢气分离用高温金属型复合膜及其制备方法
CN113274891A (zh) * 2021-06-21 2021-08-20 曾祥燕 一种用于氢气分离的碳化锆膜及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005279484A (ja) * 2004-03-30 2005-10-13 Mitsubishi Heavy Ind Ltd 水素透過膜およびその製造方法
CN111206234A (zh) * 2020-02-21 2020-05-29 攀钢集团攀枝花钢铁研究院有限公司 钛基碳化钒涂层的制备方法
CN212396398U (zh) * 2020-07-23 2021-01-26 李新中 一种用于氢气分离的复合膜

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005279484A (ja) * 2004-03-30 2005-10-13 Mitsubishi Heavy Ind Ltd 水素透過膜およびその製造方法
CN111206234A (zh) * 2020-02-21 2020-05-29 攀钢集团攀枝花钢铁研究院有限公司 钛基碳化钒涂层的制备方法
CN212396398U (zh) * 2020-07-23 2021-01-26 李新中 一种用于氢气分离的复合膜

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113209838A (zh) * 2021-06-21 2021-08-06 曾祥燕 一种用于氢气分离用高温金属型复合膜及其制备方法
CN113274891A (zh) * 2021-06-21 2021-08-20 曾祥燕 一种用于氢气分离的碳化锆膜及其制备方法

Similar Documents

Publication Publication Date Title
Paglieri et al. Innovations in palladium membrane research
US8119205B2 (en) Process for preparing palladium alloy composite membranes for use in hydrogen separation, palladium alloy composite membranes and products incorporating or made from the membranes
Pal et al. A review on types, fabrication and support material of hydrogen separation membrane
McCool et al. Nanostructured thin palladium-silver membranes: Effects of grain size on gas permeation properties
Basile et al. Synthesis, characterization, and applications of palladium membranes
CN111841339A (zh) 一种用于氢气分离的复合膜及其制备方法和应用
KR20110049707A (ko) 수소분리용 금속치밀막 및 그 제조 방법
CN112957912B (zh) 一种多层选择性氢渗透复合膜及其制备和应用
CN109921034B (zh) 一种阴离子交换膜燃料电池分级有序催化层的制备方法及应用
CN212396398U (zh) 一种用于氢气分离的复合膜
CN107376661B (zh) 一种钯基复合膜的制备方法
US20130092025A1 (en) Defectless hydrogen separation membrane, production method for defectless hydrogen separation membrane and hydrogen separation method
CN112176285A (zh) 一种新型碳化铌薄膜用于氢分离及其制备方法
JPH11286785A (ja) 水素透過膜及びその作製方法
CN112062606A (zh) 一种氢气分离提纯膜及其制备方法和应用
JP3645088B2 (ja) 水素透過膜及びその作製方法
CN212403966U (zh) 一种氢气分离提纯膜
WO2019100517A1 (zh) 一种制备纳米多孔金属材料的方法
CN113304623A (zh) 一种用于氢气分离和提纯用复合膜及其制备方法
Paglieri Palladium membranes
Xue et al. Amorphous Ni–B alloy/ceramic composite membrane prepared by an improved electroless plating technique
CN113209838A (zh) 一种用于氢气分离用高温金属型复合膜及其制备方法
WO2015023113A1 (en) Separation membrane, hydrogen separation membrane including separation membrane, and device including hydrogen separation membrane
JPH04326931A (ja) 水素分離膜の製造方法
Iaquaniello et al. Hydrogen palladium selective membranes: an economic perspective

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20220129

Address after: 241000 No. 4, Jinye Road, Sanshan Economic Development Zone, Wuhu City, Anhui Province

Applicant after: Wuhu China hydrogen New Energy Technology Co.,Ltd.

Address before: 130 Flourishing Street, Nangang District, Harbin City, Heilongjiang Province

Applicant before: Li Xinzhong

TA01 Transfer of patent application right