CN112176285A - 一种新型碳化铌薄膜用于氢分离及其制备方法 - Google Patents

一种新型碳化铌薄膜用于氢分离及其制备方法 Download PDF

Info

Publication number
CN112176285A
CN112176285A CN202011017037.7A CN202011017037A CN112176285A CN 112176285 A CN112176285 A CN 112176285A CN 202011017037 A CN202011017037 A CN 202011017037A CN 112176285 A CN112176285 A CN 112176285A
Authority
CN
China
Prior art keywords
niobium carbide
hydrogen
hydrogen separation
film
novel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011017037.7A
Other languages
English (en)
Inventor
李新中
刘京京
李新华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhu China hydrogen New Energy Technology Co.,Ltd.
Original Assignee
李新中
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 李新中 filed Critical 李新中
Priority to CN202011017037.7A priority Critical patent/CN112176285A/zh
Publication of CN112176285A publication Critical patent/CN112176285A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0635Carbides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • C01B3/58Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

一种新型碳化铌薄膜用于氢分离及其制备方法,涉及一种新型的氢分离膜及其制备方法。本发明是为了解决现有的V/Pd氢分离膜价格昂贵和高温稳定性差的问题。本发明所述的是碳化铌薄膜在氢分离中的应用,将碳化铌薄膜通过磁控溅射、离子束溅射、电子束蒸发、脉冲沉积、分子束外延或原子层沉积方法沉积到V基体、Nb基体、Ni基体、多孔不锈钢、多孔陶瓷上面,形成碳化铌/X基体复合膜用于氢气提纯,其特征在于,碳化铌作为一种全新的氢分离膜,价格低廉、制备方法简单,通过调整沉积温度、沉积功率、沉积偏压等工艺参数,可以进一步提高其高温渗氢性能。

