WO2019100517A1 - 一种制备纳米多孔金属材料的方法 - Google Patents

一种制备纳米多孔金属材料的方法 Download PDF

Info

Publication number
WO2019100517A1
WO2019100517A1 PCT/CN2017/119010 CN2017119010W WO2019100517A1 WO 2019100517 A1 WO2019100517 A1 WO 2019100517A1 CN 2017119010 W CN2017119010 W CN 2017119010W WO 2019100517 A1 WO2019100517 A1 WO 2019100517A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
semiconductor
film
nano
preparing
Prior art date
Application number
PCT/CN2017/119010
Other languages
English (en)
French (fr)
Inventor
王祖敏
张安
Original Assignee
天津大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津大学 filed Critical 天津大学
Publication of WO2019100517A1 publication Critical patent/WO2019100517A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • C23C14/205Metallic material, boron or silicon on organic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5873Removal of material

Definitions

  • the invention belongs to the technical field of preparing nanoporous metal materials. Based on the theory of metal induced crystallization, a semiconductor/metal bilayer film which has undergone film growth is studied, and after annealing, selective etching is performed to remove semiconductors to obtain nanoporous. metallic material.
  • Nanoporous metal materials are a kind of functional structural materials that are developing rapidly today. They combine the properties of metals and other nanomaterials in catalysis, filtration, hydrolysis, sensors, chemical synthesis, hydrogen storage, automobile exhaust gas treatment, drug loading and Release, electrochemical energy storage and conversion all show a wide range of potential applications. The results of Takeshi Fujita [1] and others show that nanoporous gold has significant catalytic effects and "excellent" performance in catalytic oxidation of CO; other research teams have also verified the catalytic effects of nanoporous metals in other fields. Nanoporous metal materials have gained more and more recognition as a new generation of high-efficiency catalysts.
  • nanoporous metal materials research field is closely related to the rapid development of many energy fields such as new energy technology, catalysis, environment and biological detection.
  • the results of Peng et al. [2] have proved that nanoporous gold can be used as an anode material for high efficiency and high reversibility of Li-O 2 cells, in addition to the oxidation power of Li-O 2 on charge.
  • the rate of learning is about 10 times faster than that of the carbon electrode; studies by Lang [3] et al. show that the hybrid structure composed of nanoporous gold and nanocrystalline MnO 2 can significantly improve the electrical conductivity and achieve the specific capacitance of the MnO 2 component. Close to the theoretical value.
  • Functionally designed nanoporous metal materials are expected to shine in many applications, which is expected to play an active role in promoting and promoting certain important areas.
  • the dealloying method refers to a phenomenon in which the alloy material dissolves or precipitates active components due to the difference in electrochemical behavior under different corrosion conditions, and the relatively stable components are enriched.
  • the method includes two processes of selecting, preparing, and selectively etching the alloy matrix.
  • the nano powder sintering method is a method in which a metal powder of a certain size is filled into a mold and pressure sintered to obtain a porous sintered body.
  • the nanoporous metal material prepared by the method has low porosity and low strength, and the type is greatly reduced. The practical application value of the material.
  • the template method is to physically and chemically deposit the target metal material into the pores of the porous template, and then remove the template to obtain a nanoporous metal material similar to or similar to the morphology and size of the template, wherein the subsequent treatment by the hard template method is obtained.
