CN111725348A - 高光响应TiO2/MoS2异质结可见光探测器及制备 - Google Patents

高光响应TiO2/MoS2异质结可见光探测器及制备 Download PDF

Info

Publication number
CN111725348A
CN111725348A CN202010631397.XA CN202010631397A CN111725348A CN 111725348 A CN111725348 A CN 111725348A CN 202010631397 A CN202010631397 A CN 202010631397A CN 111725348 A CN111725348 A CN 111725348A
Authority
CN
China
Prior art keywords
mos
tio
detector
visible light
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010631397.XA
Other languages
English (en)
Other versions
CN111725348B (zh
Inventor
孙颖慧
刘丙绪
王荣明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN202010631397.XA priority Critical patent/CN111725348B/zh
Publication of CN111725348A publication Critical patent/CN111725348A/zh
Application granted granted Critical
Publication of CN111725348B publication Critical patent/CN111725348B/zh
Priority to US17/343,048 priority patent/US11961934B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • H01L31/0336Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table
    • H01L31/03365Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table comprising only Cu2X / CdX heterojunctions, X being an element of Group VI of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • H01L31/113Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明涉及光电器件领域,提供了一种高光响应TiO2/MoS2异质结可见光探测器及制备方法,所述探测器基于背栅MoS2场效应晶体管,包括沟道MoS2、修饰层TiO2、介电层SiO2、源漏极Au和栅极Si,修饰层TiO2修饰在沟道MoS2表面。本发明方法采用微机械剥离法和定点转移电极法构筑背栅少层MoS2场效应晶体管,在沟道表面沉积Ti,自然氧化得到探测器。本发明可获得比较完美的Au/MoS2界面,避免破坏MoS2结构或引入杂质;Ti的强浸润性使得TiO2具有超薄特性,并增大了TiO2与MoS2间接触面积,TiO2中氧空位提升可见光响应,TiO2在MoS2中引入更多空穴陷阱,增强光诱导栅控效应。

