CN111742259A - 掩模坯料、相移掩模及半导体器件的制造方法 - Google Patents

掩模坯料、相移掩模及半导体器件的制造方法 Download PDF

Info

Publication number
CN111742259A
CN111742259A CN201980013951.3A CN201980013951A CN111742259A CN 111742259 A CN111742259 A CN 111742259A CN 201980013951 A CN201980013951 A CN 201980013951A CN 111742259 A CN111742259 A CN 111742259A
Authority
CN
China
Prior art keywords
film
phase shift
light
wavelength
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201980013951.3A
Other languages
English (en)
Other versions
CN111742259B (zh
Inventor
谷口和丈
前田仁
大久保亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Publication of CN111742259A publication Critical patent/CN111742259A/zh
Application granted granted Critical
Publication of CN111742259B publication Critical patent/CN111742259B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • G03F1/32Attenuating PSM [att-PSM], e.g. halftone PSM or PSM having semi-transparent phase shift portion; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • G03F1/34Phase-edge PSM, e.g. chromeless PSM; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/80Etching
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/82Auxiliary processes, e.g. cleaning or inspecting
    • G03F1/84Inspecting
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0337Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material

Abstract

本发明提供具备蚀刻停止膜的相移掩模用的掩模坯料,所述蚀刻停止膜对于ArF曝光光具有高透射率、并且对于检查光可以得到高对比率。该掩模坯料具备在透光性基板上依次层叠有蚀刻停止膜和相移膜的结构,相移膜由含有硅及氧的材料形成,对于波长193nm的光的折射率n1为1.5以上,且对于波长193nm的光的消光系数k1为0.1以下,蚀刻停止膜对于波长193nm的光的折射率n2为2.6以上,且对于波长193nm的光的消光系数k2为0.4以下,折射率n2及消光系数k2满足k2≤‑0.188×n2+0.879、及k2>‑0.188×n2+0.879且k2≤2.75×n2-6.945中的任意条件。

Description

掩模坯料、相移掩模及半导体器件的制造方法
技术领域
本发明涉及掩模坯料、使用该掩模坯料制造的相移掩模。另外,本发明涉及使用了上述的相移掩模的半导体器件的制造方法。
背景技术
一般而言,在半导体器件的制造工序中,利用光刻法进行了微细图案的形成。在该图案的形成中,通常要使用多片转印用掩模。特别是在形成微细的图案的情况下,常用的是利用光的相位差来提高以分辨率为代表的转印性能的相移掩模。另外,进行半导体器件的图案的微细化时,除了相移掩模中代表性的转印用掩模的改良、改善以外,还需要使光刻中使用的曝光光源的波长的短波长化。由此,近年来,在半导体器件的制造时使用的曝光光源正在从KrF准分子激光(波长248nm)向ArF准分子激光(波长193nm)短波长化。
作为这些相移掩模用掩模坯料的种类,包括移相器上置Levenson型,移相器下置Levenson型,半色调型等形式。例如,专利文献1中公开了移相器上置Levenson型的掩模坯料。该掩模坯料在透明基板与相移层之间具备用于设置于透明基板上的相移层的干法蚀刻的蚀刻停止层。该蚀刻停止层由包含氧化铪的层构成。
另外,在专利文献2中公开了一种在对于曝光光透明的基板设置挖入部、并控制待透过的光的相位的无铬相移掩模用的掩模坯料。设置于与基板的挖入部相邻的部分或基板周边部的遮光膜包含膜A,该膜A由在使用了以氟类气体为主体的蚀刻气体的蚀刻工艺中能够蚀刻的材料制成。
现有技术文献
专利文献
专利文献1:日本专利第3301556号公报
专利文献2:日本特开2007-241136号公报
发明内容
发明所要解决的问题
在如专利文献2中记载那样的在对于曝光光透明的基板本身设置有挖入部的无铬相移掩模的情况下,相移掩模的各挖入部通过对基板进行干法蚀刻而同时形成。与以往进行的在透光性基板形成挖入部的干法蚀刻中通过蚀刻对设置于透光性基板上的相移膜形成图案的情况不同,难以检测到蚀刻终点。即使想要通过蚀刻时间控制相移掩模中的各挖入部的图案的底面形状、深度,也会受到微沟槽现象、微观负载现象等的影响。因此,不易通过干法蚀刻控制各挖入部的底面形状、深度。
另一方面,作为无铬相移掩模用的掩模坯料,开始对具有下述构成的掩模坯料进行研究:在基板上设置蚀刻停止膜,在该蚀刻停止膜上设置有由硅及氧制成、且具有与透光性基板几乎同等透射率的相移膜。要求该掩模坯料在制作相移掩模时在透过蚀刻停止膜上的存在相移膜的部分(非挖入部)的曝光光、与透过该蚀刻停止膜上的不存在相移膜的部分(挖入部)的曝光光之间产生相移效果。
在无铬相移掩模的情况下,仅利用在透过了非挖入部的曝光光与透过了挖入部的曝光光之间产生的相移效果构成曝光光的图案,因此要求产生高的相移效果。因此,对于蚀刻停止膜,期望与形成于其上的相移膜的层叠结构对于ArF曝光光具有80%以上的透射率。
在相移膜的透光部中形成有图案的部分(挖入部)和未形成图案的部分(非挖入部)中均残留有蚀刻停止膜。相移掩模的透光部中的曝光光的透射率降低会导致每单位时间的曝光光对于转印对象物的累积照射量降低。因此,导致产生需要增加曝光时间、降低半导体器件的制造中的曝光转印工序的生产量。从这样的观点考虑,也期望蚀刻停止膜与形成于其上的相移膜的层叠结构对于ArF曝光光具有80%以上的透射率。
在现有技术1记载的相移光掩模坯料中使用的蚀刻停止膜在波长比较长的水银灯的i射线(365nm)、KrF准分子激光的波长(248nm)下具有透射性。然而,在用于形成更微细的图案的ArF准分子激光的波长下,不具有充分的透射率。
另外,为了提高形成于相移膜的图案的检查精度,对于检查光,也进行了短波长化。近年来,也进行使用了与ArF准分子激光同等波长193nm的检查光的图案的缺陷检查。为了使用这样的短波长的检查光以良好的精度进行图案的缺陷检查,期望用仅蚀刻停止膜对于波长193nm的光的反射率除以蚀刻停止膜及相移膜的层叠结构对于波长193nm的光的反射率而计算出的对比率为1.5以上。
本发明为了解决上述现有问题而成。即,其目的在于提供一种相移掩模用的掩模坯料,其具备在透光性基板上依次层叠有蚀刻停止膜和相移膜的结构,且具备对于ArF曝光光具有高透射率、并且对于与ArF曝光光具有同等的193nm的波长的检查光可以得到高对比率的蚀刻停止膜。另外,本发明的目的在于提供使用该掩模坯料制造的相移掩模。此外,本发明的目的在于提供使用了这样的相移掩模的半导体器件的制造方法。
解决问题的方法
为了实现上述的课题,本发明具有以下方案。
(方案1)
一种掩模坯料,其具备在透光性基板上依次层叠有蚀刻停止膜和相移膜的结构,
上述相移膜由含有硅及氧的材料形成,
上述相移膜对于波长193nm的光的折射率n1为1.5以上,且对于波长193nm的光的消光系数k1为0.1以下,
上述蚀刻停止膜对于波长193nm的光的折射率n2为2.6以上,且对于波长193nm的光的消光系数k2为0.4以下,而且上述折射率n2及消光系数k2满足(条件1)及(条件2)中的任意条件,
(条件1)k2≤-0.188×n2+0.879
(条件2)k2>-0.188×n2+0.879且k2≤2.750×n2-6.945。
(方案2)
上述方案1所述的掩模坯料,其中,
上述蚀刻停止膜的上述折射率n2为3.1以下。
(方案3)
上述方案1或2所述的掩模坯料,其中,
上述蚀刻停止膜的上述消光系数k2为0.05以上。
(方案4)
上述方案1~3中任一项所述的掩模坯料,其中,
上述相移膜的上述折射率n1为1.6以下。
(方案5)
上述方案1~4中任一项所述的掩模坯料,其中,
上述透光性基板对于波长193nm的光的折射率n3为1.5以上且1.6以下,且对于波长193nm的光的消光系数k3为0.1以下。
(方案6)
上述方案1~5中任一项所述的掩模坯料,其中,
上述蚀刻停止膜及上述相移膜的层叠结构对于波长193nm的光的透射率为80%以上。
(方案7)
上述方案1~6中任一项所述的掩模坯料,其中,
用单独的上述蚀刻停止膜对于波长193nm的光的表面反射率除以上述蚀刻停止膜及上述相移膜的层叠结构对于波长193nm的光的表面反射率而计算出的对比率为1.5以上。
(方案8)
上述方案1~7中任一项所述的掩模坯料,其中,
上述蚀刻停止膜由含有铪及氧的材料形成。
(方案9)
上述方案1~8中任一项所述的掩模坯料,其中,
上述蚀刻停止膜与上述透光性基板的主表面相接而形成。
(方案10)
上述方案1~9中任一项所述的掩模坯料,其中,
上述蚀刻停止膜的厚度为1nm以上且4nm以下。
(方案11)
上述方案1~10中任一项所述的掩模坯料,其中,
上述相移膜具有以下功能:使透过上述相移膜后的波长193nm的光和仅在与上述相移膜的厚度相同距离的空气中通过后的波长193nm的光之间产生150度以上且210度以下的相位差。
(方案12)
上述方案1~11中任一项所述的掩模坯料,其中,
在上述相移膜上具备遮光膜。
(方案13)
上述方案12所述的掩模坯料,其中,
上述遮光膜由含有铬的材料形成。
(方案14)
一种相移掩模,其具备在透光性基板上依次层叠有蚀刻停止膜、和具有相移图案的相移膜的结构,
上述相移膜由含有硅及氧的材料形成,
上述相移膜对于波长193nm的光的折射率n1为1.5以上,且对于波长193nm的光的消光系数k1为0.1以下,
上述蚀刻停止膜对于波长193nm的光的折射率n2为2.6以上,且对于波长193nm的光的消光系数k2为0.4以下,而且上述折射率n2及消光系数k2满足(条件1)及(条件2)中的任意条件,
(条件1)k2≤-0.188×n2+0.879
(条件2)k2>-0.188×n2+0.879且k2≤2.750×n2-6.945。
(方案15)
上述方案14所述的相移掩模,其中,
上述蚀刻停止膜的上述折射率n2为3.1以下。
(方案16)
上述方案14或15所述的相移掩模,其中,
上述蚀刻停止膜的上述消光系数k2为0.05以上。
(方案17)
上述方案14~16中任一项所述的相移掩模,其中,
上述相移膜的上述折射率n1为1.6以下。
(方案18)
上述方案14~17中任一项所述的相移掩模,其中,
上述透光性基板对于波长193nm的光的折射率n3为1.5以上且1.6以下,且对于波长193nm的光的消光系数k3为0.1以下。
(方案19)
上述方案14~18中任一项所述的相移掩模,其中,
上述蚀刻停止膜及上述相移膜的层叠结构对于波长193nm的光的透射率为80%以上。
(方案20)
上述方案14~19中任一项所述的相移掩模,其中,
用单独的上述蚀刻停止膜对于波长193nm的光的表面反射率除以上述蚀刻停止膜及上述相移膜的层叠结构对于波长193nm的光的表面反射率而计算出的对比率为1.5以上。
(方案21)
上述方案14~20中任一项所述的相移掩模,其中,
上述蚀刻停止膜由含有铪及氧的材料形成。
(方案22)
上述方案14~21中任一项所述的相移掩模,其中,
上述蚀刻停止膜与上述透光性基板的主表面相接而形成。
(方案23)
上述方案14~22中任一项所述的相移掩模,其中,
上述蚀刻停止膜的厚度为1nm以上且4nm以下。
(方案24)
上述方案14~23中任一项所述的相移掩模,其中,
上述相移膜具有以下功能:使透过上述相移膜后的波长193nm的光和仅在与上述相移膜的厚度相同距离的空气中通过后的波长193nm的光之间产生150度以上且210度以下的相位差。
(方案25)
上述方案14~24中任一项所述的相移掩模,其中,
在上述相移膜上具备遮光膜,该遮光膜具有包含遮光带的遮光图案。
(方案26)
上述方案25所述的相移掩模,其中,
上述遮光膜由含有铬的材料形成。
(方案27)
一种半导体器件的制造方法,该方法包括:
使用方案14~26中任一项所述的相移掩模,将相移掩模上的图案曝光转印至半导体基板上的抗蚀膜的工序。
发明的效果
本发明的掩模坯料具备在透光性基板上依次层叠有蚀刻停止膜和相移膜的结构,上述相移膜由含有硅及氧的材料形成,上述相移膜对于波长193nm的光的折射率n1为1.5以上,且对于波长193nm的光的消光系数k1为0.1以下,上述蚀刻停止膜对于波长193nm的光的折射率n2为2.6以上,且对于波长193nm的光的消光系数k2为0.4以下,而且上述折射率n2及消光系数k2满足(条件1)及(条件2)中的任意条件,
(条件1)k2≤-0.188×n2+0.879
(条件2)k2>-0.188×n2+0.879且k2≤2.750×n2-6.945。
根据本发明,可以提供具备蚀刻停止膜的相移掩模用的掩模坯料,所述蚀刻停止膜对于具有193nm的波长的ArF曝光光具有高透射率、并且对于具有193nm的检查光可以得到高对比率。这样一来,波长193nm的光中包含ArF曝光光、和与该ArF曝光光具有同等的193nm的波长的检查光。
附图说明
图1是示出本发明的第一实施方式的掩模坯料的构成的剖面图。
图2是示出本发明的第一实施方式的相移掩模的构成的剖面图。
图3是示出本发明的第一实施方式的相移掩模的制造工序的剖面模式图。
图4是示出根据模拟结果导出的满足表面反射对比率1.5的蚀刻停止膜的折射率n2及消光系数k2与最小膜厚d的关系、以及满足透射率80%的蚀刻停止膜的折射率n2及消光系数k2(k2的范围为0.20~0.40)与最大膜厚d的关系的图。
图5是示出根据模拟结果导出的满足背面反射对比率1.5的蚀刻停止膜的折射率n2及消光系数k2(k2的范围为0.20~0.40)与最小膜厚d的关系的图。
图6是示出根据模拟结果导出的满足表面反射对比率1.5的蚀刻停止膜的折射率n2及消光系数k2与最小膜厚d的关系、以及满足透射率80%的蚀刻停止膜的折射率n2及消光系数k2(k2的范围为0.05~0.40)与最大膜厚d的关系的图。
图7是示出根据模拟结果导出的满足背面反射对比率1.5的蚀刻停止膜的折射率n2及消光系数k2(k2的范围为0.05~0.40)与最小膜厚d的关系的图。
符号说明
1…透光性基板
2…蚀刻停止膜
3…相移膜
3a…相移图案
4…遮光膜
4a、4b…遮光图案
5…硬掩模膜
5a…硬掩模图案
6a…第一抗蚀剂图案
7b…第二抗蚀剂图案
100…掩模坯料
200…相移掩模
101…转印图案形成区域
102…遮光带形成区域
具体实施方式
首先,对完成本发明的经过进行叙述。本发明人等为了得到具备下述蚀刻停止膜的相移掩模用的掩模坯料进行了深入研究:用于制造CPL掩模的掩模坯料的蚀刻停止膜及相移膜对于ArF曝光光具有80%以上的高透射率,并且该蚀刻停止膜对于与ArF曝光光具有同等的193nm的波长的检查光可以得到1.5以上的高对比率。
在具备在透光性基板上依次层叠有蚀刻停止膜和相移膜的结构的掩模坯料中,相移膜由含有硅及氧的材料形成,其折射率n1、消光系数k1、膜厚受到作为CPL掩模的功能上的限制。因此,需要将蚀刻停止膜的折射率n2和消光系数k2控制为给定的范围。
在此,本发明人等着眼于用于满足蚀刻停止膜及相移膜的层叠结构对于波长193nm的光的透射率为80%以上的、蚀刻停止膜的最大膜厚d与蚀刻停止膜的折射率n2及消光系数k2的关系,对蚀刻停止膜及相移膜进行了光学模拟。在光学模拟中,使折射率n2在2.6~3.1的范围并使消光系数k2在0.05~0.40的范围中改变蚀刻停止膜的折射率n2及消光系数k2的各值,同时计算出透射率成为80%时的蚀刻停止膜的最大膜厚d。在此,将相移膜的膜厚设为177(nm),将折射率n1设为1.56,将消光系数k1设为0.00。
然后,以该模拟结果为基础,整理蚀刻停止膜的折射率n2及消光系数k2、与最大膜厚d的关系。在图4及图6中示出了满足透射率80%的蚀刻停止膜的折射率n2及消光系数k2与最大膜厚d的关系。
图4及图6中示出的蚀刻停止膜的最大膜厚d为2.5nm、3.0nm时满足透射率80%的蚀刻停止膜的折射率n2及消光系数k2的各关系式如下所示。
k2=-0.156n2+0.859(最大膜厚d=2.5nm的情况)
k2=-0.188n2+0.879(最大膜厚d=3.0nm的情况)
这样一来,对于满足透射率80%的蚀刻停止膜,发现了折射率n2及消光系数k2存在负的相关关系。
另外,本发明人等着眼于用于满足表面反射对比率1.5及背面反射对比率1.5的、蚀刻停止膜的最小膜厚与蚀刻停止膜的折射率n2及消光系数k2的关系,对蚀刻停止膜及相移膜进行了光学模拟。光学模拟中,关于折射率n2及消光系数k2的范围、相移膜的膜厚、折射率n1、消光系数k1,与上述的透射率相关的模拟同样。
然后,以该模拟结果为基础,分别整理了满足表面反射对比率1.5及背面反射对比率1.5的蚀刻停止膜的折射率n2及消光系数k2、与最小膜厚d的关系。图4及图6中示出了满足表面反射对比率1.5的蚀刻停止膜的最小膜厚d=2.0nm、2.5nm、3.0nm的情况下的近似曲线。另外,图5及图7中示出了满足背面反射对比率1.5的蚀刻停止膜的最小膜厚d=2.0nm、2.5nm的情况下的近似曲线。在图4~图7中示出的折射率n2及消光系数k2的范围中,满足背面反射对比率1.5的最小膜厚d的值通常小于满足表面反射对比率1.5的最小膜厚d的值。由此发现,如果以满足表面反射对比率1.5的方式设定蚀刻停止膜的最小膜厚d,则可以满足背面反射对比率1.5。
而且,如图4及图6所示,分别整理满足表面反射对比率1.5的蚀刻停止膜的折射率n2及消光系数k2与最小膜厚d的关系、以及满足透射率80%的蚀刻停止膜的折射率n2及消光系数k2与最大膜厚d的关系,对同时满足各个条件的构成进行了研究。其结果发现,在最大膜厚d=3.0nm的情况下,如果是满足k2=-0.188×n2+0.879的关系的k2的值及低于该值的k2的值,则同时实现透射率和对比率的各个条件(需要说明的是,此处为了方便说明,着眼于k2的值,但对于n2的值而言也可以认为是同样的)。即发现,蚀刻停止膜的折射率n2及消光系数k2满足(条件1)k2≤-0.188×n2+0.879时,同时满足透射率和对比率的各个条件。
另外,在图4及图6中,成为k2>-0.188×n2+0.879的区域是最大膜厚d小于3.0nm的区域。另一方面,在图4及图6中示出的比d=3.0nm(表面反射对比率1.5)所表示的近似曲线更左侧的区域成为最小膜厚d大于3.0nm的区域。因此可知,在图4及图6中,在这些区域重合的区域(阴影的区域B),不能同时满足各个条件。因此,为了排除该区域,求出最小膜厚d=3.0nm的近似曲线与(条件1)的数学式的交点,对于比该交点更靠近上侧的近似曲线进行直线近似,得到了以下的数学式。
k2=2.750×n2-6.945
即,发现了蚀刻停止膜的折射率n2及消光系数k2满足(条件2)k2>-0.188×n2+0.879且k2≤2.750×n2-6.945时,可以同时满足透射率和对比率的各个条件。
本发明是进行了如上所述的深入研究而成的。需要说明的是,图4~图7中示出的近似曲线根据计算方式而略有变动。然而,因该变动产生的折射率n2及消光系数k2的范围的变动对蚀刻停止膜的对比率、膜厚、透射率造成的影响小,是允许的范围。
<第一实施方式>
[掩模坯料及其制造]
以下,一边参照附图一边对实施方式进行说明。
本发明的第一实施方式的掩模坯料是CPL(无铬相位光刻、Chromeless PhaseLithography)掩模、即用于制造无铬相移掩模的掩模坯料。CPL掩模在转印图案形成区域内除了大图案的区域以外基本上不设置遮光膜,且是由透光性基板的挖入部和非挖入部构成转印图案的类型的相移掩模。
图1中示出该第一实施方式的掩模坯料的构成。该第一实施方式的掩模坯料100在透光性基板1的主表面上具备蚀刻停止膜2、相移膜3、遮光膜4、及硬掩模膜5。
透光性基板1只要对于曝光光具有高透射率、且具有充分的刚性,就没有特别限制。在本发明中,可以使用合成石英玻璃基板、其它各种玻璃基板(例如、碱石灰玻璃、硅酸铝玻璃等)。这些基板中,特别是合成石英玻璃基板由于在ArF准分子激光(波长193nm)或比其更短波长的区域内透射率高,因此适宜用作用于高精细的转印图案形成的本发明的掩模坯料的基板。优选透光性基板1对于波长193nm的光的折射率n3为1.5以上且1.6以下,且对于波长193nm的光的消光系数k3为0.1以下。需要说明的是,透光性基板1的消光系数k3的下限值为0.0。
蚀刻停止膜2由满足上述的(条件1)及(条件2)中的任意条件的材料形成。另外,蚀刻停止膜2由对于在相移膜3形成图案时进行的利用氟类气体的干法蚀刻可得到与相移膜3之间的蚀刻选择性的材料形成。在相移掩模200完成的阶段中,残留有该蚀刻停止膜2而不将其在转印图案形成区域101的整个面上除去(参照图2)。即,取得在透光部中的没有相移图案3b的区域、即挖入部也残存有蚀刻停止膜2的形态。因此,优选蚀刻停止膜2在与透光性基板1之间以与透光性基板1的主表面相接而不夹隔其它膜的方式形成。
在将透光性基板1对于曝光光的透射率设为100%时,蚀刻停止膜2的透射率优选为80%以上,更优选为85%以上。
蚀刻停止膜2的氧含量优选为50原子%以上。这是因为,为了将对于曝光光的透射率设为上述的数值以上,需要在蚀刻停止膜2中大量含有氧。另一方面,蚀刻停止膜2的氧含量优选为67原子%以下。
从耐化学液体性、耐清洗性的观点考虑,优选蚀刻停止膜2由含有铪及氧的材料形成。优选蚀刻停止膜2不含对使用了氟类气体的干法蚀刻降低与相移膜3之间的蚀刻选择性的元素(例如硅)。另外,蚀刻停止膜2更优选由以铪及氧构成的材料形成。在此,以铪及氧构成的材料是指,除这些构成元素以外,仅含有通过溅射法成膜时不可避免地在蚀刻停止膜2中含有的元素(氦(He)、氖(Ne)、氩(Ar)、氪(Kr)及氙(Xe)等稀有气体、氢(H)、碳(C)等)的材料。通过将蚀刻停止膜2中存在的与铪结合的其它元素设为极小,可以大幅提高蚀刻停止膜2中的铪及氧的结合比率。因此,在不可避免地在蚀刻停止膜2中含有的上述元素(稀有气体、氢、碳等)中,合计含量也优选为3原子%。优选将蚀刻停止膜2设为无定形结构。由此,可以在使蚀刻停止膜2的表面粗糙度良好的同时,提高对于曝光光的透射率。
另一方面,从提高蚀刻停止膜2对于ArF曝光光的透射率的观点考虑,优选蚀刻停止膜2不仅含有铪,还含有具有降低蚀刻停止膜2的消光系数k2的作用的金属元素。从该观点考虑,作为蚀刻停止膜2中所含的金属元素,可列举铝、锆、铟、锡等。例如,在由含有铪、铝及氧的材料形成蚀刻停止膜2的情况下,蚀刻停止膜2中的铪(Hf)含量[原子%]相对于铪(Hf)与铝(Al)的合计含量[原子%]的比率(Hf/[Hf+Al]比率)优选为0.86以下。另外,该情况下的蚀刻停止膜2的Hf/[Hf+Al]比率优选为0.60以上。
在以满足上述的(条件1)及(条件2)中的任意条件为前提的基础上,蚀刻停止膜2的厚度优选为1nm以上。如果考虑由利用掩模坯料制造出相移掩模为止进行的利用氟类气体的干法蚀刻导致的影响、由化学液体清洗导致的影响,则期望蚀刻停止膜2的厚度为1nm以上。蚀刻停止膜2的厚度更优选为2nm以上。
蚀刻停止膜2使用了对于曝光光的透射率高的材料,但随着厚度变厚,透射率降低。另外,蚀刻停止膜2的折射率比形成透光性基板1的材料高,蚀刻停止膜2的厚度越厚,对在相移膜3上实际形成的掩模图案进行设计时造成的影响越大。考虑到这些方面,期望蚀刻停止膜2为4nm以下,优选为3nm以下。
蚀刻停止膜2对于波长193nm的光的折射率n2为3.1以下,更优选为3.0以下。这是为了减小对在相移膜3上实际形成的掩模图案进行设计时造成的影响。蚀刻停止膜2以折射率n2为2.6以上的方式形成。另一方面,蚀刻停止膜2对于波长193nm的光的消光系数k2(以下简称为消光系数k2)优选为0.4以下。这是为了提高蚀刻停止膜2对于曝光光或检查光的透射率。蚀刻停止膜2的消光系数k2为0.05以上,更优选为0.1以上,进一步优选为0.2以上。
优选蚀刻停止膜2在厚度方向上组成的均匀性高(即,厚度方向上的各构成元素的含量之差在5原子%以内的变动幅度内)。另一方面,可以将蚀刻停止膜2制成在厚度方向上具有组成梯度的膜结构,
相移膜3由含有硅和氧且对于曝光光透明的材料形成,且具有给定的相位差。具体而言,使透光部的相移膜3形成图案,形成存在相移膜3的非挖入部和不存在相移膜3的挖入部,使透过不存在相移膜3的挖入部的曝光光(ArF准分子激光的曝光光)与透过存在相移膜3的非挖入部的曝光光的相位处于实质上反转的关系(给定的相位差)。这样一来,相互消除因衍射现象而相互在对方的区域环绕的光,使边界部的光强度几乎为零,从而提高分辨率。
优选相移膜3具有使波长193nm的光以95%以上的透射率透过的功能(透射率)、和使透过相移膜3后的上述曝光光和仅在与上述相移膜3的厚度相同距离的空气中通过后的上述光之间产生150度以上且210度以下的相位差的功能。另外,该相移膜3的相位差优选为150度以上且200度以下,进一步优选为150度以上且190度以下。从提高曝光效率的观点考虑,相移膜3的曝光光透射率优选为96%以上,进一步优选为97%以上。
相移膜3的厚度优选为200nm以下,更优选为190nm以下。另一方面,相移膜3的厚度优选为143nm以上,更优选为153nm以上。
在相移膜3中,为了满足上述的与光学特性和膜的厚度有关的多个条件,要求对于波长193nm的光的折射率n1为1.5以上,优选为1.52以上,更优选为1.54以上。另外,相移膜3的折射率n1优选为1.68以下,更优选为1.63以下。要求相移膜3的对于波长193nm的光的消光系数k1为0.1以下,优选为0.02以下,更优选接近0。
需要说明的是,包含相移膜3的薄膜的折射率n和消光系数k并非仅由该薄膜的组成决定。该薄膜的膜密度、结晶状态等也是影响折射率n、消光系数k的要素。因此,调整通过反应性溅射来成膜薄膜时的诸条件,以使该薄膜达到给定的折射率n及消光系数k进行成膜。在通过反应性溅射形成相移膜3的情况下,为了成为上述的折射率n1和消光系数k1的范围,调整稀有气体与反应性气体(氧气)的混合气体的比率是有效的,但不仅限于此。还涉及到通过反应性溅射进行成膜时的成膜室内的压力、对溅射靶施加的功率、靶与透光性基板1之间的距离等位置关系等多方面。另外,这些成膜条件是成膜装置中固有的条件,是以使形成的相移膜3成为给定的折射率n1及消光系数k1的方式适宜调整而成的。
相移膜3可以由单层构成,或者可以层叠多层而构成,但由含有硅及氧的材料形成。通过在硅中含有氧,可以对于曝光光确保高透明度,可以得到作为相移膜3优选的光学特性。
相移膜3如上所述地由含有硅和氧的材料形成。为了提高对于曝光光的透射率、耐光性、并且提高利用干法蚀刻的加工性,优选将相移膜3中除硅和氧以外的元素的含量设为5原子%以下,更优选设为3原子%以下。进一步优选相移膜3为由硅和氧构成的材料、例如SiO2。在通过溅射法形成相移膜3的情况下,在该膜中不可避免地含有作为缓冲气体使用的氦(He)、氖(Ne)、氩(Ar)、氪(Kr)及氙(Xe)等稀有气体、在真空中存在的氢(H)、碳(C)等。即使在该情况下,通过对成膜条件最佳化、成膜后进行退火,优选将相移膜3中所含的除硅和氧以外的这些元素的合计含量设为5原子%以下,更优选设为3原子%以下。
氧化硅类材料的相移膜3通过溅射而形成,也可以采用DC溅射、RF溅射及离子束溅射等中的任意溅射。在使用导电性低的靶(硅靶、SiO2靶等)的情况下,优选采用RF溅射、离子束溅射。考虑到成膜速率,优选采用RF溅射。
遮光膜4可以采用单层结构及2层以上的层叠结构中的任意结构。另外,单层结构的遮光膜及2层以上的层叠结构的遮光膜的各层可以是在膜或层的厚度方向上几乎相同的组成,也可以是在层的厚度方向上具有组成梯度的构成。
对遮光膜4要求以高的遮光率对曝光光进行遮光的功能。对遮光膜4要求确保大于2.0的光密度(OD),优选具有2.8以上的OD,更优选具有3.0以上的OD。在此,如图2所示,遮光带形成区域102是指,在待形成作为曝光转印的对象的图案(电路图案)的转印图案形成区域101的外侧形成的遮光区域。遮光带形成区域102出于防止曝光转印至晶片时由相邻曝光导致的不良影响(曝光光的遮掩)的目的而形成。
将图1所记载的方式中的掩模坯料100设为在相移膜3上层叠有遮光膜4而不夹隔其它膜的构成。该构成的情况下的遮光膜4需要采用对在相移膜3上形成图案时使用的蚀刻气体具有足够的蚀刻选择性的材料。该情况下的遮光膜4优选由含有铬的材料形成。作为形成遮光膜4的含有铬的材料,除铬金属以外,可列举在铬中含有选自氧、氮、碳、硼及氟中的一种以上元素的材料。
一般而言,利用氯类气体与氧气的混合气体对铬类材料进行蚀刻,但铬金属相对于该蚀刻气体的蚀刻速率不太高。考虑到提高相对于氯类气体与氧气的混合气体的蚀刻气体的蚀刻速率方面,作为形成遮光膜4的材料,优选在铬中含有选自氧、氮、碳、硼及氟中的一种以上元素的材料。另外,也可以使形成遮光膜4的含有铬的材料中含有钼、铟及锡中的一种以上元素。通过含有钼、铟及锡中的一种以上元素,可以进一步加快相对于氯类气体与氧气的混合气体的蚀刻速率。
在掩模坯料100中,优选设为在遮光膜4上进一步层叠有硬掩模膜5的构成,所述硬掩模膜5由对将遮光膜4进行蚀刻时使用的蚀刻气体具有蚀刻选择性的材料形成。硬掩模膜5基本上不受光密度的限制,因此,硬掩模膜5的厚度与遮光膜4的厚度相比可以大幅减薄。而且,有机类材料的抗蚀膜只要是在该硬掩模膜5上形成图案的干法蚀刻结束为止的期间、仅作为蚀刻掩模发挥功能的膜的厚度,就是足够的。因此,与以往相比,可以大幅减薄抗蚀膜的厚度。抗蚀膜的薄膜化在提高抗蚀剂分辨率和防止图案歪斜的方面有效,在应对微细化要求的方面非常重要。
在遮光膜4由含有铬的材料形成的情况下,优选该硬掩模膜5由含有硅的材料形成。需要说明的是,该情况下的硬掩模膜5存在与有机类材料的抗蚀膜的密合性低的倾向。因此,优选对硬掩模膜5的表面实施HMDS(六甲基二硅氮烷、Hexamethyldisilazane)处理而使表面的密合性提高。需要说明的是,该情况下的硬掩模膜5更优选由SiO2、SiN、SiON等形成。
另外,作为遮光膜4由含有铬的材料形成的情况下的硬掩模膜5的材料,除了上述的含有硅的材料以外,还可以采用含有钽的材料。作为该情况下的含有钽的材料,除钽金属以外,可列举在钽中含有选自氮、氧、硼及碳中的一种以上元素的材料等。
另一方面,作为遮光膜4,可以具备从相移膜3侧起依次层叠有由含有铬的材料形成的层、以及由含有过渡金属和硅的材料形成的层的结构。关于该情况下的含有铬的材料的具体事项,与上述的遮光膜4的情况同样。另外,在由含有过渡金属和硅的材料形成的层中,作为该层中所含的过渡金属,可列举钼(Mo)、钽(Ta)、钨(W)、钛(Ti)、铬(Cr)、铪(Hf)、镍(Ni)、钒(V)、锆(Zr)、钌(Ru)、铑(Rh)、锌(Zn)、铌(Nb)、钯(Pd)等中的任意一种金属或这些金属的合金。作为该层中所含的除过渡金属元素以外的金属元素,可列举铝(Al)、铟(In)、锡(Sn)及镓(Ga)等。
在上述的由含有铬的材料形成的层与由含有过渡金属和硅的材料形成的层层叠而成的结构的遮光膜4的情况下,优选硬掩模膜5由含有铬的材料形成。
在掩模坯料100中,优选与硬掩模膜5的表面相接地以100nm以下的膜厚形成有机类材料的抗蚀膜。在与DRAM hp32nm代对应的微细图案的情况下,有时会在要形成于硬掩模膜5的转印用图案(相移图案)中设置线宽为40nm的SRAF(Sub-Resolution AssistFeature)。即使在这样的情况下,抗蚀剂图案的剖面长宽比也降低至1:2.5,因此,可以在抗蚀膜的显影时、冲洗时等抑制抗蚀图案损坏、脱离。需要说明的是,抗蚀膜的膜厚为80nm以下时,可以进一步抑制抗蚀剂图案损坏、脱离,因而更优选。
蚀刻停止膜2、相移膜3、遮光膜4、硬掩模膜5通过溅射而形成,也可以采用DC溅射、RF溅射及离子束溅射等中的任意溅射。在使用导电性低的靶的情况下,优选采用RF溅射、离子束溅射。考虑到成膜速率,优选采用DC溅射。
关于蚀刻停止膜2的成膜方法,优选在成膜室内配置含有铪的靶(除表层以外实质上不含氧的铪靶、或含有铪和氧的靶),在透光性基板1上形成蚀刻停止膜2。具体而言,在该成膜室内的基板台上配置透光性基板1,在氩气等稀有气体气氛(或者与氧气或含氧气体的混合气体气氛)中,对靶施加给定的电压(该情况下优选RF电源)。由此,等离子体化后的稀有气体粒子撞击靶,引起溅射现象,在透光性基板1的表面形成含有铪及氧的蚀刻停止膜2。此时,以使蚀刻停止膜2的膜厚、折射率n2、消光系数k2满足上述的(条件1)及(条件2)中的任意条件的方式设定成膜条件。
如以上所述,对于该第一实施方式的掩模坯料100而言,可以提供具备对于ArF曝光光具有高透射率、并且对于与ArF曝光光具有同等的193nm的波长的检查光可以得到高对比率的蚀刻停止膜2的相移掩模用的掩模坯料100。
[相移掩模及其制造]
在该第一实施方式的相移掩模200(图2参照)中,掩模坯料100的蚀刻停止膜2残留于透光性基板1的主表面上的整个面,在相移膜3上形成相移图案3a,在遮光膜4上形成遮光图案4b。需要说明的是,在该相移掩模200的制作过程中,将硬掩模膜5除去(参照图3)。
即,该第一实施方式的相移掩模200具备在透光性基板1上依次层叠有蚀刻停止膜2、相移图案3a、及遮光图案4b的结构。相移图案3a由含有硅及氧的材料形成。蚀刻停止膜2由满足上述的(条件1)及(条件2)中的任意条件的材料形成。而且,蚀刻停止膜2由对于在相移膜3上形成图案时进行的利用氟类气体的干法蚀刻可得到与相移膜3之间的蚀刻选择性的材料形成。需要说明的是,关于该相移掩模200中的透光性基板1、蚀刻停止膜2、相移图案3a、及遮光图案4b的具体构成,与掩模坯料100的情况同样。
以下,按照对作为主要部分剖面结构图的图3中所示的制造工序,对该第一实施方式的相移掩模200的制造方法进行说明。需要说明的是,在此,对在遮光膜4中采用含有铬的材料、在硬掩模膜5中采用含有硅的材料的情况进行叙述。
首先,以与掩模坯料100中的硬掩模膜5相接的方式通过旋涂法形成抗蚀膜。接下来,利用电子束对抗蚀膜描绘要形成于相移膜3的图案,进一步进行显影处理等给定的处理,从而形成第一抗蚀剂图案6a(参照图3(a))。接下来,将第一抗蚀剂图案6a作为掩模,进行使用了氟类气体的干法蚀刻,在硬掩模膜5上形成硬掩模图案5a(参照图3(b))。
接下来,将第一抗蚀剂图案6a除去。然后,将硬掩模图案5a作为掩模,进行使用了氯类气体与氧类气体的混合气体的干法蚀刻,在遮光膜4上形成遮光图案4a(参照图3(c))。接下来,将遮光图案4a作为掩模,进行使用了氟类气体的干法蚀刻,在相移膜3上形成相移图案3a(参照图3(d))。通过该干法蚀刻,将硬掩模图案5a除去。
接下来,通过旋涂法形成抗蚀膜。然后,利用电子束对抗蚀膜描绘要形成于遮光膜4的图案(包含遮光带的图案),进一步进行显影处理等给定的处理,由此形成第二抗蚀剂图案7b(参照图3(e))。
然后,将第二抗蚀剂图案7b作为掩模,进行使用了氯类气体与氧气的混合气体的干法蚀刻,在遮光膜4上形成遮光图案4b(参照图3(f))。
然后,将第二抗蚀剂图案7b除去后进行清洗工序。清洗工序后,根据需要使用波长193nm的光进行掩模缺陷检查。进一步,根据缺陷检查的结果并根据需要进行缺陷修正,制造相移掩模200(参照图3(g))。蚀刻停止膜2对于具有193nm的波长的ArF曝光光具有高透射率,并且对于与ArF曝光光具有同等的193nm的波长的检查光可以得到高对比率。因此,能够以高精度进行缺陷检查及缺陷修正。
[半导体器件的制造]
第一实施方式的半导体器件的制造方法包括:利用第一实施方式的相移掩模200或使用第一实施方式的掩模坯料100制造的相移掩模200,将转印用图案曝光转印至半导体基板上的抗蚀膜。因此,如果使用第一实施方式的相移掩模200曝光转印至半导体器件上的抗蚀膜,则可以以充分满足设计规格的精度在半导体器件上的抗蚀膜上形成图案。
需要说明的是,至此为止对将第一实施方式的掩模坯料100应用于制造CPL掩模的方式进行了说明。然而,本发明的掩模坯料的应用对象不特别限定于CPL掩模,在例如制造Levenson型的相移掩模的用途中也可以同样地应用。
实施例
以下,通过实施例,对本发明的实施方式更具体地进行说明。
(实施例1)
[掩模坯料的制造]
准备了主表面的尺寸为约152mm×约152mm、厚度为约6.35mm的由合成石英玻璃制成的透光性基板1。该透光性基板1是将端面及主表面研磨至给定的表面粗糙度以下(以均方根粗糙度Rq计为0.2nm以下)、然后实施了给定的清洗处理及干燥处理而得到的。使用光谱椭偏仪(J.A.Woollam公司制M-2000D)测定该透光性基板1的各光学特性,结果在波长193nm的光下的折射率n3为1.556、消光系数k3为0.00(测定下限)。
接下来,以与透光性基板1的表面相接的方式以3nm的厚度形成了由铪及氧形成的蚀刻停止膜2(HfO膜)。具体而言,在单片式RF溅射装置内设置透光性基板1,使Hf靶放电,通过以氩(Ar)及氧(O2)的混合气体为溅射气体的溅射(RF溅射)形成了蚀刻停止膜2。对以相同条件形成于其它透光性基板上的蚀刻停止膜进行了利用X射线光电子分光法的分析,结果Hf:O=34:66(原子%比)。
另外,使用上述的光谱椭偏仪(J.A.Woollam公司制M-2000D)测定蚀刻停止膜2的各光学特性。结果在波长193nm的光下的折射率n2为2.73、消光系数k2为0.36。
接下来,以与蚀刻停止膜2的表面相接的方式以177nm的厚度形成了由含有硅和氧的SiO2形成的相移膜3。具体而言,将形成有蚀刻停止膜2的透光性基板1设置于单片式RF溅射装置内,使用二氧化硅(SiO2)靶,通过将氩(Ar)气作为溅射气体的RF溅射,在蚀刻停止膜2上形成了由SiO2形成的相移膜3。需要说明的是,对于其它透光性基板1的主表面,在相同条件下仅形成由SiO2形成的相移膜3,使用上述的光谱椭偏仪测定该最上层的光学特性,结果在波长193nm下的折射率n1为1.56、消光系数k1为0.00(测定下限)。
然后,以与相移膜3的表面相接的方式以59nm的厚度形成了含有铬的遮光膜4。该遮光膜4是除铬以外还含有氧和碳的CrOC膜。具体而言,在单片式DC溅射装置内设置形成了相移膜3后的透光性基板1,使用铬(Cr)靶,通过在二氧化碳(CO2)及氦(He)的混合气体气氛中的反应性溅射(DC溅射)形成了遮光膜4。接下来,对于形成有上述遮光膜4(CrOC膜)的透光性基板1实施了加热处理。具体而言,使用热板,在大气中将加热温度设为280℃、将加热时间设为5分钟,进行了加热处理。
对加热处理后的遮光膜4通过X射线光电子分光分析法(有ESCA、RBS修正)进行了分析。其结果可以确认,遮光膜4的与透光性基板1侧相反侧的表面附近的区域(从表面至2nm左右的深度的区域)具有氧含量比除此以外的区域更多的组成梯度部(氧含量为40原子%以上)。另外可知,遮光膜4的除组成梯度部以外的区域中的各构成元素的含量以平均值计为Cr:71原子%、O:15原子%、C:14原子%。此外,可以确认遮光膜4的除组成梯度部以外的区域在厚度方向上的各构成元素之差均为3原子%以下,实质上不存在厚度方向的组成梯度。需要说明的是,对于以下示出的其它膜的组成也与上述遮光膜4同样地通过X射线光电子分光分析法(有ESCA、RBS修正)而得到。
另外,对于加热处理后的遮光膜4,使用分光光度计(Agilent Technologies公司制Cary4000)测定了ArF准分子激光的光的波长(约193nm)下的光密度(OD),可确认结果为3.0以上。
接下来,以与遮光膜4的表面相接的方式以12nm的厚度形成了由含有硅和氧的SiO2形成的硬掩模膜5。具体而言,在单片式RF溅射装置内设置形成有遮光膜4后的透光性基板1,使用二氧化硅(SiO2)靶,通过以氩(Ar)气为溅射气体的RF溅射,在遮光膜4上形成了由SiO2形成的硬掩模膜5。按照以上的步骤制造了实施例1的掩模坯料100。
需要说明的是,按照同样的步骤在其它透光性基板上形成蚀刻停止膜,通过上述的光谱椭偏仪,分别测定了仅该蚀刻停止膜的状态下对于波长193nm的光的表面反射率(与透光性基板1相反侧的反射率)和背面反射率(透光性基板1侧的反射率)。其结果,表面反射率为14.3%,背面反射率为10.7%。
接下来,按照同样的步骤以与该蚀刻停止膜2的表面相接的方式形成相移膜3,通过上述的光谱椭偏仪分别测定了该蚀刻停止膜2与相移膜3的层叠结构在波长193nm的光下的透射率和表面反射率(与透光性基板1相反侧的反射率)和背面反射率(透光性基板1侧的反射率)。其结果,将透光性基板1的透射率设为100%时的透射率为81.3%,表面反射率为9.0%,背面反射率为6.2%。
根据该结果可知,由设置实施例1的蚀刻停止膜2而发生的透射率的降低的影响小。另一方面,用单独的蚀刻停止膜2的表面反射率除以蚀刻停止膜2与相移膜3的层叠结构的表面反射率而计算出的对比率为1.59。另一方面,用单独的蚀刻停止膜2的背面反射率除以蚀刻停止膜2与相移膜3的层叠结构的背面反射率而计算出的对比率为1.73。任意对比率均为1.5以上。由此可以认为,由该实施例1的掩模坯料100制作相移掩模200,即使用将波长193nm的光用作检查光的掩模检查装置对该相移掩模200进行掩模缺陷检查,也可以正常地判定掩模缺陷。
[相移掩模的制造和评价]
接下来,使用该实施例1的掩模坯料100,按照以下的步骤制作了实施例1的相移掩模200。首先,对硬掩模膜5的表面实施HMDS处理。接下来,通过旋涂法,以与硬掩模膜5的表面相接的方式以膜厚80nm形成了由电子束描绘用化学增幅型抗蚀剂形成的抗蚀膜。接下来,对该抗蚀膜电子束描绘要形成于相移膜3的图案进行给定的显影处理,形成了第一抗蚀剂图案6a(参照图3(a))。此处,为了在相移膜3中形成缺陷,对于第一抗蚀剂图案6a,除了本来要形成的相移图案以外,还预先加入了程序缺陷。
接下来,将第一抗蚀剂图案6a作为掩模,进行使用了CF4气体的干法蚀刻,在硬掩模膜5上形成了硬掩模图案5a(参照图3(b))。
接下来,通过TMAH将残存的第一抗蚀剂图案6a除去。接下来,将硬掩模图案5a作为掩模,进行使用了氯与氧的混合气体(气体流量比Cl2:O2=20:1)的高偏压条件下的干法蚀刻,在遮光膜4上形成了遮光图案4a(参照图3(c))。
接下来,将遮光图案4a作为掩模,进行使用了CF4气体的干法蚀刻,在相移膜3上形成了相移图案3a(参照图3(d))。在该蚀刻的初始阶段,形成于遮光图案4a上的硬掩模图案5a也作为蚀刻掩模发挥功能。然而,由于该硬掩模膜5的材料与相移膜3的材料同样为SiO2,因此,将硬掩模图案5a在较早阶段除去。
接下来,通过旋涂法,以与遮光图案4a的表面相接的方式以膜厚200nm形成了由电子束描绘用化学增幅型抗蚀剂制成的抗蚀膜。接下来,对该抗蚀膜电子束描绘要形成于遮光膜4的图案进行给定的显影处理,形成了第二抗蚀剂图案7b(参照图3(e))。接下来,将第二抗蚀剂图案7b作为掩模,进行使用了氯和氧的混合气体(气体流量比Cl2:O2=4:1)的干法蚀刻,在遮光膜4上形成了遮光图案4b(参照图3(f))。接下来,通过灰化将第二抗蚀剂图案7b除去,进行清洗处理,制作了实施例1的相移掩模(CPL掩模)200(参照图3(g))。
对于制作的实施例1的相移掩模200,通过将波长193nm的光用作检查光的掩模检查装置(KLA-Tencor公司制Teron640)进行了掩模图案的检查。其结果,在配置有程序缺陷的位置的相移图案3a中检测到缺陷。
对于该实施例1的相移掩模200,使用AIMS193(CarlZeiss公司制),在波长193nm的曝光光下进行了曝光转印至半导体器件上的抗蚀膜时的转印图像的模拟。验证了该模拟的曝光转印图像,结果除了存在程序缺陷的位置以外,充分满足了设计规格。由设置蚀刻停止膜2导致的透光部的透射率的降低对曝光转印造成的影响微小。根据该结果可以认为,即使将实施例1的相移掩模200设置于曝光装置的掩模台并曝光转印至半导体器件上的抗蚀膜,最终形成于半导体器件上的电路图案也可以以高精度形成。
(实施例2)
[掩模坯料的制造]
该实施例2的掩模坯料100除了蚀刻停止膜2的构成以外与实施例1的掩模坯料100同样地制造。具体而言,在该实施例2的掩模坯料100中,对于蚀刻停止膜2而言,使用波长193nm的光下的折射率n2为2.70、消光系数k2为0.40的材料,并以2.8nm的膜厚形成。因此,在透光性基板1上依次层叠有蚀刻停止膜2、相移膜3及遮光膜4的掩模坯料100的结构、以及透光性基板1、相移膜3、遮光膜4的材料、制造方法与实施例1相同。
按照与实施例1的情况同样的步骤,测定实施例2的蚀刻停止膜2与相移膜3的层叠状态下在波长193nm的光下的透射率,结果将透光性基板1的透射率设为100%时的透射率为80.1%。根据该结果可知,由设置实施例2的蚀刻停止膜2发生的透射率的降低的影响小。另一方面,按照与实施例1的情况同样的步骤,用单独的实施例2的蚀刻停止膜2的表面反射率除以蚀刻停止膜2与相移膜3的层叠结构的表面反射率而计算出的对比率为1.50。另一方面,用单独的实施例2的蚀刻停止膜2的背面反射率除以蚀刻停止膜2与相移膜3的层叠结构的背面反射率而计算出的对比率为1.60。任意对比率均为1.5以上。由此可以认为,即使由该实施例2的掩模坯料100制作相移掩模200并对该相移掩模200使用将波长193nm的光用作检查光的掩模检查装置进行掩模缺陷检查,也可以正常地判定掩模缺陷。
[相移掩模的制造和评价]
接下来,按照与实施例1同样的步骤,使用实施例2的掩模坯料100制作了实施例2的相移掩模200。对于制作的实施例2的相移掩模200,通过将波长193nm的光用作检查光的掩模检查装置(KLA-Tencor公司制Teron640)进行掩模图案的检查。其结果,可以在配置程序缺陷的位置的相移图案3a中检测到缺陷。
对于实施例2的相移掩模200,使用AIMS193(CarlZeiss公司制),进行了以波长193nm的曝光光曝光转印至半导体器件上的抗蚀膜时的转印图像的模拟。验证了该模拟的曝光转印图像,结果除了存在程序缺陷的位置以外,充分满足了设计规格。由设置蚀刻停止膜2导致的透光部的透射率的降低对曝光转印造成的影响微小。根据该结果可以认为,即使将实施例2的相移掩模200设置于曝光装置的掩模台并曝光转印至半导体器件上的抗蚀膜,最终形成于半导体器件上的电路图案也可以以高精度形成。
(比较例1)
[掩模坯料的制造]
该比较例1的掩模坯料除了蚀刻停止膜的构成以外与实施例1的掩模坯料100同样地制造。具体而言,在该比较例1的掩模坯料中,对于蚀刻停止膜而言,使用波长193nm的光下的折射率n2为2.60、消光系数k2为0.40的材料,以2.9nm的膜厚形成。因此,在透光性基板上依次层叠有蚀刻停止膜、相移膜及遮光膜的掩模坯料的结构、以及透光性基板、相移膜、遮光膜的材料、制造方法与实施例1相同。
按照与实施例1的情况同样的步骤,测定了比较例1的蚀刻停止膜与相移膜的层叠状态下在波长193nm的光下的透射率,结果将透光性基板的透射率设为100%时的透射率为80.1%。然而,按照与实施例1的情况同样的步骤,用比较例1的蚀刻停止膜的表面反射率除以蚀刻停止膜与相移膜的层叠结构的表面反射率而计算出的对比率为1.46,低于1.5。由此可以认为,由该比较例1的掩模坯料制作相移掩模,对该相移掩模使用将波长193nm的光用作检查光的掩模检查装置进行掩模缺陷检查时,难以正常地判定掩模缺陷。
[相移掩模的制造和评价]
接下来,按照与实施例1同样的步骤,使用比较例1的掩模坯料制作了比较例1的相移掩模。对于制作的比较例1的相移掩模,通过将波长193nm的光用作检查光的掩模检查装置(KLA-Tencor公司制Teron640)进行了掩模图案的检查。其结果,可以在配置有程序缺陷的位置的相移图案中检测到缺陷。
对于比较例1的相移掩模,使用AIMS193(CarlZeiss公司制),进行了以波长193nm的曝光光曝光转印至半导体器件上的抗蚀膜时的转印图像的模拟。验证了该模拟的曝光转印图像,结果除了存在程序缺陷的位置以外,充分满足了设计规格。然而,该比较例1的相移掩模不能检测到程序缺陷,因此,也不能进行缺陷位置修正。根据该结果可以预想,将比较例1的相移掩模设置于曝光装置的掩模台并曝光转印至半导体器件上的抗蚀膜时,最终形成于半导体器件上的电路图案常发生断路、短路。

Claims (27)

1.一种掩模坯料,其具备在透光性基板上依次层叠有蚀刻停止膜和相移膜的结构,
所述相移膜由含有硅及氧的材料形成,
所述相移膜对于波长193nm的光的折射率n1为1.5以上,且对于波长193nm的光的消光系数k1为0.1以下,
所述蚀刻停止膜对于波长193nm的光的折射率n2为2.6以上,且对于波长193nm的光的消光系数k2为0.4以下,而且所述折射率n2及消光系数k2满足条件1及条件2中的任意条件,
条件1:k2≤-0.188×n2+0.879
条件2:k2>-0.188×n2+0.879、且k2≤2.750×n2-6.945。
2.根据权利要求1所述的掩模坯料,其中,
所述蚀刻停止膜的所述折射率n2为3.1以下。
3.根据权利要求1或2所述的掩模坯料,其中,
所述蚀刻停止膜的所述消光系数k2为0.05以上。
4.根据权利要求1~3中任一项所述的掩模坯料,其中,
所述相移膜的所述折射率n1为1.6以下。
5.根据权利要求1~4中任一项所述的掩模坯料,其中,
所述透光性基板对于波长193nm的光的折射率n3为1.5以上且1.6以下,且对于波长193nm的光的消光系数k3为0.1以下。
6.根据权利要求1~5中任一项所述的掩模坯料,其中,
所述蚀刻停止膜及所述相移膜的层叠结构对于波长193nm的光的透射率为80%以上。
7.根据权利要求1~6中任一项所述的掩模坯料,其中,
用单独的所述蚀刻停止膜对于波长193nm的光的表面反射率除以所述蚀刻停止膜及所述相移膜的层叠结构对于波长193nm的光的表面反射率而计算出的对比率为1.5以上。
8.根据权利要求1~7中任一项所述的掩模坯料,其中,
所述蚀刻停止膜由含有铪及氧的材料形成。
9.根据权利要求1~8中任一项所述的掩模坯料,其中,
所述蚀刻停止膜与所述透光性基板的主表面相接而形成。
10.根据权利要求1~9中任一项所述的掩模坯料,其中,
所述蚀刻停止膜的厚度为1nm以上且4nm以下。
11.根据权利要求1~10中任一项所述的掩模坯料,其中,
所述相移膜具有以下功能:使透过所述相移膜后的波长193nm的光和仅在与所述相移膜的厚度相同距离的空气中通过后的波长193nm的光之间产生150度以上且210度以下的相位差。
12.根据权利要求1~11中任一项所述的掩模坯料,其中,
在所述相移膜上具备遮光膜。
13.根据权利要求12所述的掩模坯料,其中,
所述遮光膜由含有铬的材料形成。
14.一种相移掩模,其具备在透光性基板上依次层叠有蚀刻停止膜、和具有相移图案的相移膜的结构,
所述相移膜由含有硅及氧的材料形成,
所述相移膜对于波长193nm的光的折射率n1为1.5以上,且对于波长193nm的光的消光系数k1为0.1以下,
所述蚀刻停止膜对于波长193nm的光的折射率n2为2.6以上,且对于波长193nm的光的消光系数k2为0.4以下,而且所述折射率n2及消光系数k2满足条件1及条件2中的任意条件,
条件1:k2≤-0.188×n2+0.879
条件2:k2>-0.188×n2+0.879、且k2≤2.750×n2-6.945。
15.根据权利要求14所述的相移掩模,其中,
所述蚀刻停止膜的所述折射率n2为3.1以下。
16.根据权利要求14或15所述的相移掩模,其中,
所述蚀刻停止膜的所述消光系数k2为0.05以上。
17.根据权利要求14~16中任一项所述的相移掩模,其中,
所述相移膜的所述折射率n1为1.6以下。
18.根据权利要求14~17中任一项所述的相移掩模,其中,
所述透光性基板对于波长193nm的光的折射率n3为1.5以上且1.6以下,且对于波长193nm的光的消光系数k3为0.1以下。
19.根据权利要求14~18中任一项所述的相移掩模,其中,
所述蚀刻停止膜及所述相移膜的层叠结构对于波长193nm的光的透射率为80%以上。
20.根据权利要求14~19中任一项所述的相移掩模,其中,
用单独的所述蚀刻停止膜对于波长193nm的光的表面反射率除以所述蚀刻停止膜及所述相移膜的层叠结构对于波长193nm的光的表面反射率而计算出的对比率为1.5以上。
21.根据权利要求14~20中任一项所述的相移掩模,其中,
所述蚀刻停止膜由含有铪及氧的材料形成。
22.根据权利要求14~21中任一项所述的相移掩模,其中,
所述蚀刻停止膜与所述透光性基板的主表面相接而形成。
23.根据权利要求14~22中任一项所述的相移掩模,其中,
所述蚀刻停止膜的厚度为1nm以上且4nm以下。
24.根据权利要求14~23中任一项所述的相移掩模,其中,
所述相移膜具有以下功能:使透过所述相移膜后的波长193nm的光和仅在与所述相移膜的厚度相同距离的空气中通过后的波长193nm的光之间产生150度以上且210度以下的相位差。
25.根据权利要求14~24中任一项所述的相移掩模,其中,
在所述相移膜上具备遮光膜,该遮光膜具有包含遮光带的遮光图案。
26.根据权利要求25所述的相移掩模,其中,
所述遮光膜由含有铬的材料形成。
27.一种半导体器件的制造方法,该方法包括:
使用权利要求14~26中任一项所述的相移掩模,将相移掩模上的图案曝光转印至半导体基板上的抗蚀膜的工序。
CN201980013951.3A 2018-02-27 2019-02-13 掩模坯料、相移掩模及半导体器件的制造方法 Active CN111742259B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018032847 2018-02-27
JP2018-032847 2018-02-27
PCT/JP2019/005030 WO2019167622A1 (ja) 2018-02-27 2019-02-13 マスクブランク、位相シフトマスク及び半導体デバイスの製造方法

Publications (2)

Publication Number Publication Date
CN111742259A true CN111742259A (zh) 2020-10-02
CN111742259B CN111742259B (zh) 2023-05-02

Family

ID=67805294

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980013951.3A Active CN111742259B (zh) 2018-02-27 2019-02-13 掩模坯料、相移掩模及半导体器件的制造方法

Country Status (7)

Country Link
US (1) US11022875B2 (zh)
JP (1) JP6759486B2 (zh)
KR (1) KR20200123119A (zh)
CN (1) CN111742259B (zh)
SG (1) SG11202007542WA (zh)
TW (1) TWI778231B (zh)
WO (1) WO2019167622A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220066884A (ko) * 2019-09-25 2022-05-24 호야 가부시키가이샤 마스크 블랭크, 위상 시프트 마스크 및 반도체 디바이스의 제조 방법
CN112925164B (zh) * 2019-12-06 2024-03-26 长鑫存储技术有限公司 光掩膜板及其形成方法
KR102487988B1 (ko) * 2020-10-23 2023-01-12 인하대학교 산학협력단 감쇠형 위상반전 마스크 블랭크 제작 공정을 위한 감쇠형 위상반전막의 노광광 파장 영역 투과율, 표면 반사율, 이면 반사율의 측정 및 계산 값을 이용하는 감쇠형 위상반전막의 광학상수 결정 방법 및 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105452956A (zh) * 2013-08-21 2016-03-30 大日本印刷株式会社 掩模坯料、带有负型抗抗蚀膜的掩模坯料、相移掩模及使用其的图案形成体的制造方法
JP2017134424A (ja) * 2015-09-30 2017-08-03 Hoya株式会社 マスクブランク、位相シフトマスクおよび半導体デバイスの製造方法
JP2017223890A (ja) * 2016-06-17 2017-12-21 Hoya株式会社 マスクブランク、転写用マスク、マスクブランクの製造方法、転写用マスクの製造方法および半導体デバイスの製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3301556B2 (ja) 1993-07-20 2002-07-15 大日本印刷株式会社 位相シフトフォトマスク用ブランク及び位相シフトフォトマスク
JP2002258458A (ja) * 2000-12-26 2002-09-11 Hoya Corp ハーフトーン型位相シフトマスク及びマスクブランク
TW200528915A (en) * 2004-01-22 2005-09-01 Schott Ag Phase shift mask blank, process for preparation of phase shift mask blank, phase shift photomask and manufacturing method thereof
JP4881633B2 (ja) 2006-03-10 2012-02-22 凸版印刷株式会社 クロムレス位相シフトマスク用フォトマスクブランク、クロムレス位相シフトマスク、及びクロムレス位相シフトマスクの製造方法
JP6380204B2 (ja) * 2015-03-31 2018-08-29 信越化学工業株式会社 ハーフトーン位相シフトマスクブランク、ハーフトーン位相シフトマスク及びパターン露光方法
JP6266842B2 (ja) * 2015-08-31 2018-01-24 Hoya株式会社 マスクブランク、マスクブランクの製造方法、位相シフトマスク、位相シフトマスクの製造方法及び半導体デバイスの製造方法
JP6729508B2 (ja) * 2017-06-29 2020-07-22 信越化学工業株式会社 フォトマスクブランク及びフォトマスク

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105452956A (zh) * 2013-08-21 2016-03-30 大日本印刷株式会社 掩模坯料、带有负型抗抗蚀膜的掩模坯料、相移掩模及使用其的图案形成体的制造方法
JP2017134424A (ja) * 2015-09-30 2017-08-03 Hoya株式会社 マスクブランク、位相シフトマスクおよび半導体デバイスの製造方法
JP2017223890A (ja) * 2016-06-17 2017-12-21 Hoya株式会社 マスクブランク、転写用マスク、マスクブランクの製造方法、転写用マスクの製造方法および半導体デバイスの製造方法

Also Published As

Publication number Publication date
JPWO2019167622A1 (ja) 2020-12-03
KR20200123119A (ko) 2020-10-28
SG11202007542WA (en) 2020-09-29
TWI778231B (zh) 2022-09-21
TW202004329A (zh) 2020-01-16
US20200409252A1 (en) 2020-12-31
WO2019167622A1 (ja) 2019-09-06
US11022875B2 (en) 2021-06-01
JP6759486B2 (ja) 2020-09-23
CN111742259B (zh) 2023-05-02

Similar Documents

Publication Publication Date Title
TWI810176B (zh) 反射型光罩基底、反射型光罩及其製造方法、與半導體裝置之製造方法
JPWO2004070472A1 (ja) フォトマスクブランク及びフォトマスク、並びにフォトマスクを用いたパターン転写方法
WO2018037863A1 (ja) マスクブランク、転写用マスク及び半導体デバイスの製造方法
CN110770652B (zh) 掩模坯料、相移掩模及半导体器件的制造方法
KR20180026766A (ko) 마스크 블랭크, 위상 시프트 마스크, 위상 시프트 마스크의 제조 방법 및 반도체 디바이스의 제조 방법
CN111742259B (zh) 掩模坯料、相移掩模及半导体器件的制造方法
CN111801618B (zh) 掩模坯料、相移掩模及半导体器件的制造方法
TW201940961A (zh) 光罩基底、相偏移光罩及半導體裝置之製造方法
CN115244459A (zh) 掩模坯料及转印用掩模的制造方法
WO2019230313A1 (ja) マスクブランク、位相シフトマスクおよび半導体デバイスの製造方法
WO2019230312A1 (ja) マスクブランク、位相シフトマスクおよび半導体デバイスの製造方法
CN112740105A (zh) 掩模坯料、转印用掩模及半导体器件的制造方法
TWI827878B (zh) 光罩基底、相偏移光罩及半導體裝置之製造方法
CN115933308A (zh) 掩模坯料、转印用掩模及半导体器件的制造方法
CN108319104B (zh) 显示装置制造用相移掩模坯料、显示装置制造用相移掩模的制造方法及显示装置的制造方法
CN112740106A (zh) 掩模坯料、转印用掩模及半导体器件的制造方法
US20230314929A1 (en) Mask blank, phase shift mask, and method of manufacturing semiconductor device
CN112189167B (zh) 掩模坯料、相移掩模及半导体器件的制造方法
KR20230157956A (ko) 마스크 블랭크, 위상 시프트 마스크 및 반도체 디바이스의 제조 방법
JP2023070977A (ja) マスクブランク、転写用マスク及び半導体デバイスの製造方法
CN114521245A (zh) 掩模坯料、相移掩模及半导体器件的制造方法
CN117769682A (zh) 掩模坯料、相移掩模的制造方法及半导体器件的制造方法
CN117311083A (zh) 掩模坯料、转印用掩模及其制作方法、显示装置的制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant