CN111825064B - 一种水溶性ZnCuInX量子点的一步水相合成方法 - Google Patents

一种水溶性ZnCuInX量子点的一步水相合成方法 Download PDF

Info

Publication number
CN111825064B
CN111825064B CN202010802262.5A CN202010802262A CN111825064B CN 111825064 B CN111825064 B CN 111825064B CN 202010802262 A CN202010802262 A CN 202010802262A CN 111825064 B CN111825064 B CN 111825064B
Authority
CN
China
Prior art keywords
soluble
zncuinx
salt
water
quantum dots
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010802262.5A
Other languages
English (en)
Other versions
CN111825064A (zh
Inventor
王荣芳
韦星明
梁春杰
陶萍芳
董积有
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yulin Normal University
Original Assignee
Yulin Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yulin Normal University filed Critical Yulin Normal University
Priority to CN202010802262.5A priority Critical patent/CN111825064B/zh
Publication of CN111825064A publication Critical patent/CN111825064A/zh
Application granted granted Critical
Publication of CN111825064B publication Critical patent/CN111825064B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/002Compounds containing, besides selenium or tellurium, more than one other element, with -O- and -OH not being considered as anions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • C01G15/006Compounds containing, besides gallium, indium, or thallium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/62Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing gallium, indium or thallium
    • C09K11/621Chalcogenides
    • C09K11/623Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明公开了一种水溶性ZnCuInX量子点的一步水相合成方法,属于纳米材料制备技术领域。其包括步骤:在巯基乙酸中加入可溶性的锌盐、铜盐和铟盐,配制成前驱体混合溶液;将前驱体混合溶液的pH值调节至7.0‑11.0;然后加入硼氢化物、硒源或硫源;在80‑120℃下反应加热回流0.5‑9h得水溶性ZnCuInX量子点。本发明制备的ZnCuInX量子点克服了传统有机法制备量子点疏水性的缺陷,在应用前无需通过配体交换。本发明具有反应条件温和可控,操作步骤简单,安全环保等特点。ZnCuInX量子点的最大荧光发射峰在610nm左右,近似球型形貌,颗粒大小约为5nm。

Description

一种水溶性ZnCuInX量子点的一步水相合成方法
技术领域
本发明涉及纳米材料制备技术领域,具体涉及一种水溶性ZnCuInX量子点的一步水相合成方法。
背景技术
量子点(quantum dots,简称QDs)又可称为半导体纳米晶体(semiconductornanocrystal),是一种由II-VI族或III-V族元素组成二元或三元的无机纳米粒子。量子点作为一种新型的纳米材料,从20世纪70年代末起就引起了研究者们广泛的关注。相对于传统荧光材料,量子点具有激发光谱宽,从紫外到可见光都可激发;荧光发射光谱窄并且成对称分布;量子点的发光颜色可以通过改变粒子的颗粒大小来调节;并且光化学稳定性高等优点。量子点由于具有独特的发光性质,在发光二极管、太阳能电池、光学生物标记等领域具有广泛的应用前景。
ZnCuInX(X=Se,S)量子点是一种不含Pb、Cd重金属的半导体纳米材料,由于其禁带宽度非常接近于太阳能电池材料的最佳禁带宽度,是很好的太阳能电池光吸收材料;通过改变量子点的粒径大小实现荧光发射从可见光到近红外,在发光二极管中具有广泛的应用前景。目前合成ZnCuInX(X=Se,S)量子点的方法中需要用到昂贵或有害的有机试剂,并且大多数反应都要求惰性气体保护或高温等苛刻的实验条件。另外,通过这些方法合成的量子点都是疏水性,在应用前还需要通过配体交换转换成水溶性量子点,在相转移过程中不可避免的会导致合成量子点的发光强度和稳定性降低,从而限制了量子点的大规模生产及应用。因此,开发一种低成本、简单、环境友好的合成水溶性的ZnCuInX(X=Se,S)量子点材料方法尤为重要。
综合以上因素,通过简单的一步水相反应合成了水溶性ZnCuInX量子点,该方法具有反应条件温和可控,操作步骤简单,安全环保等特点。
发明内容
本发明针对上述现有技术存在的问题,本发明的目的是提供一种水溶性ZnCuInX量子点的一步水相合成方法。
为实现本发明的目的,通过以下技术方案予以实现:
一种水溶性ZnCuInX量子点的一步水相合成方法,其特征在于:所述ZnCuInX中的X为Se或S;
包括以下步骤:
(1)在巯基乙酸中加入可溶性的锌盐、铜盐和铟盐,配制成前驱体混合溶液;
(2)将前驱体混合溶液的pH值调节至7.0-11.0;然后加入硼氢化物、硒源或硫源;在80-120℃下反应加热回流0.5-9h得水溶性ZnCuInX量子点。
优选地,在步骤(1)中:
可溶性的锌盐、铜盐和铟盐的总和与巯基乙酸的摩尔比为1:1.4-4。
优选地,在步骤(1)中:
可溶性的锌盐、铜盐和铟盐的体积比为88-35:1-5:10-60。
优选地,在步骤(1)中,所述可溶性的锌盐为氯化锌、醋酸锌、硝酸锌或硫酸锌中的至少一种;所述可溶性的铜盐为硫酸铜和/或氯化铜;所述可溶性铟盐为氯化铟。
优选地,在步骤(2)中,所述的硼氢化物是硼氢化钠和/或硼氢化钾,硒源为二氧化硒、硒粉或亚硒酸钠中的至少一种;所述硫源为硫化钠。
优选地,在步骤(2)中:
可溶性的锌盐、铜盐和铟盐的总和与硒源的摩尔比为1:0.05-0.5。
优选地,在步骤(2)中:
可溶性的锌盐、铜盐和铟盐的总和与硫源的摩尔比为1:0.2-0.8。
优选地,在步骤(2)后,将水溶性ZnCuInX量子点用无水乙醇纯化。
进一步优选地,将水溶性ZnCuInX量子点与无水乙醇以1:2的体积比混合,离心去除上层清液后加入蒸馏水直至离心所得沉淀溶解;得到纯化后的水溶性ZnCuInX量子点。
本发明选用可溶性的锌盐、铜盐和铟盐作为锌源、铜源和铟源,二氧化硒为硒源(硫化钠为硫源),巯基乙酸作为稳定剂,油浴为加热方式,在水相体系中一步合成水溶性的ZnCuInX(X=Se,S)量子点。
本发明制备的ZnCuInX(X=Se,S)量子点克服了传统有机法制备量子点疏水性的缺陷,在应用前无需通过配体交换。本发明具有反应条件温和可控,操作步骤简单,安全环保等特点。ZnCuInX(X=Se,S)量子点的最大荧光发射峰在610nm左右,近似球型形貌,颗粒大小约为5nm。
附图说明
图1为实施例1在不同回流时间下制备ZnCuInSe量子点的荧光发射光谱图;
图2为实施例2在不同的(Zn+Cu+In):S的摩尔比制备ZnCuInS量子点的荧光发射光谱图;
图3为实施例3在不同(Zn+Cu+In):Se的摩尔比制备ZnCuInSe量子点的荧光发射光谱图;
图4为实施例4制备ZnCuInSe量子点的高分辨透射电镜照片;
图5为实施例4制备ZnCuInSe量子点的X-射线衍射图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。其中,附图仅用于示例性说明,表示的仅是示意图,而非实物图,不能理解为对本专利的限制。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。
本发明中,TGA是指巯基乙酸。
实施例1
(1)分别量取0.02mol/L醋酸锌38mL,0.02mol/L硫酸铜溶液2mL,0.02mol/L氯化铟溶液60mL放入三口烧瓶中得到阳离子混合溶液,然后加入0.3mL稳定剂TGA,其中(Zn2++Cu2++In3+):TGA的摩尔比为1:1.4,混合均匀后得金属离子的前驱体溶液;
(2)在步骤⑴中所得金属离子前驱体溶液中逐滴加入1mol/L氢氧化钠溶液,调节前驱体溶液的pH为10.0,然后在搅拌条件下将0.0444g二氧化硒和0.0454g硼氢化钠加入上述前驱体溶液中,其中(Zn+Cu+In):(Se)的摩尔比为1:0.2,二氧化硒与硼氢化钠的摩尔比为1:3;
(3)将步骤⑵所得的混合液充分进行磁力搅拌5min,置于100℃油浴中加热回流,分别在回流时间为10min,30min,1h,3h,5h,7h,9h时对溶液进行取样分析,所得样品自然冷却至室温,得到ZnCuInSe水溶性量子点;
(4)将步骤(3)制备得到的一系列ZnCuInSe量子点溶液分别与无水乙醇按照1:2的体积比混合均匀,然后离心去除上层清液,再加入一定量的蒸馏水将沉淀溶解后加入2倍体积的无水乙醇、离心,重复以上操作3次;将纯化后的ZnCuInSe量子点溶于蒸馏水中,得到橙色透明溶液,即为水溶性的ZnCuInSe量子点样品,该量子点的最大荧光发射峰在610nm左右。具体不同回流时间下的荧光发射图谱如图1所示。
实施例2
(1)分别量取0.02mol/L醋酸锌47mL,0.02mol/L硫酸铜溶液3mL,0.02mol/L氯化铟溶液50mL放入三口烧瓶中得到阳离子混合溶液,然后加入0.3mL稳定剂TGA,其中(Zn2++Cu2++In3+):TGA的摩尔比为1:1.4,混合均匀后得金属离子的前驱体溶液;
(2)在步骤⑴中所得金属离子前驱体溶液中逐滴加入1mol/L氢氧化钠溶液,调节前驱体溶液的pH为10.0,然后在搅拌条件下将一定量的硫化钠加入上述前驱体溶液中,其中调节(Zn+Cu+In):S的摩尔比分别为1:0.4、1:0.5、1:0.6、1:0.7四个不同的比例。
(3)将步骤⑵所得的混合液充分进行磁力搅拌5min,置于100℃油浴中加热回流30min,所得样品自然冷却至室温,得到ZnCuInS水溶性量子点;
(4)将步骤(3)制备得到的ZnCuInS量子点溶液分别与无水乙醇按照1:2的体积比混合均匀,然后离心去除上层清液,再加入一定量的蒸馏水将沉淀溶解后加入2倍体积的无水乙醇、离心,重复以上操作3次;将纯化后的ZnCuInS量子点溶于蒸馏水中,得到水溶性的ZnCuInS量子点样品,该量子点的最大荧光发射峰在540nm左右。其不同(Zn+Cu+In):S的摩尔比的荧光发射光谱图如图2所示。
实施例3
(1)分别量取0.02mol/L醋酸锌35mL,0.02mol/L硫酸铜溶液5mL,0.02mol/L氯化铟溶液60mL放入三口烧瓶中得到阳离子混合溶液,然后加入0.3mL稳定剂巯基乙酸(TGA),其中(Zn2++Cu2++In3+):TGA的摩尔比为1:1.4,混合均匀后得金属离子的前驱体溶液;
(2)在步骤⑴中所得金属离子前驱体溶液中逐滴加入1mol/L氢氧化钠溶液,调节前驱体溶液的pH为10.0,然后在搅拌条件下将一定量的二氧化硒和硼氢化钠加入上述前驱体溶液中,其中调节(Zn+Cu+In):Se的摩尔比分别为1:0.05、1:0.1、1:0.2三个不同的比例,二氧化硒与硼氢化钠的摩尔比为1:3;
(3)将步骤⑵所得的混合液充分进行磁力搅拌5min,置于100℃油浴中加热回流10min,所得样品自然冷却至室温,得到ZnCuInSe水溶性量子点;
(4)将步骤(3)制备得到的一系列ZnCuInSe量子点溶液分别与无水乙醇按照1:2的体积比混合均匀,然后离心去除上层清液,再加入一定量的蒸馏水将沉淀溶解后加入2倍体积的无水乙醇、离心,重复以上操作3次;将纯化后的ZnCuInSe量子点溶于蒸馏水中,得到橙色透明溶液,即为水溶性的ZnCuInSe量子点样品。其不同(Zn+Cu+In):Se的摩尔比的荧光发射光谱图如图3所示。
实施例4
(1)分别量取0.02mol/L醋酸锌68ml,0.02mol/L硫酸铜溶液2mL,0.02mol/L氯化铟溶液30mL放入三口烧瓶中得到阳离子混合溶液,然后加入0.3mL稳定剂TGA,其中(Zn2++Cu2++In3+):TGA的摩尔比为1:1.4,混合均匀后得金属离子的前驱体溶液;
(2)在步骤⑴中所得金属离子前驱体溶液中逐滴加入1mol/L氢氧化钠溶液,调节前驱体溶液的pH为10.0,然后在搅拌条件下将0.0111g二氧化硒和0.0114g硼氢化钠加入上述前驱体溶液中,其中(Zn+Cu+In):Se的摩尔比为1:0.05,二氧化硒与硼氢化钠的摩尔比为1:3;
(3)将步骤⑵所得的混合液充分进行磁力搅拌5min,置于100℃油浴中加热回流2h,所得样品自然冷却至室温,得到ZnCuInSe水溶性量子点;
(4)将步骤(3)制备得到的一系列ZnCuInSe量子点溶液分别与无水乙醇按照1:2的体积比混合均匀,然后离心去除上层清液,再加入一定量的蒸馏水将沉淀溶解后加入2倍体积的无水乙醇、离心,重复以上操作3次;将所得样品自然干燥得到ZnCuInSe量子点粉末样品。通过对其进行结构和形貌表征,ZnCuInSe量子点为闪锌矿结构,近似球型形貌,颗粒大小约为5nm。ZnCuInSe水溶性量子点的高分辨透射电镜和X-射线衍射图分别如图4、图5所示。

Claims (4)

1.一种水溶性ZnCuInX量子点的一步水相合成方法,其特征在于:所述ZnCuInX中的X为Se或S;
包括以下步骤:
(1)在巯基乙酸中加入可溶性的锌盐、铜盐和铟盐,配制成前驱体混合溶液;所述可溶性的锌盐为氯化锌、醋酸锌、硝酸锌或硫酸锌中的至少一种;所述可溶性的铜盐为硫酸铜和/或氯化铜;所述可溶性铟盐为氯化铟;所述可溶性的锌盐、铜盐和铟盐的总和与巯基乙酸的摩尔比为1:1.4-4;
(2)将前驱体混合溶液的pH值调节至7.0-11.0;然后加入硼氢化物、硒源或硫源;在80-120℃下反应加热回流0.5h得水溶性ZnCuInX量子点;所述的硼氢化物是硼氢化钠和/或硼氢化钾,硒源为二氧化硒、硒粉或亚硒酸钠中的至少一种;所述硫源为硫化钠;所述可溶性的锌盐、铜盐和铟盐的总和与硫源的摩尔比为1:0.2-0.8;所述可溶性的锌盐、铜盐和铟盐的总和与硒源的摩尔比为1:0.05-0.5。
2.根据权利要求1所述的水溶性ZnCuInX量子点的一步水相合成方法,其特征在于:在步骤(1)中:
可溶性的锌盐、铜盐和铟盐的体积比为88-35:1-5:10-60。
3.根据权利要求1或2所述的水溶性ZnCuInX量子点的一步水相合成方法,其特征在于:在步骤(2)中,将水溶性ZnCuInX量子点用无水乙醇纯化。
4.根据权利要求3所述的水溶性ZnCuInX量子点的一步水相合成方法,其特征在于:
将水溶性ZnCuInX量子点与无水乙醇以1:2的体积比混合,离心去除上层清液后加入蒸馏水直至离心所得沉淀溶解;得到纯化后的水溶性ZnCuInX量子点。
CN202010802262.5A 2020-08-11 2020-08-11 一种水溶性ZnCuInX量子点的一步水相合成方法 Active CN111825064B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010802262.5A CN111825064B (zh) 2020-08-11 2020-08-11 一种水溶性ZnCuInX量子点的一步水相合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010802262.5A CN111825064B (zh) 2020-08-11 2020-08-11 一种水溶性ZnCuInX量子点的一步水相合成方法

Publications (2)

Publication Number Publication Date
CN111825064A CN111825064A (zh) 2020-10-27
CN111825064B true CN111825064B (zh) 2023-04-14

Family

ID=72917703

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010802262.5A Active CN111825064B (zh) 2020-08-11 2020-08-11 一种水溶性ZnCuInX量子点的一步水相合成方法

Country Status (1)

Country Link
CN (1) CN111825064B (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104037310B (zh) * 2014-07-03 2017-01-18 吉林大学 基于碳量子点和ZnCuInS量子点的三原色匹配白光LED及其制备方法
CN104710989A (zh) * 2014-07-08 2015-06-17 中南民族大学 一种水溶性手性ZnCdSe量子点的水相制备方法
CN108865111A (zh) * 2018-07-02 2018-11-23 中国科学院广州能源研究所 一种ZnCuInSe/ZnSe核壳结构荧光量子点及其制备方法
GB2579785A (en) * 2018-12-13 2020-07-08 Lambda Stretch Ltd Photovoltaic device

Also Published As

Publication number Publication date
CN111825064A (zh) 2020-10-27

Similar Documents

Publication Publication Date Title
Zheng et al. Aqueous synthesis of glutathione‐capped ZnSe and Zn1–xCdxSe alloyed quantum dots
CN109021970B (zh) 一种AgInS2或CuInS2超小量子点及其制备方法和应用
CN103265949B (zh) 一种单核AgInS2量子点的制备方法
Zhang et al. One-pot synthesis of hydrophilic CuInS 2 and CuInS 2–ZnS colloidal quantum dots
CN107890875B (zh) 一种AgIn5S8-ZnS量子点及其制备方法和用途
Mansur et al. Eco-friendly AgInS2/ZnS quantum dot nanohybrids with tunable luminescent properties modulated by pH-sensitive biopolymer for potential solar energy harvesting applications
CN101148590A (zh) 环糊精修饰的CdTe量子点的水相制备方法
Chen et al. Room-temperature ionic-liquid-assisted hydrothermal synthesis of Ag-In-Zn-S quantum dots for WLEDs
CN108359452B (zh) 一种水溶性类石墨烯量子点及其制备方法与应用
CN101798511A (zh) 气相法制备ii-vi族水溶性硒化物半导体量子点的方法
CN101787285A (zh) 水溶性荧光ZnSe/ZnS核壳量子点的制备方法
CN107603604B (zh) 一种铜纳米团簇荧光材料及其制备方法
Xu et al. Seed-mediated growth approach for rapid synthesis of high-performance red-emitting CdTe quantum dots in aqueous phase and their application in detection of highly reactive oxygen species
Kumar et al. Surface functionalization of core-shell QDs for solar photovoltaic and anti-cancer applications
CN102965113A (zh) ZnS包覆ZnSe:Cu量子点的水相制备方法
CN111825064B (zh) 一种水溶性ZnCuInX量子点的一步水相合成方法
CN105315996A (zh) ZnTe/ZnSe核壳型量子点及其制备方法
Li et al. Highly luminescent water-soluble ZnSe nanocrystals and their incorporation in a glass matrix
Chen et al. Novel synthesis of Mn: ZnSe@ ZnS core–shell quantum dots based on photoinduced fluorescence enhancement
CN108545703B (zh) 一种在光照条件下制备金属硫化物量子点的方法
CN103320133A (zh) ZnSe: Ag量子点的水相制备方法
Li et al. Highly photoluminescent water-soluble ZnSe/ZnS/ZnS quantum dots via successive shell growth approach
CN103043706A (zh) 受激发强蓝紫光的氧化锌纳米棒的制备方法
Chung et al. Novel red-emission of ternary ZnCdSe semiconductor nanocrystals
CN115651644A (zh) 一种室温下制备水溶性银铟硫量子点材料的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20201027

Assignee: Guangxi Wuzhou Zhaobaike Food Co.,Ltd.

Assignor: Yulin Normal University

Contract record no.: X2023980045313

Denomination of invention: A one-step aqueous phase synthesis method for water-soluble ZnCuInX quantum dots

Granted publication date: 20230414

License type: Common License

Record date: 20231102

EE01 Entry into force of recordation of patent licensing contract