Description

高光响应TiO2/MoS2异质结可见光探测器及制备
技术领域
本发明涉及光电器件领域,特别涉及一种高光响应TiO2/MoS2异质结可见光探测器及制备方法。
背景技术
随着光电器件朝着横向高度集成和纵向不断减薄的方向发展,商业化应用的硅基场效应管正面临着难以进一步微型化的发展瓶颈。二维过渡金属硫化物(TransitionMetal Dichalcogenides,TMDs)的出现为延续摩尔定律注入了新的希望。TMDs因具有可调的半导体能带结构、强激子发光、高电流开关比等优异的物理特性,在场效应管、发光二级管、光电探测器等微电子和光电子领域展现出十分重要的应用前景。但是,单一组分的TMDs光探测器的低光响应率和低比探测率难以满足器件实际应用的需要。为此,在纳米尺度上设计和制备基于TMDs异质结构的高性能光电探测器是当前研究的重要方向,特别是在研制高光响应的金属氧化物/TMDs光探测器方面仍有巨大的发展空间。
金属氧化物/TMDs异质结构由于存在电荷转移、电荷陷阱、介电屏蔽、压电效应等界面电荷效应,可以实现对TMDs光电性能的优化,提升其在光电领域的应用潜力。二者间的界面电荷效应与界面状态紧密相关。金属氧化物/TMDs异质结具有可控的表面、界面和独特的能带排列,有望成为最有前途的光电功能材料之一。基于金属氧化物/TMDs异质结的光探测器由于显著增强的光探测性能,为其在光电探测中的应用提供了良好基础,也为构筑新型高性能TMDs光电探测器件提供了新思路。
发明内容
本发明的目的就是解决现有技术的不足,提供了一种高光响应TiO2/MoS2异质结可见光探测器及制备方法。
本发明采用如下技术方案:
一种高光响应TiO2/MoS2异质结可见光探测器,所述探测器基于背栅MoS2场效应晶体管,所述探测器包括沟道MoS2、修饰层TiO2、介电层SiO2、源漏极Au和栅极Si,所述修饰层TiO2修饰在沟道MoS2表面。在现有案例中,我们采用微机械剥离法制备MoS2薄片。因为该方法通过使用胶带对层状结构的块体进行剥离,不会破坏MoS2面内的共价键,得到的MoS2通常具有缺陷少、高度结晶、表面清洁等特点。但不局限于微机械剥离法制备MoS2薄片。化学气相沉积法制备的单层或少层MoS2也可以替代使用。为了获得平整均匀的金属氧化物纳米结构,采用电子束蒸镀技术在MoS2表面沉积一定厚度的Ti,自然氧化后得到TiO2。因为电子束蒸镀相比其他物理气相沉积方法具有能量密度高、沉积速率可控等优势,可用于制备高纯度高均匀性的薄膜材料。
进一步的,所述沟道MoS2为高结晶的少层MoS2薄片。
进一步的,所述MoS2薄片为六方相,呈半导体性,具有单晶结构;
进一步的,所述少层为3层,整体厚度为2-2.5nm。
进一步的,所述MoS2薄片的横向尺寸至少10μm。
进一步的,所述修饰层TiO2为自然氧化的TiO2层。
进一步的,TiO2层的厚度为1-2nm。
进一步的,所述TiO2层为结晶态或非结晶态,当TiO2层为结晶态时,具有单晶结构,片层尺寸在2-3nm。
进一步的,所述探测器在零栅压、白光照射下能达到1099A/W的高光响应度和1.67×1013Jones的高比探测率。
本发明还提供了一种高光响应TiO2/MoS2异质结可见光探测器的制备方法,包括如下步骤:
S1、制备MoS2薄片,并将MoS2薄片转移到二氧化硅片上;
S2、构筑MoS2晶体管:将金电极定点转移至步骤S1获得的MoS2薄片上,得到所述探测器的源漏电极;硅片层为栅极;
S3、电子束蒸镀Ti:在步骤S2构筑的MoS2晶体管沟道表面沉积一定厚度的金属Ti膜,得到Ti/MoS2异质结器件;
S4、自然氧化:将步骤S3制备的Ti/MoS2异质结器件暴露在空气中氧化,获得TiO2/MoS2异质结可见光探测器。
进一步的,步骤S1中,采用微机械剥离法制备MoS2薄片,MoS2薄片转移到氧化硅片后进行加热处理。
进一步的,所述为机械剥离法为采用胶带反复撕粘块状MoS2晶体,获得附有MoS2薄层的胶带,将其转移到二氧化硅片上。
进一步的,将附有MoS2胶带的硅片置于100℃的热板上加热2min。
进一步的,步骤S2中,所述MoS2晶体管的电极厚度为50nm,所述MoS2晶体管构筑完成后在10Pa的Ar/H2氛围中200℃退火1h。
进一步的,步骤S3中,电子束蒸镀Ti膜的膜厚为2nm,沉积速率为
Figure BDA0002568943090000031
本发明提供了构筑高光响应TiO2/MoS2异质结光探测器的可控方法,先采用微机械剥离法获得MoS2薄片,然后通过物理转移电极工艺构筑MoS2背栅场效应管,继而在沟道表面沉积金属Ti,最后自然氧化得到TiO2/MoS2光探测器。
本发明制备的TiO2/MoS2光探测器兼具高光响应度和高比探测率,实现了MoS2可见光探测性能的显著提升,有效推动了过渡金属硫化物光电探测器件的进一步发展。
本发明具有如下创新之处和有益效果:
1、TiO2/MoS2光探测器中采用机械剥离的少层MoS2,比如与脉冲激光沉积法制备的73层MoS2光探测器相比,在沟道厚度上有所创新,使晶体管的沟道厚度降低了96%。