Description

一种新型碳化铌薄膜用于氢分离及其制备方法
技术领域
本发明应用于氢气提纯领域,具体说涉及一种新型氢分离提纯膜及其制备方法和应用。
背景技术
全球H2产量超5000万吨/年,超过95%的H2来自于化石燃料,但工业应用的方法得到的H2纯度较低,需要进一步氢气提纯。目前,Pd及其合金在这类材料的研究和工业实践中占据主导地位,因为它们能够在很宽的温度范围内分离氢并显示出高渗透性,但是该技术的广泛实施受到Pd高成本的限制,更重要的是Pd催化膜具有限制的可操作性温度区间,高温稳定性差。VB族元素V、Nb、Ta及其相关合金理论氢渗透率高于Pd及其合金,而成本低2-3个数量级,限制它们发展的因素与Pd不同,该类金属及其合金对氢具有可忽略的催化活性,无法在其表面将氢解离和重组,另外在低温下VB族BCC金属在低于350℃的工作温度下容易发生氢脆,因此也限制了该类合金的使用。
基于以上背景,人们迫切希望找到Pd及其合金的替代品,过渡金属碳化物的催化性能,在电化学析氢方面取得了一定的效果,这些碳化物以及硫化物一被用作需要氢氧化/解离的反应中贵金属催化剂的替代物,例如在燃料电池或水煤气变换反应器中,虽然它们本质上不一定是氢可渗透的,离解的氢容易沿其表面扩散,目前,碳化钼已经被证实可以作为Pd的有效替代的潜在催化膜,离解的氢可以沿着碳化钼晶界或纳米级缺陷将氢转移到下边的金属,同为过渡金属碳化物的碳化铌,目前,没有专利和文献对碳化铌氢分离膜进行报道。
鉴于此,特提出本发明。
发明内容
本发明所要解决的技术问题是针对现在氢分离膜技术的不足,提供一种新型高性能碳化铌薄膜用于氢分离及其制备方法。采用物理气相沉积的方法,制备碳化铌氢分离膜用于氢气提纯,再通过调整镀膜时的工艺参数,包括镀膜温度、镀膜时间、基底负偏压、镀膜功率,进一步提高碳化铌氢分离的氢渗透性能。
为解决上述技术问题,本发明提供的技术方案如下:
一种新型碳化铌薄膜用于氢分离,复合膜包括三层,第一层为氢解离膜层碳化铌,第二层为基体氢扩散层,第三层为氢重组层碳化铌,氢解离层和重组层是对称的,所采用镀膜工艺参数完全一致。
而且,氢解离层厚度为5-500nm、氢扩散层厚度为20-20000μm、氢重组层厚度为5-500nm。
而且,氢解离层厚度为10-300nm、氢扩散层厚度为50-10000μm、氢重组层厚度为10-300nm。
而且,氢扩散层为金属、金属合金或非金属陶瓷中的一种。
而且,金属为V、Nb、Ta、Mo、Ni、Ti、Pd、Pt或多孔不锈钢中的一种;金属合金为V/Ni、V/Gr、V/Cu、V/Fe、V/Al、V/Co、V/Mo、V/W、V/Ti/Ni、V/Fe/Al、V/Mo/W、Nb/Ti/Ni、Nb/Ti/Co、Nb/Mo/W或其他高熵渗氢合金中的一种;非金属陶瓷为多孔氧化铝陶瓷片/管、多孔氧化锆陶瓷片/管或沸石中的一种。
一种新型碳化铌薄膜用于氢分离的制备方法,其特征在于,通过物理气相沉积法将碳化铌沉积到基底材料的两侧。
而且,膜方式为离子束溅射、磁控溅射、电子束蒸发、脉冲沉积、分子束外延或原子层沉积中的任意一种制备工艺。
而且,镀膜方式为离子束溅射、磁控溅射、电子束蒸发、脉冲沉积、分子束外延或原子层沉积中的任意一种制备工艺。
而且,碳化铌薄膜中Nb和C的摩尔比为(1-6):(1-5),优选摩尔比为(1-3):(1-2)。
上述新型碳化铌氢分离膜的制备方法,采用磁控溅射方法制成,按照下述步骤进行制备:
步骤1,将清洗后的样品装卡到磁控溅射设备炉膛里,抽真空到一定真空度,充入一定氩气,打开挡板,进行样品表面的离子束清洗;
步骤1中,使用超声波清洗仪对样品依次进行丙酮、乙醇和等离子水的10min超声波清洗,再烘干;将样品装卡在炉膛中,真空度小于10-4Pa后,加热基底,温度为25-600℃,充入氩气流量为3-10sccm进行离子束清洗,工作压强为0.2-2Pa,基底负偏压为0-400V,清洗时间为10-60min。
步骤2,打开靶材档板,充入一定氩气,调整炉膛压力,给一定功率,起辉进行磁控溅射制备碳化铌氢分离膜。
步骤2中,磁控溅射真空度小于10-4Pa,基底温度为25-600℃、基底负偏压为0-500V、通入氩气流量为10-50sccm、工作压强为0.2-2Pa,工作功率50-400W,溅射时间为2-120min。
本申请采用磁控溅射沉积法,控制溅射温度及溅射时间等工艺参数改变碳化铌形态,改变其氢渗透性能。
本发明公开了碳化铌与基体复合形成的复合膜材料在氢气分离和提纯中的应用。
与现有技术相比,本发明的有益效果在于:1、本发明将新型碳化铌氢分离膜与基体材料结合,取代贵金属Pd,大幅度降低了氢气分离的应用成本;2、碳化铌作为一种新型氢分离膜,在高温下具有比纯Pd更高的氢渗透率;3、本发明的碳化铌/基体复合膜,具有比纯Pd、Pd合金及Pd/基体复合膜更好的高温氢渗透稳定性能。本发明的新型碳化铌氢分离膜为实现新型、廉价、高效和稳定的氢气分离和提纯的材料和器件提供了新的选择。