  • the process is cumbersome, and the hard template structure is relatively simple, and the morphology changes less; while the nanoporous material prepared by the soft template has poor stability and the template efficiency is not high. On the whole, the preparation process of the template method is complicated and costly, and is not suitable for mass production, which limits the practical application of the nanoporous metal material.
  • the present invention provides a method of preparing a nanoporous metal material.
  • a technical solution for preparing a nanoporous metal is:
  • a nanoporous metal material which is constructed by using a semiconductor/metal bilayer film as a substrate, and a specific method for preparing the nanoporous metal material, as shown in FIG. 1, comprises the following three steps:
  • the step (1) film growth process may be one of electrochemical deposition coating, magnetron sputtering coating, ion beam sputtering coating, vacuum evaporation coating, pulsed laser deposition film formation or melt plating, or a combination thereof;
  • the metal in the step (1) is Au, Pt, Ag, Pd, Ti, Ir, Cr, Ru, Mn, Fe, Co, Ni, Cu, Zr, Nb, Rh, Al, Ta, Re, W, etc.
  • the semiconductor in the step (1) is a Si or Ge or Si x Ge 1-x (0 ⁇ x ⁇ 1) compound
  • the substrate material in the step (1) may be a polymer , one or a combination of a polymer film, a plastic, a plastic film, a semiconductor, a glass, an oxide, a ceramic, a metal, a metal alloy, a metal foil, a metal alloy foil; a single film layer (including a metal film) in the step (1)
  • the thickness of the layer and the semiconductor film layer is 1000 nm or less, the thickness of the preferred single film layer is 100 to 500 nm, and the thickness of the most preferable single film layer is 20 to 100 nm.
  • the annealing treatment in the step (2) has an annealing temperature of 100 to 500 ° C, preferably 120 to 350 ° C.
  • semiconductor atoms such as Si, Ge
  • the amorphous semiconductor atoms first wet the grain boundaries of the polycrystalline metal.
  • the weakening of the covalent bond of the semiconductor atom at the interface increases the rate of movement of the interface atoms [5] .
  • Heterogeneous nucleation of amorphous semiconductor atoms may occur at the wetted metal grain boundaries or at the interface [6-7] .
  • a core of a crystalline semiconductor is formed at a preferential nucleation site (such as a grain boundary, interface, etc.)
  • the metal grain boundary at the interface of the film layer is replaced by two metal
  • the atoms in the amorphous film layer must continue to diffuse, continue to wet at the interface of the metal
  • the continuous internal diffusion, crystallization and growth of crystalline semiconductor grains at the original metal grain boundary result in a stress gradient in the binary film system, resulting in compressive stress, amorphous sublayer in the original metal layer.
  • a tensile stress [8-9] is generated.
  • the original coherent nanocrystalline metal layer is diffused and migrated to the original surface layer, which leads to the formation of the nanoporous structure in the metal layer.
  • the nanoporous metal material is obtained by a subsequent selective etching treatment to remove the semiconductor.
  • Figure 1 shows the evolution of the nanoporous gold structure.
  • Figure 2 shows the microstructure of three different film thickness nanoporous golds obtained in the above procedure. According to the principle of metal induced crystallization and in conjunction with FIG. 3, under the action of the stress gradient, some of the atoms in the original continuous nanocrystalline gold film layer diffuse and migrate to the surface layer under the action of the stress gradient, resulting in the original gold. A nanopore structure appears in the layer.
  • the gist of the present invention is to overcome the problems of low efficiency and poor scale expansion of the above conventional preparation method, and to prepare a nanoporous metal material by metal induced crystallization.
  • the invention has the advantages of low cost, convenient operation, high efficiency, and the like, and is compatible with large industrial facilities and equipment, and is easy to realize large-scale industrial application.
  • the innovation of the method lies in the research results of preparing the semiconductor thin film at low temperature by the metal induced crystallization method, and the nano-porous pure metal and alloy material can be well prepared by using the reaction between the solid phase and the solid phase to realize nanocrystallization.
  • the substrate material is not limited.
  • Figure 1 Schematic diagram of the structural evolution of nanoporous gold
  • Figure 2 Scanning electron micrograph of a Ge/Au bilayer film annealed at 120 °C for 1 h after selective etching; wherein a, b and c are 50 nm Ge/10 nmAu, 50 nm Ge/20 nm Au and 50 nm Ge/40 nm Au, respectively;
  • Figure 3 Auger electron spectroscopy intensity-sputtering time profile of a Ge/Au bilayer film sample annealed at 120 °C for 1 h; where a and b are 50 nm Ge/20 nm Au and 50 nm Ge/40 nm Au, respectively.
  • Example 1 A 70 nm Ge/40 nm (AuAg) bilayer film was prepared by ion beam sputtering coating of AuAg and ion beam sputtering of Ge on a silicon nitride substrate.
  • the Ge/(AuAg) bilayer film prepared above was annealed at an annealing temperature of 100 ° C and an annealing time of 75 min.
  • the annealed Ge/Au bilayer film was selectively etched with H 2 O 2 for an etching time of 60 min.
  • Example 2 Ion beam sputtering coating of Al and Ge was sequentially performed on a polymer substrate to prepare a 100 nm Ge/50 nm Al double-layer film.
  • the Ge/Al double-layer film prepared above was annealed at an annealing temperature of 160 ° C and an annealing time of 50 min.
  • the annealed Ge/Al bilayer film was selectively etched with H 2 O 2 for an etching time of 80 min.
  • Example 3 Vacuum evaporation coating of Ag and Si was sequentially performed on a NaCl crystal substrate to prepare a 60 nm Si/30 nm Ag double layer film.
  • the Si/Ag double-layer film prepared above was annealed at an annealing temperature of 380 ° C and an annealing time of 45 min.
  • the annealed Si/Ag double-layer film was selectively etched with KOH for an etching time of 40 min.
  • Example 4 Ion beam sputtering of Pt and Ge was sequentially performed on a glass substrate to prepare a 60 nm Ge/20 nm Pt bilayer film.
  • the Ge/Pt bilayer film prepared above was annealed at an annealing temperature of 470 ° C and an annealing time of 60 min.
  • the annealed Ge/Pt bilayer film was selectively etched with H 2 O 2 for an etching time of 30 min.
  • Example 5 Electrodeposition of Ni and magnetron co-sputter coating of Si and Ge were sequentially performed on a copper foil substrate to prepare a 1000 nm (SiGe)/500 nm Ni double-layer film.
  • the (SiGe)/Ni bilayer film prepared above was annealed at an annealing temperature of 450 ° C and an annealing time of 120 min.
  • the annealed Si/Ni bilayer film was selectively etched with NaOH for an etching time of 180 min.
  • Example 6 Pulsed laser deposition of Cu and ion beam sputtering of Si were sequentially performed on a ceramic substrate to prepare a 150 nm Ge/100 nm Cu double-layer film.
  • the Si/Cu double-layer film prepared above was annealed at an annealing temperature of 500 ° C and an annealing time of 60 min.
  • the annealed Si/Cu bilayer film was selectively etched by HF, and the etching time was 120 min.
  • Example 7 Vacuum evaporation coating of Au and Ge was sequentially performed on a Si/SiO 2 substrate to prepare a 50 nm Ge/20 nm Au double-layer film.
  • the Ge/Au bilayer film prepared above was annealed at an annealing temperature of 120 ° C and an annealing time of 60 min.
  • the annealed Ge/Au bilayer film was selectively etched with H 2 O 2 for an etching time of 20 min.
  • Example 8 Electrochemical deposition of Pd and magnetron sputtering coating of Si were sequentially performed on a copper plate substrate to prepare a 80 nm Si/40 nm Pd bilayer film.
  • the Si/Pd bilayer film prepared above was annealed at an annealing temperature of 430 ° C and an annealing time of 75 min.
  • the annealed Si/Pd bilayer film was selectively etched with NaOH for an etching time of 70 min.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

一种纳米多孔金属材料的制备方法,包括1)将金属和半导体材料在衬底上进行膜层生长,得到半导体/金属双层膜;2)对制备出的半导体/金属双层膜进行退火处理;3)对退火后的半导体/金属双层膜进行选择性刻蚀处理,以除去半导体从而获得纳米多孔金属材料。该方法借鉴金属诱导晶化方法在低温制备半导体薄膜的研究成果,利用固相-固相之间的反应实现纳米化,能够较好地制备出纳米多孔纯金属和合金材料,且衬底材料不受限制。该方法是廉价的、高效的纳米多孔金属材料制备方法。克服了纳米多孔金属材料传统方法效率低、规模化扩展差等问题,易于实现大规模的工业化应用。

Description

一种制备纳米多孔金属材料的方法 技术领域
本发明属于制备纳米多孔金属材料的技术领域,基于金属诱导晶化这一理论来研究经过膜层生长的半导体/金属双层膜,经过退火处理后进行选择性刻蚀以去除半导体从而获得纳米多孔金属材料。
背景技术
纳米多孔金属材料是当今发展较为迅猛的一类功能结构材料,其兼备了金属与其它纳米材料的特性,在催化、过滤、水解离、传感器、化学合成、储氢、汽车尾气处理、药物装载和释放、电化学能源储存和转换等都展示出了广泛的潜在应用前景。Takeshi Fujita [1]等人的研究成果表明纳米多孔金具有显著的催化效应以及在CO催化氧化中的“优良”表现;其他的研究团队同样对纳米多孔金属在其他领域的催化效应进行了验证,纳米多孔金属材料已然作为新一代的高效催化剂得到了越来越多的认可。尤其当今世界能源系统处在快速转换的过程当中,纳米多孔金属材料研究领域的兴起与当前许多能源领域如新能源技术、催化、环境与生物检测等的快速发展密切相关。在新能源的研究领域,Peng [2]等人的研究成果已经证明了纳米多孔金可作为Li-O 2电池高效率和高可逆性的阳极材料,此外电荷上的Li-O 2的氧化动力学的速率比碳电极约快10倍;Lang [3]等人的研究表明由纳米多孔金和纳米晶MnO 2组成的杂化结构能显著提高导电性,使MnO 2组分的比电容达到了接近理论值。经过功能化设计的纳米多孔金属材料期望在许多应用领域中大放异彩,这有望在某些重要的领域起到积极的促进、推动作用。
纵观纳米多孔金属材料的传统制备方法,自身均存在着些许的局限性。作为当前研究较为广泛的脱合金法,其最早可追溯到印加文明的“损耗镀金法”。最早的工业应用是上世纪20年代美国M.Raney制备的Raney镍。脱合金法是指合金材料在一定的腐蚀条件下,其不同组分间由于电化学行为的差别,产生活泼组分的溶解或析出,而相对稳定组分富集的一个现象。该方法包括合金基体的选择、制备及选择性腐蚀两个过程。其中前一过程中常采用高温熔炼法等,对设备和温度的要求较高,且操作具有一定的危险性;在后一过程中则不可避免的发生再结晶 现象且存在活泼组分的残余;造成了材料(尤其是贵金属)的浪费,而且腐蚀液涉及剧毒性、危险性的溶剂。纳米粉体烧结法是把一定尺寸的金属粉末填入模具成形,进行压力烧结而获得多孔烧结体的方法,该方法制备的纳米多孔金属材料孔隙率较低、强度低,会极大地降低该类材料的实际应用价值。模板法是通过物理、化学方法将目标金属材料沉积到多孔模板的孔隙中,然后移去模板,从而得到与模板在形貌、尺寸类似或相关的纳米多孔金属材料,其中硬模板法的后续处理过程繁琐,且硬模板结构比较单一,形貌变化较少;而软模板制备的纳米多孔材料稳定性差、模板效率不高。整体而言,模板法的制备过程复杂、成本较高,不适合批量生产,限制了纳米多孔金属材料的实际应用。
发明内容
考虑到目前纳米多孔金属材料传统制备方法存在的不足之处,以及当前一些与应用该类材料密切相关的新能源领域的迅猛发展。为了克服传统制备方法中存在的问题,本发明提供了一种制备纳米多孔金属材料的方法。
为了实现本发明的目的,制备纳米多孔金属的技术方案为:
一种纳米多孔金属材料,所述材料是以半导体/金属双层膜为基材构筑,制备纳米多孔金属材料的具体方法,如附图1所示,包括以下三步:
(1)将金属和半导体材料在衬底上进行膜层生长,得到半导体/金属双层膜;
(2)对制备出的半导体/金属双层膜进行退火处理;
(3)对退火后的半导体/金属双层膜进行选择性刻蚀处理,以除去半导体从而获得纳米多孔金属材料。
所述步骤(1)膜层生长过程可以为电化学沉积镀膜、磁控溅射镀膜、离子束溅射镀膜、真空蒸发镀膜、脉冲激光沉积制膜或熔融电镀等其中之一或其组合;所述步骤(1)中的金属为Au、Pt、Ag、Pd、Ti、Ir、Cr、Ru、Mn、Fe、Co、Ni、Cu、Zr、Nb、Rh、Al、Ta、Re、W等其中之一或其合金;所述步骤(1)中的半导体为Si或Ge或Si xGe 1-x(0<x<1)化合物;所述步骤(1)中的衬底材料可以是聚合物、聚合物膜、塑料、塑料膜、半导体、玻璃、氧化物、陶瓷、金属、金属合金、金属箔、金属合金箔的一种或组合;所述步骤(1)中单膜层(包括金属膜层和半导体膜层)的厚度小于等于1000nm,优选的单膜层厚度为 100~500nm,最优选的单膜层厚度为20~100nm。
所述步骤(2)的退火处理,退火温度为100~500℃,优选范围为120~350℃。
本发明的目的是提供一种廉价的、高效的纳米多孔金属材料制备方法。该理论的事实依据源自半导体原子(例如Si,Ge)沿自由(润湿的)金属晶界扩散速率即使在低温下也被认为是非常快的 [4]。在退火条件下,非晶半导体原子首先润湿多晶金属的晶界。界面处半导体原子共价键的弱化提高了界面原子的移动速率 [5]。非晶半导体原子的异质形核可能发生在润湿的金属晶界处或者界面处 [6-7]。当在优先形核位置(如晶界、界面等处)形成了一个晶体半导体的核心时,在膜层界面处的金属晶界会被两个金属|晶体半导体中间相界所代替。为了继续推进非晶半导体的结晶过程,非晶膜层中的原子必须继续进行扩散,进入到金属|晶体半导体中间相界面处继续润湿并且继续发生晶化。开始在原始金属晶界处连续的内扩散、结晶和晶体半导体晶粒的长大造成了导致了二元膜层系统中产生了应力梯度,使原始金属层内产生了压应力、非晶亚层产生了拉应力 [8-9]。在两者相互作用下,原始连贯的纳米晶金属层由于部分原子向原始表层的扩散、迁移,导致纳米孔洞结构在金属层的产生,这就是纳米多孔金属雏形的形成过程。通过后续的选择性刻蚀处理以去除半导体从而获得了纳米多孔金属材料。
本发明是以Ge/Au双层膜为例就所述的方法进行详细说明。其中附图1展示了纳米多孔金结构的演化过程。附图2展示了所述步骤得到的三种不同膜厚纳米多孔金的微观结构。根据金属诱导晶化的原理并结合附图3,经过退火处理的双层膜,在应力梯度的作用下,原始连续的纳米晶金膜层中部分原子向表层区扩散、迁移,导致原始的金层出现了纳米孔状结构。
本发明的主旨是克服上述传统制备方法效率低、规模化扩展差的问题,采用金属诱导晶化这一方法来制备纳米多孔金属材料。对比上述的传统方法,本发明具有低成本,操作方便,高效率等优势,同时能与大型工业设施、装备相兼容,易于实现大规模的工业化应用。本方法的创新点在于借鉴金属诱导晶化方法在低温制备半导体薄膜的研究成果,利用固相-固相之间的反应实现纳米化,能够较好地制备出纳米多孔纯金属和合金材料,且衬底材料不受限制。
附图说明
图1:纳米多孔金的结构演化示意图;
图2:120℃退火1h的Ge/Au双层膜试样经过选择性刻蚀后的扫描电镜图;其中a,b和c分别是50nmGe/10nmAu,50nmGe/20nmAu和50nmGe/40nmAu;
图3:Ge/Au双层膜试样在120℃退火1h的俄歇电子能谱强度-溅射时间剖析图;其中a和b分别是50nmGe/20nmAu和50nmGe/40nmAu。
具体实施方式
实施例1:在氮化硅衬底上先后进行AuAg的离子束溅射镀膜和Ge的离子束溅射镀膜,制备出70nmGe/40nm(AuAg)双层膜。将上述制备出的Ge/(AuAg)双层膜进行退火处理,退火温度为100℃,退火时间为75min。用H 2O 2对上述退火处理的Ge/Au双层膜进行选择性刻蚀处理,刻蚀时间为60min。
实施例2:在聚合物衬底上先后进行Al和Ge的离子束溅射镀膜,制备出100nmGe/50nmAl双层膜。将上述制备出的Ge/Al双层膜进行退火处理,退火温度为160℃,退火时间为50min。用H 2O 2对上述退火处理的Ge/Al双层膜进行选择性刻蚀处理,刻蚀时间为80min。
实施例3:在NaCl晶体衬底上先后进行Ag和Si的真空蒸发镀膜,制备出60nmSi/30nmAg双层膜。将上述制备出的Si/Ag双层膜进行退火处理,退火温度为380℃,退火时间为45min。用KOH对上述退火处理的Si/Ag双层膜进行选择性刻蚀处理,刻蚀时间为40min。
实施例4:在玻璃衬底上先后进行Pt和Ge的离子束溅射镀膜,制备出60nmGe/20nmPt双层膜。将上述制备出的Ge/Pt双层膜进行退火处理,退火温度为470℃,退火时间为60min。用H 2O 2对上述退火处理的Ge/Pt双层膜进行选择性刻蚀处理,刻蚀时间为30min。
实施例5:在铜箔衬底上先后进行Ni的电化学沉积和Si、Ge的磁控共溅射镀膜,制备出1000nm(SiGe)/500nmNi双层膜。将上述制备出的(SiGe)/Ni双层膜进行退火处理,退火温度为450℃,退火时间为120min。用NaOH对上述退火处理的Si/Ni双层膜进行选择性刻蚀处理,刻蚀时间为180min。
实施例6:在陶瓷衬底上先后进行Cu的脉冲激光沉积和Si的离子束溅射镀膜,制备出150nmGe/100nmCu双层膜。将上述制备出的Si/Cu双层膜进行退火处理, 退火温度为500℃,退火时间为60min。用HF对上述退火处理的Si/Cu双层膜进行选择性刻蚀处理,刻蚀时间为120min。
实施例7:在Si/SiO 2衬底衬底上先后进行Au和Ge的真空蒸发镀膜,制备出50nmGe/20nmAu双层膜。将上述制备出的Ge/Au双层膜进行退火处理,退火温度为120℃,退火时间为60min。用H 2O 2对上述退火处理的Ge/Au双层膜进行选择性刻蚀处理,刻蚀时间为20min。
实施例8:在紫铜片衬底上先后进行Pd的电化学沉积和Si的磁控溅射镀膜,制备出80nmSi/40nmPd双层膜。将上述制备出的Si/Pd双层膜进行退火处理,退火温度为430℃,退火时间为75min。用NaOH对上述退火处理的Si/Pd双层膜进行选择性刻蚀处理,刻蚀时间为70min。
尽管上述结合实例对本发明中纳米多金属的制备进行了描述,但本发明并不仅局限于上述具体实施方式。以上所述仅仅是优选的示意性实施方式,对于本领域的普通技术人员而言,在不脱离本发明宗旨的情况下,还可以做出若干变形、改进、润饰或尝试,这些均应视为本发明的保护范畴。
参考文献:
[1]T.Fujita,P.Guan,K.McKenna et al.Atomic origins of the high catalytic activity of nanoporous gold[J].Nature materials,2012,11(9):775-780.
[2]Z.Peng,SA Freunberger,Y.Chen et al.A reversible and higher-rate Li-O 2battery[J].Science,2012,337(6094):563-577.
[3]X.Lang,A.Hirata et al.Nanoporous metal/oxide hybrid electrodes for electrochemical super-Capacitors[J].Nature nanotechnology,2011,6(4):232-236.
[4]Mehrer,H.Diffusion in Solids:Fundamentals,Methods,Materials,Diffusion-Controlled Processes[M].Springer Series in Solid-State Sciences,2014,33(2).
[5]Hiraki A.Low temperature reactions at Si/metal interfaces;what isgoing on at the interfaces?[J].Surf Sci Rep,1983;3:357-412.
[6]Z.M.Wang,J.Y.Wang,L.P.H.Jeurgens,E.J Mittemeijer.Thermodynamics and mechanism of metal-induced crystallization in immiscible alloy systems:experiments and calculations on Al/a-Ge and Al/a-Si bilayers[J].Physical Review B,77,045424.
[7]L.P.H.Jeurgens,Z.M.Wang,E.J Mittemeijer.Thermodynamics of reactions and phase transformations at interfaces and surfaces[J].International Journal of Materials Research, 2009,100(10),1281-1307.
[8]Z.M.Wang,J.Y.Wang,L.P.H.Jeurgens,F.Phillipp,E.J.Mittemeijer.Origins of stress development during metal-induced crystallization and layer exchange:annealing amorphous Ge/crystalline Al bilayers[J].Acta Materialia,2008,56(18),5047-5057.
[9]Z.M.Wang,Gu,L.P.H.Jeurgens,F.Phillipp,E.J Mittemeijer,Real-time visualization of convective transportation of solid materials at nanoscale.Nano Letters,2012,12(12),1133–1136.

Claims (10)

  1. 一种纳米多孔金属材料的制备方法,其特征在于,所述材料是以半导体/金属双层膜为基材构筑;包括如下步骤:
    (1)将金属和半导体材料在衬底上进行膜层生长,得到半导体/金属双层膜;
    (2)对制备出的半导体/金属双层膜进行退火处理;
    (3)对退火后的半导体/金属双层膜进行选择性刻蚀处理,以除去半导体从而获得纳米多孔金属材料。
  2. 如权利要求1所述的方法,其特征是所述步骤(1)膜层生长方式为电化学沉积镀膜、磁控溅射镀膜、离子束溅射镀膜、真空蒸发镀膜、脉冲激光沉积制膜或熔融电镀等其中之一或其组合。
  3. 如权利要求1所述的方法,其特征是所述步骤(1)中的金属为Au、Pt、Ag、Pd、Ti、Ir、Cr、Ru、Mn、Fe、Co、Ni、Cu、Zr、Nb、Rh、Al、Ta、Re、W等其中之一或其合金。
  4. 如权利要求1所述的方法,其特征是所述步骤(1)中的半导体为Si或Ge或Si xGe 1-x。化合物。
  5. 如权利要求1所述的方法,其特征是所述步骤(1)中的衬底材料是聚合物、聚合物膜、塑料、塑料膜、半导体、玻璃、氧化物、陶瓷、金属、金属合金、金属箔、金属合金箔的一种或组合。
  6. 如权利要求1所述的方法,其特征是所述步骤(1)中金属单层或半导体单层的膜层厚度小于等于1000nm。
  7. 如权利要求6所述的方法,其特征是所述膜层厚度范围是100~500nm。
  8. 如权利要求6所述的方法,其特征是膜层厚度范围是20~100nm。
  9. 如权利要求1所述的方法,其特征是所述步骤(2)的退火处理温度为100~500℃。
  10. 如权利要求1所述的方法,其特征是所述步骤(2)的退火处理温度为120~350℃。
PCT/CN2017/119010 2017-11-27 2017-12-27 一种制备纳米多孔金属材料的方法 WO2019100517A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711207305.XA CN108018531B (zh) 2017-11-27 2017-11-27 一种制备纳米多孔金属材料的方法
CN201711207305.X 2017-11-27

Publications (1)

Publication Number Publication Date
WO2019100517A1 true WO2019100517A1 (zh) 2019-05-31

Family

ID=62077347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/119010 WO2019100517A1 (zh) 2017-11-27 2017-12-27 一种制备纳米多孔金属材料的方法

Country Status (2)

Country Link
CN (1) CN108018531B (zh)
WO (1) WO2019100517A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112169805B (zh) * 2020-10-17 2022-07-29 重庆卡贝乐化工有限责任公司 一种用于合成气制低碳醇用钴镓催化剂
CN113976904B (zh) * 2021-10-20 2024-02-13 杭州电子科技大学 一种微腔内光激发化学诱导生长贵金属纳米粒子的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101298682A (zh) * 2008-06-25 2008-11-05 华东师范大学 用蒸发沉积制备铂纳米多孔电极的方法
CN102677163A (zh) * 2012-05-18 2012-09-19 上海大学 具有锗晶分形团簇的Al/Ge双层膜的制备方法
WO2016126549A1 (en) * 2015-02-02 2016-08-11 University Of Houston System Porous solid oxide fuel cell anode with nanoporous surface and process for fabrication

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101665902B (zh) * 2008-09-03 2011-03-16 中国科学院合肥物质科学研究院 镍有序多孔阵列薄膜及其制备方法
CN103236395B (zh) * 2011-05-25 2016-09-28 新加坡科技研究局 在基底上形成纳米结构的方法及其用途
CN103227239A (zh) * 2013-04-02 2013-07-31 上海大学 干法刻蚀两步法铝诱导非晶硅晶化薄膜的方法
CN104451547A (zh) * 2014-12-05 2015-03-25 国家纳米科学中心 一种磁控溅射制备纳米多孔金属薄膜的方法
CN107350468B (zh) * 2017-06-22 2019-05-03 中国科学院合肥物质科学研究院 一种三维多孔金-银合金纳米材料及其制备方法与应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101298682A (zh) * 2008-06-25 2008-11-05 华东师范大学 用蒸发沉积制备铂纳米多孔电极的方法
CN102677163A (zh) * 2012-05-18 2012-09-19 上海大学 具有锗晶分形团簇的Al/Ge双层膜的制备方法
WO2016126549A1 (en) * 2015-02-02 2016-08-11 University Of Houston System Porous solid oxide fuel cell anode with nanoporous surface and process for fabrication

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG, RENJI ET AL: "Crystallization of amorphous Ge in Ge/Au, Ge/Ag bilayer films and Ge-Au, Ge-Ag alloy films", ACTA PHYSICA SINICA, vol. 35, no. 3, 31 March 1986 (1986-03-31), pages 365 - 374, XP055613723 *

Also Published As

Publication number Publication date
CN108018531B (zh) 2020-04-17
CN108018531A (zh) 2018-05-11

Similar Documents

Publication Publication Date Title
US9536735B2 (en) Method for preparing graphene
CN103904360B (zh) 一种固态电解质及其制作方法与全固态锂电池
EP3655569B1 (en) Forming a layer of functional material on an electrically conductive substrate
Yu et al. Nanoporous metals by dealloying multicomponent metallic glasses
Yu et al. Inkjet-printed porous silver thin film as a cathode for a low-temperature solid oxide fuel cell
CN107623131B (zh) 基于铂或铂合金纳米管的膜电极的制备及其应用
CN106916988A (zh) 一种纳米多孔金属薄膜的制备方法
Gan et al. Nanoporous metals processed by dealloying and their applications
Zhang et al. Enhanced electrocatalytic activities toward the ethanol oxidation of nanoporous gold prepared via solid-phase reaction
CN107385372B (zh) 一种纳米结构过渡金属薄膜的制备方法
JP2007207718A (ja) 燃料電池用セパレータおよびその製造方法
Quach et al. Electrochemical deposition of Co− Sb thin films and nanowires
Mackay et al. Template-free electrochemical synthesis of tin nanostructures
CN112957912B (zh) 一种多层选择性氢渗透复合膜及其制备和应用
Lee et al. A nanoporous substrate-based low temperature solid oxide fuel cell using a thin film Ni anode
US20180319664A1 (en) Method for making three-dimensional porous composite structure
WO2019100517A1 (zh) 一种制备纳米多孔金属材料的方法
Scaglione et al. Amorphous molybdenum sulphide@ nanoporous gold as catalyst for hydrogen evolution reaction in acidic environment
CN101996775B (zh) 一种固态超级电容器的制备方法
US11824208B2 (en) Intermetallic catalyst and method for preparing the same
CN114481048A (zh) 高导电耐蚀非晶/纳米晶复合共存的涂层及其制法与应用
Scandura et al. Nanoporous Dealloyed Metal Materials Processing and Applications─ A Review
CN112176285A (zh) 一种新型碳化铌薄膜用于氢分离及其制备方法
CN100573778C (zh) 场发射阴极及其制造方法
CN103526299A (zh) 一种制备硅纳米结构材料的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17932861

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 21/07/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17932861

Country of ref document: EP

Kind code of ref document: A1