2、采用定点转移电极的方式构筑晶体管器件,与传统蒸镀电极的方式相比,可获得一个比较完美的接触界面,使器件展现出良好的欧姆传输特性,有利于光生载流子在电极与MoS2间的传输。
3、通过Ti的自然氧化得到TiO2修饰层是本发明的一大创新点。相比蒸镀TiO2或旋涂化学法合成的TiO2,可更好地避免破坏MoS2结构或引入化学杂质,而且由于Ti在MoS2表面的高浸润性,可以得到超薄、片层状TiO2,增大了TiO2与MoS2间的接触面积。此外,Ti的不完全氧化使得TiO2中产生较多氧空位,使其对可见光产生明显响应。
4、研究TiO2/MoS2光探测器对白光的光响应行为也是本发明的一大创新点。传统的基于MoS2的光探测器多探究其对单一波长的响应,该研究为MoS2光探测器在可见光探测领域的应用奠定了一定基础。
5、该制备方法所用材料成本较低,操作工艺简单易行,可控性好,产物的形貌、尺寸均一性良好,克服了现有技术所需工艺体系复杂、步骤繁琐、条件要求较为苛刻等不足,比起物理气相沉积TiO2和电子束光刻电极,大大降低了成本。
附图说明
图1所示为本发明实施例一种高光响应TiO2/MoS2异质结可见光探测器的制备流程示意图。其中:(a)为微机械剥离制备的少层MoS2薄片;(b)为转移电极构筑的MoS2背栅场效应管;(c)为电子束蒸镀Ti形成的Ti/MoS2晶体管;(d)为氧化后的TiO2/MoS2异质结光探测器。
图2a所示为少层MoS2薄片的光学图像。
图2b所示为修饰有TiO2的MoS2异质结构的原子力显微镜图像。
图3a所示为TiO2/MoS2异质结的高分辨透射电子显微镜图像。
图3b所示为包含图3a所示区域的TiO2/MoS2异质结的快速傅里叶变换图案。
图3c所示为TiO2的逆快速傅里叶变换图像。
图3d所示为TiO2的电子能量损失谱。
图4所示为TiO2/MoS2异质结的X射线光电子能谱,其中a-d分别为TiO2/MoS2中Mo3d,S 2p,Ti 2p和O1s核心能级的高分辨XPS谱图。
图5a所示为MoS2场效应管的光学图像。
图5b所示为MoS2薄片的拉曼光谱。
图5c所示为修饰有TiO2的MoS2光电探测器的三维模型示意图。
图5d所示为修饰有TiO2的MoS2光电探测器的三维模型和截面结构示意图。
图6a所示为在1V的源漏偏压下,黑暗条件下与不同功率密度的白光照射下MoS2和TiO2/MoS2光电探测器的转移特性曲线,插图给出了阈值电压变化量随功率密度的变化关系。
图6b所示为在不同功率密度下,光电流随栅压的变化关系。
图6c所示为在不同栅压下,光电流随功率密度的变化关系。
图7a所示为不同栅压下,MoS2和TiO2/MoS2光电探测器的响应度随光功率密度的变化关系。
图7b所示为不同栅压下,MoS2和TiO2/MoS2光电探测器的比探测率随光功率密度的变化关系。
图7c所示为MoS2和TiO2/MoS2两种光电探测器在不同栅压下的响应度对比图。
图7d所示为MoS2和TiO2/MoS2两种光电探测器在不同栅压下的比探测率对比图。
图8a所示为可见光照射下三层MoS2的能带模型图。
图8b所示为可见光照射下TiO2/MoS2异质结的能带模型图。
具体实施方式
下文将结合具体附图详细描述本发明具体实施例。应当注意的是,下述实施例中描述的技术特征或者技术特征的组合不应当被认为是孤立的,它们可以被相互组合从而达到更好的技术效果。
实施例1
本实施例一种高光响应TiO2/MoS2异质结可见光探测器,所述探测器基于背栅MoS2场效应晶体管,所述探测器包括沟道MoS2、修饰层TiO2、介电层SiO2、源漏极Au和栅极Si,所述修饰层TiO2修饰在沟道MoS2表面。所述探测器在零栅压和白光照射下能达到1099A/W的高光响应度和1.67×1013Jones的高比探测率。
优选的,所述沟道MoS2为高结晶的少层MoS2薄片,所述MoS2薄片为六方相,具有单晶结构;所述少层为3层,整体厚度为2-2.5nm。
优选的,所述修饰层TiO2为自然氧化的TiO2层,TiO2层的厚度为1-2nm。
优选的,所述TiO2层为结晶态或非结晶态,当TiO2层为结晶态时,具有单晶结构。
实施例2
本实施例一种高光响应TiO2/MoS2异质结可见光探测器的制备方法。
S1、少层高结晶MoS2纳米薄片的制备;
S1.1取适量块体MoS2晶体置于Scotch胶带一侧的粘结面上;
S1.2将胶带两端沿中间对折,用另一侧胶带的粘结面接触MoS2块体上表面,轻轻压实粘有MoS2部分的胶带,慢慢撕开,MoS2块体被一分为二,重复多次对粘对撕,直至看到小块的MoS2零散地分布于胶带两侧;
S1.3从胶带中间剪断,将附有MoS2的一面缓慢贴在食人鱼溶液清洗过的SiO2/Si基片上,抚平并挤压胶带,将附有MoS2胶带的硅片置于100℃热板上加热2min,以加强MoS2与基片间的粘附力;
S1.4缓慢地把胶带从硅片上揭离,MoS2薄层就被转移到了基片上(图1(a))。
S2、MoS2场效应晶体管的制备
S2.1用硅片刀将镀有50nm厚金电极阵列的硅晶圆切成0.5cm×1cm的矩形片;
S2.2在电极片表面滴加适量PMMA溶液,先以低速1000r/min旋涂10s,再以高速4000r/min旋涂50s;将旋涂有PMMA的电极片放到加热台上,120℃下加热固化3min,用小刀将刮掉硅片边缘的PMMA,防止阻碍氧化层的刻蚀;
S2.3将烘干后的电极片正面朝上浸泡于HF溶液中(HF与H2O的体积比为1:3),常温下刻蚀2h,用防酸碱镊子将其取出用去离子水冲洗多次;将一块PDMS盖在电极上方,缓慢将电极从硅片上剥离下来;
S2.4利用探针台,将MoS2放在位移台上显微镜光斑区域内,一边调节光学显微镜,一边调节X-Y-Z位移台,将电极准确堆叠在MoS2上,140℃下加热3min,使PDMS软化失去粘性,将PDMS剥离下来,附有电极的PMMA膜转移到了MoS2薄片上;然后,将器件在180℃下加热3min,增强电极与MoS2间的粘合力;
S2.5将附有PMMA膜的器件常温浸泡在丙酮溶液中2h以溶解PMMA,依次用异丙醇和去离子水清洗器件;
S2.6将器件置于管式炉中,通入40sccm的Ar/H2混气,炉内压强维持在10Pa,200℃下退火1h,以进一步去除PMMA,并加强金电极与MoS2间的接触,获得MoS2场效应管(图1(b))。
S3、金属Ti的沉积
S3.1取适量Ti靶材颗粒置于坩埚中,用高温胶带将MoS2样品粘在基板上。
S3.2设置Ti的沉积膜厚为2nm,沉积速率为
Figure BDA0002568943090000061
S3.3待真空度达到1×10-4Pa时,电子束辐照加热靶材,待膜厚仪上的沉积速率稳定后,打开中间挡板,Ti沉积在室温下的器件沟道表面(图1(c))。
S4、Ti的自然氧化
Ti/MoS2异质结器件暴露于空气中很快氧化成TiO2/MoS2异质结器件(图1(d)),将其贮藏于2000Pa的真空干燥皿中。
实施例3
1、高光响应TiO2/MoS2异质结可见光探测的表征
采用Multimode 8原子力显微镜(Atomic Force Microscope,AFM)表征样品的表面形貌。采用配备有电子能量损失光谱(Electron energy loss spectroscopy,EELS)的JEOL 2200F透射电子显微镜(Transmission Electron Microscope,TEM)表征样品的微观结构。X射线光电子能谱(X-ray photoelectron spectroscopy,XPS)是采用PHI5000VersaProbeⅢX射线光电子能谱仪收集的。拉曼光谱(Raman Spectrum,Raman)是在空气条件下使用532nm激光激发的HR-800微拉曼系统收集的。
2、光响应测试
使用B1500A半导体测试仪(德国Agilent公司)在空气中测试TiO2/MoS2异质结光探测器的可见光响应。用于测试的LED可见光主要包括450nm、541nm和715nm三种波长。光斑直径为3mm,远大于器件沟道长和宽。
3、结果与讨论
首先,我们剥离得到了少层MoS2薄片(图2a),在修饰完TiO2后,使用AFM表征了TiO2/MoS2异质结的表面形貌。如图2b所示,修饰TiO2的MoS2表面平整洁净,均方根粗糙度约为0.3nm,没有明显的岛状颗粒存在,揭示了Ti在MoS2上层状生长。
高分辨透射电子显微镜(HRTEM)图像给出了TiO2/MoS2异质结的微观结构(图3a),MoS2结晶性良好。图3b为相同区域MoS2的逆快速傅里叶变换(IFFT)图像,显示了MoS2清晰的六方晶体结构。包含图3a所示区域的FFT图案见图3b,显示了MoS2六方对称的衍射斑点。此外,可以观察到一个微弱的衍射环,对应0.218nm的晶面。图3c给出了多晶环的IFFT图像,观察到图3a所示区域的两个纳米片层(NSs)。左上方的片层大致呈正方形,边长为2-3nm,两个正交方向上的晶面间距分别为0.219nm(OA)和0.213nm(OB)。片层间的无定形层可能是非晶TiO2。为了进一步确定纳米片的组分,对其进行了EELS分析。如图3d所示,可以观察到明显的Ti-L3、Ti-L2和O-K峰,分别位于458.8eV、463.6eV和532.4eV,证实了MoS2表面TiO2的形成。
采用XPS表征TiO2/MoS2的电子态和界面相互作用。图4中,(a)和(b)显示了MoS2的Mo 3d5/2、Mo 3d3/2、S 2p3/2和S 2p1/2轨道,峰位与MoS2的XPS能谱一致。Ti 2p能级的能谱如图4中(c)所示,在458.78eV和464.50eV处检测到Ti 2p3/2和Ti 2p1/2双峰,对应TiO2中Ti4+的结合能。在457.20eV和463.40eV处的两个伴峰是由TiO2中的氧空位引起的Ti3+。该结果进一步证实MoS2上的Ti氧化成了TiO2,并且Ti和MoS2间没有发生界面反应。在图4中(d)O 1s能级的谱图中,531.50eV处的峰源于TiO2中的缺陷氧。
MoS2场效应管的光学图像如图5a所示,沟道长和沟道宽分别为7μm和17μm,器件面积约为119μm2
Figure BDA0002568943090000081
与A1g两个拉曼特征峰的频率差为23.3cm-1(图5b),说明MoS2薄片为三层。在对MoS2光探测器进行了可见光响应测试后,然后在沟道上沉积了2nm厚的Ti,自然氧化后得到TiO2/MoS2异质结光探测器,结构如图5c和图5d所示。
图6a展示了两种光探测器在黑暗中和不同光功率密度的白光辐照下的转移曲线。随着白光功率密度的增加,MoS2光探测器的转移曲线逐渐向负方向移动,阈值电压发生变化,说明光诱导栅控效应主导光响应。与MoS2器件相比,TiO2/MoS2探测器阈值电压的变化量更显著,如图6a插图所示。这说明TiO2增强了MoS2的光诱导栅控效应,其增强机制将在后面讨论。图6b展示了两种光探测器的光电流随栅压的变化关系。在相同功率密度下,TiO2/MoS2探测器的光电流明显大于MoS2器件的光电流。与MoS2光探测器相比,TiO2/MoS2器件的光电流随栅压的增大而不断增加,这是因为光照条件下TiO2中的电子注入到MoS2中,增加了MoS2中的电子浓度,进而提升了沟道电流,该界面电荷转移行为将在后面响应机制中讨论。
图6c描述了不同栅压下光电流随功率密度的变化关系,我们采用幂律方程拟合了光电流随功率密度的变化关系。对于MoS2光探测器,在-40V的反向偏压下,光电流随光功率密度增大几乎呈线性增加(α≈1.03),这表明光生载流子主要由入射光子通量决定,光电效应对光电流的产生起关键作用。然而,在60V的正向偏压下,观察到光电流与功率密度之间强烈的亚线性关系(α≈0.35),表明光诱导栅控效应主导光电流的产生。在光照下,光生空穴随后被陷阱捕获并产生局部电场,从而导致转移曲线向负向偏移。在TiO2/MoS2光探测器中也发现了类似的光电流随功率密度的变化关系。
图7a描述了MoS2和TiO2/MoS2光探测器在不同栅压下响应度随功率密度的变化关系。TiO2/MoS2光探测器的响应度明显高于MoS2器件。响应度随功率密度的增加而几乎单调递减,这是因为MoS2中的陷阱态捕获电荷达到了饱和,证实光诱导栅控效应的主导机制。图7c比较了两种光探测器在不同栅压下的响应度。在零偏压下、23.2μW/mm2的功率密度下,TiO2/MoS2光探测器的响应度高达1099A/W,约是纯MoS2探测器响应度(406A/W)的1.7倍。可以通过施加高偏压来进一步提高响应度。
图7b描述了这两种器件在不同栅压下比探测率随功率密度的变化关系。在从0V到60V的栅压下,TiO2/MoS2光探测器的比探测率均显著高于MoS2器件。在零栅压下,TiO2/MoS2光探测器的最大探测率为1.7×1013Jones,约是MoS2器件探测率(4.0×1012Jones)的3.2倍,如图7d所示。另外,随着栅压从0V增加到60V,两种光探测器的探测率均显著降低,这是因为在较大的栅压下暗电流较高,降低了比探测率。
采用了三层MoS2和TiO2的能带排列模型来解释光响应机理,如图8a-图8b所示。在MoS2价带边缘存在空穴陷阱态,可能是由MoS2的空位或位错等结构缺陷和MoS2/SiO2界面引入的电荷陷阱。如图8a所示,对于MoS2光探测器,在可见光照射下,MoS2吸收光子能量,激发出电子-空穴对,光生空穴随后被陷阱捕获,延长了导带中光生电子的寿命,并产生一定大小的局部栅压(对应阈值电压的负向移动),在沟道中感应出更多电子,提高光响应。TiO2中氧空位产生的缺陷能级位于导带底下方1.2eV处,可以充当电子陷阱。如图8b所示,TiO2与MoS2形成I型能带排列,有利于电子从TiO2向MoS2中传输。TiO2/MoS2光探测器的高光响应可以从以下两方面原因解释。一方面,可见光可以激发TiO2陷阱态中捕获的电子,使它们跃迁到导带,然后转移到MoS2导带中,MoS2的费米能级略微上移,提高MoS2中的电子浓度,进而增加沟道电流,增强栅压对光电流的调控特性。另一方面,TiO2/MoS2界面会在MoS2中引入大量空穴陷阱,增加了陷阱态密度,光照下将产生更大的局部栅压,从而吸引更多电子进入导带,提升光增益。
总之,本发明采用胶带撕粘的微机械剥离法(但不局限于此)和定点转移电极的范德华集成法构筑背栅MoS2场效应晶体管,通过电子束蒸镀技术在MoS2沟道表面沉积2nm厚金属Ti,自然氧化后得到TiO2/MoS2异质结光探测器。该方法可获得一个比较完美的Au/MoS2界面,而且可更好地避免破坏MoS2结构或引入杂质,同时Ti的强浸润性增大了TiO2与MoS2间的接触面积,Ti的不完全氧化产生的氧空位提升了TiO2对可见光的响应。TiO2/MoS2光探测器在可见光照射下,展现出1099A/W的高光响应度和1.67×1013Jones的高比探测率,与MoS2器件相比,响应度和比探测率分别提升了1.7倍和3.2倍。
本发明提出了一种简单易操作的方法,用于制备高光响应TiO2/MoS2异质结可见光探测器,这种光探测器可以以低成本和高效率进行商业应用扩展。但应当注意的是,微机械剥离工艺的MoS2产率太低,难以大规模制备,因此在进行工业化应用时可采用化学气相沉积或物理气相沉积的方式制备大面积的MoS2薄膜。这项研究为过渡金属硫化物在光电探测中的应用奠定了良好基础,也为研制新型高性能光电探测器提供了新思路。
本文虽然已经给出了本发明的几个实施例,但是本领域的技术人员应当理解,在不脱离本发明精神的情况下,可以对本文的实施例进行改变。上述实施例只是示例性的,不应以本文的实施例作为本发明权利范围的限定。

Claims (10)

1.一种高光响应TiO2/MoS2异质结可见光探测器,其特征在于,所述探测器基于背栅MoS2场效应晶体管,所述探测器包括沟道MoS2、修饰层TiO2、介电层SiO2、源漏极Au和栅极Si,所述修饰层TiO2修饰在沟道MoS2表面。
2.如权利要求1所述的高光响应TiO2/MoS2异质结可见光探测器,其特征在于,所述沟道MoS2为高结晶的少层MoS2薄片。
3.如权利要求2所述的高光响应TiO2/MoS2异质结可见光探测器,其特征在于,所述MoS2薄片为六方相,具有单晶结构;所述少层为3-5层,整体厚度为2-2.5nm。
4.如权利要求1所述的高光响应TiO2/MoS2异质结可见光探测器,其特征在于,所述修饰层TiO2为自然氧化的TiO2层,TiO2层的厚度为1-2nm。
5.如权利要求4所述的高光响应TiO2/MoS2异质结可见光探测器,其特征在于,所述TiO2层为结晶态或非结晶态,当TiO2层为结晶态时,具有单晶结构。
6.如权利要求1所述的高光响应TiO2/MoS2异质结可见光探测器,其特征在于,所述探测器在零栅压和白光照射下能达到1099A/W的高光响应度和1.67×1013Jones的高比探测率。
7.一种高光响应TiO2/MoS2异质结可见光探测器的制备方法,其特征在于,所述方法包括如下步骤:
S1、制备MoS2薄片,并将MoS2薄片转移到二氧化硅片上;
S2、构筑MoS2晶体管:将金电极定点转移至步骤S1获得的MoS2薄片上,得到所述探测器的源漏电极;硅片层为栅极;
S3、电子束蒸镀Ti:在步骤S2构筑的MoS2晶体管沟道表面沉积一定厚度的金属Ti膜,得到Ti/MoS2异质结器件;
S4、自然氧化:将步骤S3制备的Ti/MoS2异质结器件暴露在空气中氧化,获得TiO2/MoS2异质结可见光探测器。
8.如权利要求7所述的高光响应TiO2/MoS2异质结可见光探测器的制备方法,其特征在于,步骤S1中,采用微机械剥离法制备MoS2薄片,MoS2薄片转移到二氧化硅片后进行加热处理。
9.如权利要求7所述的高光响应TiO2/MoS2异质结可见光探测器的制备方法,其特征在于,步骤S2中,所述MoS2晶体管的电极厚度为50nm,所述MoS2晶体管构筑完成后在10Pa的Ar/H2氛围中200℃退火1h。
10.如权利要求7所述的高光响应TiO2/MoS2异质结可见光探测器的制备方法,其特征在于,步骤S3中,电子束蒸镀Ti膜的膜厚为2nm,沉积速率为
Figure FDA0002568943080000022
Figure FDA0002568943080000021
CN202010631397.XA 2020-07-03 2020-07-03 高光响应TiO2/MoS2异质结可见光探测器及制备 Active CN111725348B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202010631397.XA CN111725348B (zh) 2020-07-03 2020-07-03 高光响应TiO2/MoS2异质结可见光探测器及制备
US17/343,048 US11961934B2 (en) 2020-07-03 2021-06-09 Visible light detector with high-photoresponse based on TiO2/MoS2 heterojunction and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010631397.XA CN111725348B (zh) 2020-07-03 2020-07-03 高光响应TiO2/MoS2异质结可见光探测器及制备

Publications (2)

Publication Number Publication Date
CN111725348A true CN111725348A (zh) 2020-09-29
CN111725348B CN111725348B (zh) 2021-06-01

Family

ID=72571523

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010631397.XA Active CN111725348B (zh) 2020-07-03 2020-07-03 高光响应TiO2/MoS2异质结可见光探测器及制备

Country Status (2)

Country Link
US (1) US11961934B2 (zh)
CN (1) CN111725348B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114975654A (zh) * 2022-03-17 2022-08-30 西北工业大学 一种基于化学气相沉积二硫化钨的光电探测器及其制备方法
CN115295676A (zh) * 2022-08-18 2022-11-04 之江实验室 一种高光响应Te/MoS2异质结光探测器及制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114899266B (zh) * 2022-07-14 2022-11-11 西安电子科技大学 基于二硫化钼/锗异质结的pin型光电探测器及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001308041A (ja) * 2000-04-18 2001-11-02 Asahi Kasei Corp 半導体基板上の金属膜研磨用組成物
CN102738387A (zh) * 2011-04-12 2012-10-17 中国科学院微电子研究所 一种基于TiOx结构的忆阻器及其制备方法
CN102791475A (zh) * 2010-03-02 2012-11-21 住友金属矿山株式会社 层合体及其制造方法以及使用其的功能元件
JP2013067835A (ja) * 2011-09-22 2013-04-18 Spm Ag Semiconductor Parts & Materials スパッタリングターゲット、トランジスタ、焼結体の製造方法、トランジスタの製造方法、電子部品または電気機器、液晶表示素子、有機elディスプレイ用パネル、太陽電池、半導体素子および発光ダイオード素子
CN107634122A (zh) * 2017-08-31 2018-01-26 中国科学院宁波材料技术与工程研究所 一种氧化钛钝化膜的制备方法及利用该方法制备太阳电池
CN107833940A (zh) * 2017-10-20 2018-03-23 浙江大学 一种基于二维二硫化钼‑二硫化铼异质结的光电子器件、制备方法及应用
CN110940716A (zh) * 2019-12-04 2020-03-31 山西大学 一种纳米复合电极材料及制备方法和应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014178016A2 (en) * 2013-05-01 2014-11-06 Indian Institute Of Science Non-volatile opto-electronic device
US9472686B2 (en) * 2013-08-02 2016-10-18 Northwestern University Gate-tunable P-N heterojunction diode, and fabrication method and application of same
EP2975652B1 (en) * 2014-07-15 2019-07-17 Fundació Institut de Ciències Fotòniques Optoelectronic apparatus and fabrication method of the same
KR102657986B1 (ko) * 2017-02-07 2024-04-18 더 가버닝 카운슬 오브 더 유니버시티 오브 토론토 광전압 전계 효과 트랜지스터
US20210098611A1 (en) * 2019-10-01 2021-04-01 Northwestern University Dual-gated memtransistor crossbar array, fabricating methods and applications of same
US11889775B2 (en) * 2017-12-18 2024-01-30 Northwestern University Multi-terminal memtransistors and applications of the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001308041A (ja) * 2000-04-18 2001-11-02 Asahi Kasei Corp 半導体基板上の金属膜研磨用組成物
CN102791475A (zh) * 2010-03-02 2012-11-21 住友金属矿山株式会社 层合体及其制造方法以及使用其的功能元件
CN102738387A (zh) * 2011-04-12 2012-10-17 中国科学院微电子研究所 一种基于TiOx结构的忆阻器及其制备方法
JP2013067835A (ja) * 2011-09-22 2013-04-18 Spm Ag Semiconductor Parts & Materials スパッタリングターゲット、トランジスタ、焼結体の製造方法、トランジスタの製造方法、電子部品または電気機器、液晶表示素子、有機elディスプレイ用パネル、太陽電池、半導体素子および発光ダイオード素子
CN107634122A (zh) * 2017-08-31 2018-01-26 中国科学院宁波材料技术与工程研究所 一种氧化钛钝化膜的制备方法及利用该方法制备太阳电池
CN107833940A (zh) * 2017-10-20 2018-03-23 浙江大学 一种基于二维二硫化钼‑二硫化铼异质结的光电子器件、制备方法及应用
CN110940716A (zh) * 2019-12-04 2020-03-31 山西大学 一种纳米复合电极材料及制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AKSHAY MOUDGIL: "MoS2/TiO2 Hybrid Nanostructure-Based Field-Effect Transistor for Highly Sensitive, Selective, and Rapid Detection of Gram-Positive Bacteria", 《ADVANCED MATERIALS TECHNOLOGIES》 *
NAVEEN KAUSHIK,ET.AL.: "Interfacial n‑Doping Using an Ultrathin TiO2 Layer for Contact Resistance Reduction in MoS2", 《ACS APPLIED MATERIALS & INTERFACES》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114975654A (zh) * 2022-03-17 2022-08-30 西北工业大学 一种基于化学气相沉积二硫化钨的光电探测器及其制备方法
CN115295676A (zh) * 2022-08-18 2022-11-04 之江实验室 一种高光响应Te/MoS2异质结光探测器及制备方法

Also Published As

Publication number Publication date
US11961934B2 (en) 2024-04-16
CN111725348B (zh) 2021-06-01
US20220005967A1 (en) 2022-01-06

Similar Documents

Publication Publication Date Title
CN111725348B (zh) 高光响应TiO2/MoS2异质结可见光探测器及制备
CN107833940B (zh) 一种基于二维二硫化钼-二硫化铼异质结的光电子器件、制备方法及应用
CN111682088A (zh) 一种基于范德华异质结的隧穿型光电探测器及其制备方法
CN106769326B (zh) 一种干法制备二维材料的tem样品的方法
CN109742177B (zh) 具有周期性应变的范德华异质结型光电探测器及制备方法
Choi et al. Lithographic fabrication of point contact with Al2O3 rear-surface-passivated and ultra-thin Cu (In, Ga) Se2 solar cells
CN113013263A (zh) 一种增强型二维半导体光电探测器及其制备方法
CN113870922A (zh) 一种基于GaSe/InSe异质结的光存储、电存储复合型器件及其制备方法
CN110165011B (zh) 一种无损转移碳纳米管薄膜制备异质结太阳能电池的方法
CN113964230A (zh) 一种硫硒化亚锡纳米片/GaAs异质结光电二极管及其制备方法和应用
CN116053338A (zh) 一种基于MoO3-x/Bi2O2Se异质集成的近红外光电传感器的制备方法
CN115621353A (zh) 一种具有栅压调控光电转化效率的硒氧铋/二碲化钼异质结光电晶体管及其制备方法和应用
CN111969076B (zh) 一种基于氧化钼/二硫化钼/氧化钼异质结构的光电晶体管及其制作方法
CN114300619A (zh) 一种光调控的石墨烯异质结晶体管及其制备方法
CN114899275A (zh) 一种贵金属纳米线与二维二硫化钼复合结构的光电探测器及其制备方法
CN111354804B (zh) 基于Si锥/CuO异质结的自驱动光电探测器及其制备方法
CN108640091A (zh) 一种化学气相沉积法制备二硒化钽纳米片的方法
CN116885024B (zh) 一种基于PdSe2/ZrTe3异质结的红外光电探测器及其制备方法
CN114784130B (zh) 一种静电自掺杂二极管及其制备方法
CN114256367B (zh) 石墨烯锗硅量子点集成的复合结构探测器及其制备方法
CN210467888U (zh) 一种氮化硼封装的二维有机-无机异质结
CN117976759A (zh) 一种范德华异质结光电探测器及其制备方法和应用
CN116190497B (zh) 一种基于强耦合MoS2/MoO3异质结光电探测器的制备方法
CN117832317A (zh) 一种表面等离激元增强二维材料光电探测器及其制备方法
CN117913176A (zh) 一种高探测率宽谱响应的光电晶体管及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant