CN109021970B - 一种AgInS2或CuInS2超小量子点及其制备方法和应用 - Google Patents

一种AgInS2或CuInS2超小量子点及其制备方法和应用 Download PDF

Info

Publication number
CN109021970B
CN109021970B CN201810884104.1A CN201810884104A CN109021970B CN 109021970 B CN109021970 B CN 109021970B CN 201810884104 A CN201810884104 A CN 201810884104A CN 109021970 B CN109021970 B CN 109021970B
Authority
CN
China
Prior art keywords
preparation
agins
small
solution
cuins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810884104.1A
Other languages
English (en)
Other versions
CN109021970A (zh
Inventor
薛小刚
黄小艳
迟华麟
熊健
蔡平
张坚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Electronic Technology
Original Assignee
Guilin University of Electronic Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Electronic Technology filed Critical Guilin University of Electronic Technology
Priority to CN201810884104.1A priority Critical patent/CN109021970B/zh
Publication of CN109021970A publication Critical patent/CN109021970A/zh
Application granted granted Critical
Publication of CN109021970B publication Critical patent/CN109021970B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/62Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing gallium, indium or thallium
    • C09K11/621Chalcogenides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • C01G15/006Compounds containing, besides gallium, indium, or thallium, two or more other elements, with the exception of oxygen or hydrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Composite Materials (AREA)
  • Biophysics (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明公开了一种AgInS2或CuInS2超小量子点及其制备方法和应用,其制备方法步骤为:1)制备小分子巯基配位的Ag+和In3+或者Cu+和In3+阳离子前驱体溶液,以及硫离子的阴离子前驱体溶液;2)制备巯基小分子包裹的AgInS2或CuInS2量子点溶液。该AgInS2和CuInS2为小分子巯基包裹剂包裹,具有明显激子吸收的激子吸收和超小的尺寸和水溶热分散特征。本发明采用阴离子反相热注入法以较简单的工艺和较低的温度在水溶液中制备出目标产物,所得量子点是立方相的超小的纳米晶由小分子巯基包裹,具有明显的激子吸收,可用于太阳能电池、光催化等领域。

Description

一种AgInS2或CuInS2超小量子点及其制备方法和应用
技术领域
本发明属于纳米材料技术领域,涉及一种AgInS2或CuInS2超小量子点及其制备方法和应用,具体为一种水溶性的AgInS2或CuInS2量子点及其水相合成制备方法和应用。
背景技术
CuInS2是一种Ⅰ-Ⅲ-Ⅵ族直接带隙半导体材料,室温禁带宽度约为1.53eV,在可见光区域内具有很高的摩尔消光系数。由于其不含有毒Cd、Pb等高毒性重金属元素,在发光二极管(LED)、太阳能电池(Solar Cells)、生物标记、光催化等领域有着广泛的应用前景。
Leon通过高温热解单源前驱体[(Ph3P)2Ag(m-SC{O}PhS)2In(SC {O}Ph)2]首次获得了AgInS2纳米晶。2009年,彭笑刚引入配体平衡两种阳离子的反应活性,并将金属离子前驱物体热注入到硫前驱物中高温反应,油相合成了十二烷基硫醇包裹的单分散的AgInS2和CuIn S2纳米晶。高温油相合成使用有毒的价格昂贵的有机前驱体和溶剂,不仅涉及操作安全、环境和成本问题,而且由于获得的长链有机包裹的量子点由于降低的导电性,在溶液法处理的器件或者需要水溶液分散的光催化领域都受到限制。一般热注入法,或者前驱体热解法获得的AgInS2和CuInS2纳米晶,据报道由于化学成分的不均匀,导致其不具有明显的激子吸收峰。水溶性小分子包裹的AgInS2和CuInS2纳米晶,往往基于一定尺寸的AgInS2和CuInS2纳米晶经过复杂的配体交换才能获得。对于小分子巯基如巯基乙酸、巯基丙酸、巯基乙胺等包裹的AgInS2和CuInS2量子点的直接水溶液合成技术,具有明显激子吸收特征的AgInS2和CuInS2量子点的制备仍然是一个挑战。
发明内容
有鉴于此,本发明的目的在于提供一种小分子巯基包裹的超小的 AgInS2或CuInS2量子点及其直接的水相合成制备方法,该方法制备得到量子点具有明显的激子吸收和窄的尺寸分布。
另外本发明还提供了上述水相合成得到的量子点在太阳能电池和光催化等领域的应用。
本发明具体通过以下技术方案实现:
一种AgInS2或CuInS2超小量子点的制备方法,具体包括以下步骤:
1)制备巯基乙胺配位的Ag或Cu和In离子前驱体
将银或铜盐和铟盐按照比例在水中溶解后,加入小分子巯基包裹剂搅拌,得到白色沉淀,加入NaOH或KOH溶液直到沉淀溶解并调节溶液pH值至7-12,然后加入水合肼、氨水或乙二胺等水溶性小分子氨基配体,得到金属配合物前驱体溶液。
2)配制S2-前驱体溶液:配制S2-浓度为20mmol/L硫源前驱体溶液,加热至50-90℃,并保温半小时;
3)制备小分子巯基包裹的超小AgInS2和CuInS2量子点水溶液
将S2-前驱体溶液在50-90℃加热搅拌条件下加入到上述金属配合物前驱体溶液中,得到超小的小分子巯基包裹的AgInS2或CuInS2量子点。
所述的银或铜盐和铟盐的摩尔比为1:1~1:10,所述的银盐选自 AgI、AgCl、AgBr、Ag(OAc)或AgNO3中之一种,所述的铜盐选自 CuI、CuCl、CuBr、Cu(OAc)或CuSCN中之一种。
所述的铟盐选自In(OAc)3、InCl3、InBr3、InI3、In(NO3)3或In2(SO4)2中之一种。
所述的小分子巯基包裹剂与银或铜盐的摩尔比为1:6~1:60,所述的小分子巯基包裹剂选自巯基乙酸、巯基丙酸、巯乙胺或者半胱氨酸中之一种。
所述的小分子氨基配体与银或铜盐的摩尔比为1:10~1:2000,所述的小分子氨基配体选自氨水、乙二胺、水合肼、丙二胺、丁二胺等水溶性氨基化物。
所述的硫前驱体选自硫化钠、硫化钾、硫化氨或硫脲中之一种。
通过本发明上述制备方法得到的水溶性的AgInS2或CuInS2量子点也在本发明的保护范围内。
所述的AgInS2或CuInS2量子点为短链的小分子巯基包裹,形貌为超小纳米颗粒,尺寸仅为0.5~2nm的准零维多元半导体纳米晶,该量子点具有窄的尺寸分布和明显的激子吸收峰。
本发明还提供了上述小分子巯基包裹包裹的超小AgInS2和CuIn S2量子点在太阳能电池和光催化方面的应用。
本发明技术方案以水作为溶剂,小分子巯基包裹剂作为包覆剂,铜盐、铟盐分别作为铜源、铟源,先制备Cu+浓度为1mmol/L~20mm ol/L,In3+浓度为20mmol/L的铜/铟比为1:1至1:10的金属离子前驱体溶液,以硫化钠等硫化物为硫源制备S2-浓度约为20mmol/L的硫离子前驱体溶液,采用可溶性小分子氨基化物平衡两种离子反应活性抑制Ag2S、Cu2S和In2S3等几种二元相形成,将高温(50到100℃) S2-离子前驱体溶液反相热注入到常温的金属离子前驱体溶液得到巯基乙酸等小分子巯基包裹的AgInS2或CuInS2量子点(尺寸约为0.5-2.0nm),通过生长时间和温度控制尺寸和带隙。
本发明的有益效果为:
1)本发明采用负离子反相热注入法,以价格相对较低的无机盐作为前驱体,通过简单的水相合成工艺大批量制备出小分子巯基包裹的AgInS2或CuInS2量子点;
2)通过控制反应过程中铜铟比、生长温度和时间可以控制量子点尺寸和带隙,制备方法可控性强,工艺参数容易控制,安全绿色无污染、产率高;
3)本发明所得超小AgInS2或CuInS2量子点是一种准零维半导体纳米材料,具有相较以往方法明显的激子吸收峰和窄的尺寸分布,可用于太阳能电池和光催化等领域。
附图说明
图1为本发明实施例1所制备的产物的XRD图谱以及正交相结构AgInS2的pdf卡片,图中横坐标为衍射角度,纵坐标为相对强度;
图2是本发明实施例1所制备的产物检测图谱;其中a和b为T EM和HRTEM图,c为产物的组成的EDS分析结果;
图3为本发明实施例2所制备AgInS2的吸收和发射光谱,内嵌图为样品的荧光照片,图中横坐标为波长,纵坐标为吸收和发射强度;
图4为实施例3所制备AgInS2的吸收和发射光谱,内嵌图为样品的荧光照片,图中横坐标为波长,纵坐标为吸收和发射强度;
图5为实施例4所制备出的CuInS2产物的吸收光谱和带隙图,其中横坐标为波长和能量,纵坐标为相对吸收强度,虚线指出带隙位置;
图6是本发明实施例4所制备出的CuInS2产物的检测图谱;其中a和b为TEM和HRTEM图;c为产物的组成的EDS分析结果;
图7为对比例1所制备出的产物的紫外-可见吸收和发射光谱;
图8为对比例2产物的XRD和硫化银(黑色)与硫化铟银(红色)的标准卡片。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供了一种小分子巯基包裹的超小的AgInS2和CuInS2量子点,该AgInS2或CuInS2量子点具有明显的激子吸收峰,尺寸为0. 5~2.0nm,为正交相结构。
上述含AgInS2和CuInS2量子点的制备方法,其步骤如下:
1)制备小分子巯基化合物(如巯基乙酸、巯基丙酸、巯基乙胺或半胱氨酸等)配位的Ag和In或者Cu和In离子前驱体:将约0.1 ~1.0毫摩尔铜盐和约1.0毫摩尔铟盐在水中溶解,向其中加入6.0毫摩尔小分子巯基化合物(如巯基乙酸、巯基丙酸、巯基乙胺或半胱氨酸等)表面包裹剂搅拌,得到白色沉淀,加入OH-直到沉淀溶解,调节溶液pH值至7-12,向其中加入约10-200mmol的水合肼、氨水、乙二胺等水溶性的氨基化合物,得到银或铜离子浓度为2-20mmol/L,铟离子浓度为20mmol/L,Cu和In的摩尔比为1:10到1:1金属配合物前驱体溶液;
2)配制S前驱体溶液:配制S浓度~20mmol/L的Na2S·9H2O、硫脲等硫源前驱体溶液200ml,加热至50-90℃,并保温半小时左右;
3)制备小分子巯基包裹的超小AgInS2和CuInS2量子点水溶液:将上述步骤2)中热的硫前驱体溶液在搅拌下加入到上述金属配合物前驱体溶液中,50-90℃下加热搅拌1-10小时,所得产物经过多次乙醇沉淀再分散除去反应物,得到小分子巯基表面包裹的超小CuInS2或AgInS2量子点。
实施例1
TGA包裹的超小AgInS2量子点的制备方法如下:
(1)制备巯基乙酸配位的Ag和In离子前驱体溶液:将0.054 g Ag(OAc)和0.117gIn(OAc)3溶解于10ml H2O,向其中加入200 μl巯基乙酸,并搅拌,得到白色沉淀。向沉淀中加入NaOH调节溶液 pH值至9。向该溶液中加入6ml 80%的水合肼溶液,得到银离子浓度为~12mmol/L,铟离子浓度为~15mmol/L的金属配合物前驱体溶液。
(2)反相热注入,制备巯基乙酸包裹的超小AgInS2量子点水溶液:称取0.48gNa2S.9H2O溶于100ml去离子水,将其加热至95℃,并保温半小时,将该溶液在搅拌下迅速注入到上述金属配合物前驱体溶液中,得到巯基乙酸包裹的超小AgInS2量子点。取一定体积获得的AgInS2量子点用乙醇和水沉淀洗涤多次,以除去杂质,获得的粉末用于XRD表征。将洗涤后的AgInS2量子点重新分散在一定体积的水中,用于紫外-可见吸收、发射光谱和透射电镜的表征中。
图1为本发明实施例1所制备的产物的XRD图谱以及正交相结构AgInS2的pdf卡片。从图中可以看出,在本实施例的条件下得到正交相结构AgInS2纳米晶。通过谢乐公式估算结晶尺寸在1.5nm左右。
图2a为本发明实施例1所制备的产物的紫外-可见吸收光谱和发射光谱。吸收光谱显示了样品在380nm左右具有明显的激子吸收峰,传统的有机合成方法还不能获得具有激子吸收特征的I-III-VI族量子点材料。表明样品尺寸超小,且具有均一的尺寸分布。发射光谱显示样品发射峰位在660nm左右,文献报道结果表明该发光为缺陷相关的辐射复合。内嵌图为样品在365nm光照下的荧光照片,通过调节生长时间,获得的样品的最高荧光量子效率达到7.2%。斯托克斯位移接近280nm,具有良好的荧光标记应用潜力。图2b为本发明实施例1所制备的产物的透射电镜(TEM)图片,其中内嵌图为高分辨透射电镜(HRTEM)图片,TEM图证实该合成材料平均尺寸约为1.5 nm,HRTEM图进一步确定其结晶尺寸约为1.5nm。图2c为本发明实施例1所制备的产物的能谱(EDX)图,结果显示所制备量子点的 Ag与In的比例接近1:1,而两种金属与S的比例接近1:2,证实所得材料为AgInS2
实施例2
巯基丙酸(MPA)包裹的超小AgInS2量子点的制备方法如下:
(1)制备MPA配位的Ag和In离子前驱体溶液:将0.027g A g(OAc)和0.117g In(OAc)3溶解于10ml H2O,向其中加入225μl MPA,并搅拌,得到白色沉淀。向沉淀中加入NaOH调节溶液pH值至9。向该溶液中加入5ml 98%的乙二胺溶液,得到银离子浓度为~6 mmol/L,铟离子浓度为~15mmol/L的金属配合物前驱体溶液。
(2)反相热注入,制备MPA包裹的超小AgInS2量子点水溶液:称取0.48g Na2S.9H2O溶于100ml去离子水,将其加热至85℃,并保温半小时,将该溶液在搅拌下迅速注入到上述金属配合物前驱体溶液中,得到MPA包裹的超小AgInS2量子点。取一定体积获得的A gInS2量子点用乙醇和水沉淀洗涤多次,以除去杂质,获得的粉末用于XRD表征。将洗涤后的AgInS2量子点重新分散在一定体积的水中,用于紫外-可见吸收、发射光谱表征中。
图3为本发明实施例2所制备的产物的吸收和发射光谱。从图3 a的发射光谱可以看到MPA包裹的AgInS2材料同样具有明显的激子吸收特征(385nm左右)。同时,样品也呈现出峰位在660nm的缺陷发光。内嵌图为样品在365nm光照下的荧光照片,经过对生长时间的调节,获得材料最高荧光量子效率为8.2%。
实施例3
半胱氨酸包裹的超小AgInS2量子点的制备方法如下:
(1)制备半胱氨酸配位的Ag和In离子前驱体溶液:将0.027 g Ag(OAc)和0.117gIn(OAc)3溶解于10ml H2O,向其中加入0.32 g半胱氨酸,并搅拌,得到白色沉淀。向沉淀中加入NaOH调节溶液 pH值至9。向该溶液中加入12mL 25%的氨水溶液,得到银离子浓度为~6mmol/L,铟离子浓度为~15mmol/L的金属配合物前驱体溶液。
(2)反相热注入,制备半胱氨酸包裹的超小AgInS2量子点水溶液:称取0.48gNa2S.9H2O溶于100mL去离子水,将其加热至85 ℃,并保温半小时,将该溶液在搅拌下迅速注入到上述金属配合物前驱体溶液中,得到半胱氨酸包裹的超小AgInS2量子点。取一定体积获得的AgInS2量子点用乙醇和水沉淀洗涤多次,以除去杂质,获得的粉末用于XRD表征。将洗涤后的AgInS2量子点重新分散在一定体积的水中,用于紫外-可见吸收、发射光谱表征中。
图4为本发明实施例3所制备的产物的吸收和发射光谱。从图4 a的吸收光谱可以看到半胱氨酸包裹的AgInS2材料同样具有明显的激子吸收特征(385nm左右)。同时,如图4b所示,样品也呈现出峰位在660nm的宽谱带缺陷发光。内嵌图为样品在365nm光照下的荧光照片,经过对生长时间的调节,获得材料最高荧光量子效率为8.6%。
实施例4
巯基丙酸(MPA)包裹的超小CuInS2量子点的制备方法如下:
(1)制备MPA配位的Cu和In离子前驱体溶液:将0.020g C u(OAc)和0.117g In(OAc)3溶解于10ml H2O,向其中加入225μl MPA,并搅拌,得到白色沉淀。向沉淀中加入NaOH调节溶液pH值至9。向该溶液中加入12ml 25%的氨水溶液,得到Cu离子浓度为~ 12mmol/L,In离子浓度为~15mmol/L的金属配合物前驱体溶液。
(2)反相热注入,制备MPA包裹的超小CuInS2量子点水溶液:称取0.48g Na2S.9H2O溶于100mL去离子水,将其加热至85℃,并保温半小时,将该溶液在搅拌下迅速注入到上述金属配合物前驱体溶液中,得到MPA包裹的超小CuInS2量子点。取一定体积获得的C uInS2量子点用乙醇和水沉淀洗涤多次,以除去杂质,获得的粉末用于XRD表征。将洗涤后的CuInS2量子点重新分散在一定体积的水中,用于紫外-可见吸收、发射光谱表征。
图5为本发明实施例4所制备的产物的吸收和发射光谱。从图5 a的发射光谱可以看到MPA包裹的CuInS2材料同样具有明显的激子吸收特征(425nm左右)。同时,样品也呈现出峰位在660nm的缺陷发光。图6a为本发明实施例4所制备的产物的TEM,图6b为高分辨透射电镜(HRTEM)图片,TEM图证实该合成材料平均尺寸约为1.8nm,HRTEM图显示其晶格间距为0.318nm,与黄铜矿结构硫化铟铜(112)面间距一致。图6c为本发明实施例1所制备的产物的EDX图,结果显示所制备量子点的化学成分为Cu、In与S,其比例接近1:5:10,证实其为硫化铟铜三元合金量子点。
对比例1
MPA包裹的AgInS2量子点的有机相合成,步骤如下:
(1)合成Ag和In有机前驱体溶液:将6mmol二乙基二氨基硫代甲酸钠(Na(dedc))溶解于100mL去离子水,2mmol In(NO3) 3溶解于50mL去离子水,然后搅拌下将In(NO3)3溶液滴入到Na(de dc)水溶液中,获得白色沉淀,离心以水和乙醇分别洗涤2次,获得二乙基二氨基硫代甲酸铟前驱体。同样的6mmol Na(dedc)溶解于1 00mL去离子水,6mmol AgNO3溶解于50mL去离子水,然后搅拌下将AgNO3溶液滴入到Na(dedc)水溶液中,获得白色沉淀,离心以水和乙醇分别洗涤2次,获得二乙基二氨基硫代甲酸银前驱体。
(2)热分解前驱体制备油胺包裹的AgInS2量子点:
0.15mmol Ag(dedc)和0.1mmol In(dedc)3加入50mL圆底烧瓶,加入4mL油胺加热超声溶解。随后放入180℃油浴中加热30 分钟,获得红色产物离心沉淀,并用乙醇和正己烷洗涤3次。随后将产物分散到20mL左右的氯仿中。
(3)配体交换制备MPA包裹的AgInS2量子点
0.4mmol MPA溶解于1mL甲醇,通过NaOH将pH调节至1 1。然后将MPA溶液加入到20mL AgInS2量子点的氯仿溶液中并搅拌半小时。
将15.0mL去离子水加入上述溶液并搅拌半小时。AgInS2从氯仿中相转移进入到水中,弃去下层氯仿得到MPA包裹的AgInS2量子点水溶液。将该水溶液稀释,进行紫外-可见吸收光谱和发射光谱表征。
图7显示了所获得的材料的紫外-可见吸收光谱和荧光光谱,紫外-可见吸收光谱结果表明该方法获得的AIS量子点不具有明显的激子吸收特征,同时其发光呈现双发射带,与表面缺陷的形成有关。荧光量子效率仅为8.3%,配体交换产生的表面缺陷导致荧光量子效率降低。
对比例2
无水溶性氨基配体条件下TGA包裹的AgInS2量子点的合成,步骤如下:
(1)制备TGA配位的Ag和In离子前驱体溶液:将0.027g A g(OAc)和0.117g In(OAc)3溶解于10mL H2O,向其中加入200μL TGA,并搅拌,得到白色沉淀。向沉淀中加入NaOH调节溶液pH值至9。得到银离子浓度为~6mmol/L,铟离子浓度为~15mmol/L的金属配合物前驱体溶液。
(2)合成TGA包裹的AgInS2量子点:称取0.48g Na2S.9H2 O溶于100mL去离子水,将其加热至95℃,并保温半小时,将该溶液在搅拌下迅速注入到上述金属配合物前驱体溶液中,得到产物。取一定体积合成的样品用乙醇和水沉淀洗涤多次,以除去杂质,将沉淀干燥,用于XRD表征。
图8显示了获得材料的XRD图,从XRD图中可以看到,其为正交相AIS和Ag2S混合相结构,表明合成过程生成Ag2S杂相。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (4)

1.AgInS2或CuInS2超小量子点的制备方法,其特征在于,包括以下步骤:
1)制备巯基乙胺配位的Ag或Cu和In离子前驱体
将银或铜盐和铟盐按照摩尔比为1:1~1:10在水中溶解后,加入小分子巯基包裹剂搅拌,得到白色沉淀,加入NaOH或KOH溶液直到沉淀溶解并调节溶液pH值至7-12,继续加入小分子氨基配体,得到金属配合物前驱体溶液;所述的小分子巯基包裹剂与银或铜盐的摩尔比为1:6~1:60;所述的小分子氨基配体与银或铜盐的摩尔比为1:10~1:2000;所述的小分子巯基包裹剂选自巯基乙酸、巯基丙酸、巯乙胺或者半胱氨酸中之一种;所述的小分子氨基配体选自氨水、乙二胺、水合肼、丙二胺或丁二胺;
2)配制S2-前驱体溶液:配制S2-浓度为20 mmol/L硫源前驱体溶液,加热至50-90℃,并保温半小时;
3)制备小分子巯基包裹的超小AgInS2和CuInS2量子点水溶液
将S2-前驱体溶液在50-90℃加热搅拌条件下加入到上述金属配合物前驱体溶液中,得到超小的小分子巯基包裹的AgInS2或CuInS2量子点。
2.根据权利要求1所述的制备方法,其特征在于,所述的银盐选自AgI、AgCl、AgBr、Ag(OAc)或AgNO3中之一种,所述的铜盐选自CuI、CuCl、CuBr、Cu(OAc)或CuSCN中之一种。
3.根据权利要求1所述的制备方法,其特征在于,所述的铟盐选自In(OAc)3、InCl3、InBr3、InI3、In(NO3)3或In2(SO4)2中之一种。
4.根据权利要求1所述的制备方法,其特征在于,所述的硫源前驱体选自硫化钠、硫化钾、硫化氨或硫脲中之一种。
CN201810884104.1A 2018-08-06 2018-08-06 一种AgInS2或CuInS2超小量子点及其制备方法和应用 Active CN109021970B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810884104.1A CN109021970B (zh) 2018-08-06 2018-08-06 一种AgInS2或CuInS2超小量子点及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810884104.1A CN109021970B (zh) 2018-08-06 2018-08-06 一种AgInS2或CuInS2超小量子点及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN109021970A CN109021970A (zh) 2018-12-18
CN109021970B true CN109021970B (zh) 2021-08-27

Family

ID=64648716

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810884104.1A Active CN109021970B (zh) 2018-08-06 2018-08-06 一种AgInS2或CuInS2超小量子点及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN109021970B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111944520B (zh) * 2019-05-15 2022-04-19 中国科学院福建物质结构研究所 一种i-iii-vi型量子点纳米材料及其制备方法和应用
CN110117489B (zh) * 2019-06-03 2022-02-15 西北师范大学 硫代甘油为配体的铜铟硫三元量子点的合成及应用
CN110407247B (zh) * 2019-07-31 2022-04-01 上海电力大学 一种红色水溶性硫化铟银量子点及其一步合成方法和应用
CN110408386B (zh) * 2019-07-31 2022-08-23 上海电力大学 一种从绿光到红光变化的硫化铟银量子点及其一步合成方法和应用
CN110624566B (zh) * 2019-09-19 2021-11-23 江苏大学 CuInS2量子点/NiAl-LDH复合光催化剂的制备方法及其应用
CN111087011A (zh) * 2019-12-16 2020-05-01 上海电力大学 一种硫化银量子点和硫化铟银量子点纳米材料的制备方法及其产品
CN112058280A (zh) * 2020-09-17 2020-12-11 南昌航空大学 一种硫化铟银的制备方法及其应用
CN112239670B (zh) * 2020-09-30 2023-12-12 桂林电子科技大学 一种CuInSe2超小量子点及其制备方法和应用
CN113675343A (zh) * 2021-08-17 2021-11-19 华南农业大学 一种采用多官能团配体量子点的钙钛矿薄膜及其制备和应用
CN114011435A (zh) * 2021-12-07 2022-02-08 合肥工业大学 一种水溶性银铟硫量子点光催化剂及室温制备方法
CN116004225B (zh) * 2022-11-04 2024-04-02 山东第一医科大学(山东省医学科学院) 一种单侧氨基修饰的α-Anderson型多酸修饰ZnAgInS量子点制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102070184A (zh) * 2010-12-01 2011-05-25 同济大学 一种CuInS2纳米颗粒的制备方法
CN102502788A (zh) * 2011-10-13 2012-06-20 中国科学院过程工程研究所 一种铜铟硫三元半导体纳米颗粒的简单可控的制备方法
CN102517003A (zh) * 2011-11-03 2012-06-27 吉林大学 一种新型近红外水溶性铜铟硫三元量子点的水热制备方法
US20170022413A1 (en) * 2015-07-22 2017-01-26 National University Corporation Nagoya University Semiconductor nanoparticles and method of producing semiconductor nanoparticles
CN107880878A (zh) * 2017-11-15 2018-04-06 南昌航空大学 一种绿色环保的水溶性Ag‑In‑S/ZnS量子点材料的制备方法
CN107890875A (zh) * 2017-09-13 2018-04-10 江苏大学 一种AgIn5S8‑ZnS量子点及其制备方法和用途

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102070184A (zh) * 2010-12-01 2011-05-25 同济大学 一种CuInS2纳米颗粒的制备方法
CN102502788A (zh) * 2011-10-13 2012-06-20 中国科学院过程工程研究所 一种铜铟硫三元半导体纳米颗粒的简单可控的制备方法
CN102517003A (zh) * 2011-11-03 2012-06-27 吉林大学 一种新型近红外水溶性铜铟硫三元量子点的水热制备方法
US20170022413A1 (en) * 2015-07-22 2017-01-26 National University Corporation Nagoya University Semiconductor nanoparticles and method of producing semiconductor nanoparticles
CN107890875A (zh) * 2017-09-13 2018-04-10 江苏大学 一种AgIn5S8‑ZnS量子点及其制备方法和用途
CN107880878A (zh) * 2017-11-15 2018-04-06 南昌航空大学 一种绿色环保的水溶性Ag‑In‑S/ZnS量子点材料的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CuCl作为铜源常温水相合成CuInS2纳米材料;江丽芳;《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》;20170615(第06期);第C042-688页 *
低温水相条件下CuInS2材料的合成及表征;解兵兵;《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》;20160515(第05期);第C042-986页 *
解兵兵.低温水相条件下CuInS2材料的合成及表征.《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》.2016,(第05期),第C042-986页. *

Also Published As

Publication number Publication date
CN109021970A (zh) 2018-12-18

Similar Documents

Publication Publication Date Title
CN109021970B (zh) 一种AgInS2或CuInS2超小量子点及其制备方法和应用
Pu et al. Highly reactive, flexible yet green Se precursor for metal selenide nanocrystals: Se-octadecene suspension (Se-SUS)
Li et al. Solution synthesis of high-quality CuInS2 quantum dots as sensitizers for TiO2 photoelectrodes
Song et al. Tumor cell-targeted Zn 3 In 2 S 6 and Ag–Zn–In–S quantum dots for color adjustable luminophores
Gardner et al. Rapid synthesis and size control of CuInS 2 semi-conductor nanoparticles using microwave irradiation
Wang et al. A facile and general approach to polynary semiconductor nanocrystals via a modified two-phase method
Li et al. “Green” synthesis of starch capped CdSe nanoparticles at room temperature
Li et al. L-cysteine and urea synergistically-mediated one-pot one-step self-transformed hydrothermal synthesis of p-Ag2S/n-AgInS2 core-shell heteronanoflowers for photocatalytic MO degradation
Huang et al. Formation of AgGaS 2 nano-pyramids from Ag 2 S nanospheres through intermediate Ag 2 S–AgGaS 2 heterostructures and AgGaS 2 sensitized Mn 2+ emission
Uematsu et al. Facile high-yield synthesis of Ag–In–Ga–S quaternary quantum dots and coating with gallium sulfide shells for narrow band-edge emission
WO2007026746A1 (ja) 半導体ナノ粒子及びその製造方法
Qi et al. Facile synthesis of homogeneous CuInS 2 quantum dots with tunable near-infrared emission
Amaral-Júnior et al. Tunable luminescence of Cu-In-S/ZnS quantum dots-polysaccharide nanohybrids by environmentally friendly synthesis for potential solar energy photoconversion applications
Arya et al. Preparation of CdS and CdS@ Zn 3 (PO 4) 2 Nanocomposites by Sol-Gel Method: DFT Study and Effect of Temperature on Band Gap
Oluwafemi et al. Cell viability assessments of green synthesized water-soluble AgInS2/ZnS core/shell quantum dots against different cancer cell lines
Venkata Reddy et al. Synthesis of CdO/ZnS heterojunction for photodegradation of organic dye molecules
Sousa et al. Tunable emission of AgIn5S8 and ZnAgIn5S8 nanocrystals: electrosynthesis, characterization and optical application
Hu et al. Emission tunable AgInS2 quantum dots synthesized via microwave method for white light-emitting diodes application
Chen et al. Rapid synthesis of AgInS2 quantum dots by microwave assisted-hydrothermal method and its application in white light emitting diodes
Kowalik et al. Indium (II) chloride as a precursor in the synthesis of ternary (Ag–In–S) and quaternary (Ag–In–Zn–S) nanocrystals
Murugadoss Luminescence properties of multilayer coated single structure ZnS/CdS/ZnS nanocomposites
Yadav et al. Anion-Directed Synthesis of Core–Shell and Janus Hybrid Nanostructures
Murugadoss et al. Structural and optical study of mixed structure of ZnO (hexagonal)/ZnS (cubic) nanocomposites
Wang et al. Simple synthesis of luminescent CdSe quantum dots from ascorbic acid and selenium dioxide
Jia et al. A facile method for the synthesis of CuInS 2–ZnS quantum dots with tunable photoluminescent properties

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20181218

Assignee: Guilin Sensing Material Technology Co.,Ltd.

Assignor: GUILIN University OF ELECTRONIC TECHNOLOGY

Contract record no.: X2022450000575

Denomination of invention: An AgInS2or CuInS2ultra-small quantum dot and its preparation method and application

Granted publication date: 20210827

License type: Common License

Record date: 20221230