附图说明
图1为本发明的氢分离和提纯复合膜材料结构示意图,其中上层为碳化铌氢解离层,中间层为金属基底或多孔支撑体,第三层为碳化钼氢重组层;
图2为实施例1-3在不同磁控溅射基体温度下制备的NbC/V复合膜的XRD图谱;
图3为实施例4中在一定工艺参数下制备的NbC/Nb复合膜的XRD图谱;
图4为实施例1中在25℃基体温度下制备的NbC/V氢分离复合膜在不同工作温度下得到的氢通量随着压力的变化曲线;
图5为实施例4中在一定工艺参数下制备的NbC/Nb氢分离复合膜在不同工作温度下得到的氢通量随着压力的变化曲线;
具体实施方式
具体实施方式一:
一种新型碳化铌薄膜用于氢分离的制备方法,本实施方式膜材料为采用射频电源,基体为厚度为100μm的V箔,碳化铌靶材直接磁控溅射得到NbC/V复合膜用于氢分离,基体温度变化范围为25-600℃,其他工艺参数保持不变。
磁控溅射基体温度影响碳化铌的结晶度,分析认为氢原子是沿着碳化铌的晶界扩散的,氢分离膜结晶度不同将导致不同的渗氢性能,因此涉及基体温度对NbC/V复合膜渗氢性能的影响,常温到600℃的温度变化可以总结出温度对渗氢性能的影响。
具体实施方式二:
一种新型碳化铌薄膜用于氢分离的制备方法,本实施方式膜材料为采用射频电源,基体为厚度为100μm的V箔,碳化铌靶材直接磁控溅射得到NbC/V复合膜用于氢分离,磁控溅射时间变化范围为2-120min,其他工艺参数保持不变,一般溅射速率可达到3-20nm/min。
磁控溅射时间的变化影响的是新型碳化铌薄膜的厚度,氢分子在碳化铌表面得到解离以及氢原子在碳化铌薄膜中的扩散是NbC/V复合膜渗氢过程的一部分,膜太薄将导致无法全覆盖V箔表面,渗氢性能下降,碳化铌薄膜过厚,氢原子在碳化铌中的扩散成为主要渗氢限制,导致渗氢性能下降,膜厚对复合膜渗氢性能影响较大。
具体实施方式三:
一种新型碳化铌薄膜用于氢分离的制备方法,本实施方式膜材料为采用射频电源,基体为厚度为100μm的V箔,碳化铌靶材直接磁控溅射得到NbC/V复合膜用于氢分离,溅射功率为50-100W,其他工艺参数保持不变。
磁控溅射功率影响碳化铌的结晶大小,分析认为氢原子是沿着碳化铌的晶界扩散的,氢分离膜结晶度不同将导致不同的渗氢性能,因此涉及磁控溅射功率对NbC/V复合膜渗氢性能的影响,常温到600℃的温度变化可以总结出溅射功率对渗氢性能的影响。
实施例
实施例1
一种新型碳化铌薄膜用于氢分离的制备方法具体按照实施方式一进行,如附图1所示,为本发明实施例的氢分离和提纯复合膜材料结构示意图,其中1和3均为190nm厚的NbC氢解离层,2为厚度为100μm的金属V箔。该复合膜的具体制备步骤如下:
(1)清洗V基底
使用超声波清洗仪对剪切好的V基底进行清洗,依次用丙酮、无水乙醇、去离子水分别超声10min,再烘干处理;
(2)离子束清洗样品
打开样品台挡板,溅射腔内真空度小于10-4Pa、通入氩气流量为5sccm、工作压强为5.5*10-2Pa、束流密度为50mA/cm2,持续沉积为时间为10min。
(3)制备氢解离层
溅射炉膛内真空度达到10-4Pa以下后,打开碳化铌靶材的挡板,充入25sccm的高纯氩气,溅射功率为200W、基体温度为25℃、基底负偏压为0V、工作压强为1Pa、持续沉积时间为20min。
(4)制备氢重组层
开炉,重复以上(2)(4)步骤,炉体冷却后,拿出样品密封保存。
得到的XRD图谱如图2所示,溅射基体温度为25℃下得到的薄膜结晶度较好,也能看到V基体的衍射峰。
实施例2
参照实施例1的方案,基体温度为200℃,其余步骤的参数与实施例1参数相同。
得到的XRD图谱如图2所示,衍射峰值更加尖锐明显,结晶度进一步提高。
利用自主设计的渗氢装置,在NbC/V氢分离和提纯复合膜的两端给定不同的压力,得到的氢通量随上游压力的变化曲线如图4所示,渗氢通量随着工作温度的升高而升高,随着上下游压力差的增大而增大。
实施例3
参照实施例1的方案,基体温度为200℃,其余步骤的参数与实施例1参数相同。
得到的XRD图谱如图2所示,衍射峰值更加尖锐明显,结晶度进一步提高。图5给出了不同磁控溅射基体温度下得到的NbC/V复合膜与Pd和V的渗氢性能对比图。
实施例4
参照实施例1的方案,基底为Nb基底,其余步骤的参数与实施例1参数相同。
得到的XRD图谱如图3所示。
利用自主设计的渗氢装置,在NbC/Nb氢分离和提纯复合膜的两端给定不同的压力,得到的氢通量随上游压力的变化曲线如图5所示,渗氢通量随着工作温度的升高而升高,随着上下游压力差的增大而增大。

Claims (8)

1.一种新型用于氢分离的碳化铌薄膜,其特征在于,所述氢分离膜包括氢解离层碳化铌膜、基体氢扩散层和氢重组层碳化铌膜;所述碳化铌的Nb和C的摩尔比为(1-6):(1-5),进一步优选为(1-3):(1-2)。
2.根据权利要求1所述的一种新型用于氢分离的碳化铌薄膜,其特征在于,氢解离层厚度为5-500nm,优选为10-300nm;所述基体氢扩散层厚度为20-20000μm,优选为20-10000μm;所述氢重组层厚度为5-500nm,优选为10-300nm。
3.根据权利要求1所述的一种新型用于氢分离的碳化铌薄膜,其特征在于,基体扩散层包括金属、多孔不锈钢、多孔陶瓷,金属包括V、Nb、Ta、Mo、Ni、Ti、Pd、Pt或多孔不锈钢中的一种;金属合金为V/Ni、V/Cr、V/Cu、V/Fe、V/Al、V/Co、V/Mo、V/W、V/Ti/Ni、V/Fe/Al、V/Mo/W、Nb/Ti/Ni、Nb/Ti/Co、Nb/Mo/W或其他高熵渗氢合金中的一种;非金属陶瓷为多孔氧化铝陶瓷片/管、多孔氧化锆陶瓷片/管或沸石中的一种。
4.一种新型用于氢分离的碳化铌薄膜的制备方法,其特征在于,通过物理气相沉积法将碳化铌沉积到基底材料的两侧。
5.根据权利要求4所述的一种新型用于氢分离的碳化铌薄膜的制备方法,其特征在于,镀膜方式为离子束溅射、磁控溅射、电子束蒸发、脉冲沉积、分子束外延或原子层沉积中的任意一种制备工艺。
6.根据权利要求4所述的一种新型用于氢分离的碳化铌薄膜的制备方法,其特征在于,所述制备方法包括以下步骤:
步骤1,将清洗后的样品装卡到磁控溅射设备炉膛里,抽真空到一定真空度,充入一定氩气,打开挡板,进行样品表面的离子束清洗;
步骤2,打开靶材档板,充入一定氩气,调整炉膛压力,给一定功率,起辉进行磁控溅射制备碳化铌氢分离膜。
7.根据权利6要求所述的一种新型用于氢分离的碳化铌薄膜的制备方法,其特征在于,步骤1中,使用超声波清洗仪对样品依次进行丙酮、乙醇和等离子水的10min超声波清洗,再烘干;将样品装卡在炉膛中,真空度小于10-4Pa后,加热基底,温度为25-600℃,充入氩气流量为3-10sccm进行离子束清洗,工作压强为0.2-2Pa,基底负偏压为0-400V,清洗时间为10-60min。
8.根据权利6要求所述的一种新型用于氢分离的碳化铌薄膜的制备方法,其特征在于,步骤2中,磁控溅射真空度小于10-4Pa,基底温度为25-600℃、基底负偏压为0-500V、通入氩气流量为10-50sccm、工作压强为0.2-2Pa,工作功率50-400W,溅射时间为2-120min。
CN202011017037.7A 2020-09-24 2020-09-24 一种新型碳化铌薄膜用于氢分离及其制备方法 Pending CN112176285A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011017037.7A CN112176285A (zh) 2020-09-24 2020-09-24 一种新型碳化铌薄膜用于氢分离及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011017037.7A CN112176285A (zh) 2020-09-24 2020-09-24 一种新型碳化铌薄膜用于氢分离及其制备方法

Publications (1)

Publication Number Publication Date
CN112176285A true CN112176285A (zh) 2021-01-05

Family

ID=73955491

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011017037.7A Pending CN112176285A (zh) 2020-09-24 2020-09-24 一种新型碳化铌薄膜用于氢分离及其制备方法

Country Status (1)

Country Link
CN (1) CN112176285A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113403640A (zh) * 2021-06-16 2021-09-17 曾祥燕 一种过渡族金属化合物析氢薄膜及射频反溅改性制备方法
CN115074685A (zh) * 2022-06-27 2022-09-20 商丘市鸿大光电有限公司 钽/钯催化氢纯化用耐高温TaVNb/TaVNbHfZr复合梯度阻挡层制备工艺

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030183080A1 (en) * 2002-03-05 2003-10-02 Mundschau Michael V. Hydrogen transport membranes
US20060124448A1 (en) * 2003-01-23 2006-06-15 Jayaraman Raviprakash Thin film semi-permeable membranes for gas sensor and catalytic applications
US20090277331A1 (en) * 2008-05-09 2009-11-12 Membrane Reactor Technologies Ltd. Hydrogen separation composite membrane module and the method of production thereof
US20110229379A1 (en) * 2010-03-22 2011-09-22 Way J Douglas Stable Catalyst Layers for Hydrogen Permeable Composite Membranes
EP2596851A1 (en) * 2011-11-24 2013-05-29 Samsung Electronics Co., Ltd Separation membrane, and apparatus including the separation membrane
KR20140108012A (ko) * 2013-02-28 2014-09-05 경기대학교 산학협력단 스퍼터에 의한 치밀 수소분리막의 제조방법
CN105478019A (zh) * 2014-09-19 2016-04-13 中国石油化工股份有限公司 一种复合金属氢气分离膜及其制备方法和应用
US20160288114A1 (en) * 2015-03-31 2016-10-06 James Douglas Way Ammonia Synthesis at Moderate Conditions Using Hydrogen Permeable Membrane Reactors

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030183080A1 (en) * 2002-03-05 2003-10-02 Mundschau Michael V. Hydrogen transport membranes
US20060124448A1 (en) * 2003-01-23 2006-06-15 Jayaraman Raviprakash Thin film semi-permeable membranes for gas sensor and catalytic applications
US20090277331A1 (en) * 2008-05-09 2009-11-12 Membrane Reactor Technologies Ltd. Hydrogen separation composite membrane module and the method of production thereof
US20110229379A1 (en) * 2010-03-22 2011-09-22 Way J Douglas Stable Catalyst Layers for Hydrogen Permeable Composite Membranes
EP2596851A1 (en) * 2011-11-24 2013-05-29 Samsung Electronics Co., Ltd Separation membrane, and apparatus including the separation membrane
KR20140108012A (ko) * 2013-02-28 2014-09-05 경기대학교 산학협력단 스퍼터에 의한 치밀 수소분리막의 제조방법
CN105478019A (zh) * 2014-09-19 2016-04-13 中国石油化工股份有限公司 一种复合金属氢气分离膜及其制备方法和应用
US20160288114A1 (en) * 2015-03-31 2016-10-06 James Douglas Way Ammonia Synthesis at Moderate Conditions Using Hydrogen Permeable Membrane Reactors

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113403640A (zh) * 2021-06-16 2021-09-17 曾祥燕 一种过渡族金属化合物析氢薄膜及射频反溅改性制备方法
CN115074685A (zh) * 2022-06-27 2022-09-20 商丘市鸿大光电有限公司 钽/钯催化氢纯化用耐高温TaVNb/TaVNbHfZr复合梯度阻挡层制备工艺
CN115074685B (zh) * 2022-06-27 2023-10-27 商丘市鸿大光电有限公司 钽/钯催化氢纯化用耐高温TaVNb/TaVNbHfZr复合梯度阻挡层制备工艺

Similar Documents

Publication Publication Date Title
Nam et al. Preparation of a palladium alloy composite membrane supported in a porous stainless steel by vacuum electrodeposition
Pederson et al. Application of vacuum deposition methods to solid oxide fuel cells
Hara et al. An amorphous alloy membrane without noble metals for gaseous hydrogen separation
Nam et al. A study on the palladium/nickel composite membrane by vacuum electrodeposition
Zhao et al. Low-temperature stability of body-centered cubic PdCu membranes
CN112176285A (zh) 一种新型碳化铌薄膜用于氢分离及其制备方法
Lee et al. A nanoporous substrate-based low temperature solid oxide fuel cell using a thin film Ni anode
JP5363121B2 (ja) 水素透過膜、及びその製造方法
CN112957912B (zh) 一种多层选择性氢渗透复合膜及其制备和应用
Ryu et al. Three dimensional YSZ interface engineering layer for enhancement of oxygen reduction reactions of low temperature solid oxide fuel cells
JP6600300B2 (ja) 固体電解質用多重層配置構成
Liu et al. Structure and properties of niobium carbide coated vanadium composite membranes for high temperature hydrogen separation
Pişkin et al. Nb-Pd-Ti BCC thin films for hydrogen separation
CN111841339A (zh) 一种用于氢气分离的复合膜及其制备方法和应用
Mineshige et al. Preparation of dense electrolyte layer using dissociated oxygen electrochemical vapor deposition technique
Rusli et al. Annealing temperature induced improved crystallinity of YSZ thin film
Yin et al. Substantial enhancement of hydrogen permeability of Mo2C/V composite membranes by ion beam sputtering
Tong et al. Preparation of palladium–silver alloy films by a dual-sputtering technique and its application in hydrogen separation membrane
Yu et al. High performance, enhanced structural stability of co-sputtered nanocomposite anode with neutral stress state for low-temperature solid oxide fuel cells
WO2019100517A1 (zh) 一种制备纳米多孔金属材料的方法
JPH11267477A (ja) 水素透過膜及びその作製方法
Zhang et al. Effect of intermetallic diffusion between Pd and Ti–Al alloy on the performance of Pd/Ti–Al alloy composite membranes
CN212396398U (zh) 一种用于氢气分离的复合膜
Shi et al. Deposition of titanium carbide catalytic films on vanadium foils by ion beam sputtering for hydrogen separation and purification
KR101312976B1 (ko) 산화니켈/니켈 수소분리 복합막 및 그 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20220207

Address after: 241000 No. 4, Jinye Road, Sanshan Economic Development Zone, Wuhu City, Anhui Province

Applicant after: Wuhu China hydrogen New Energy Technology Co.,Ltd.

Address before: 130 Flourishing Street, Nangang District, Harbin City, Heilongjiang Province

Applicant before: Li Xinzhong

TA01 Transfer of patent application right
RJ01 Rejection of invention patent application after publication

Application publication date: 20210105

RJ01 Rejection of invention patent application after publication