CN111682866B - 输出电流可调的GaAs开关驱动电路 - Google Patents

输出电流可调的GaAs开关驱动电路 Download PDF

Info

Publication number
CN111682866B
CN111682866B CN202010586604.4A CN202010586604A CN111682866B CN 111682866 B CN111682866 B CN 111682866B CN 202010586604 A CN202010586604 A CN 202010586604A CN 111682866 B CN111682866 B CN 111682866B
Authority
CN
China
Prior art keywords
field effect
type field
effect transistors
output buffer
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010586604.4A
Other languages
English (en)
Other versions
CN111682866A (zh
Inventor
黄华
曲雄飞
陈普锋
全金海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Higaas Microwave Technology Co ltd
Original Assignee
Tianjin Higaas Microwave Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Higaas Microwave Technology Co ltd filed Critical Tianjin Higaas Microwave Technology Co ltd
Priority to CN202010586604.4A priority Critical patent/CN111682866B/zh
Publication of CN111682866A publication Critical patent/CN111682866A/zh
Application granted granted Critical
Publication of CN111682866B publication Critical patent/CN111682866B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0036Means reducing energy consumption
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0081Power supply means, e.g. to the switch driver
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Logic Circuits (AREA)

Abstract

本发明涉及集成电路技术领域,尤其涉及一种输出电流可调的GaAs开关驱动电路,包括输入缓冲器电路,控制电路,输出缓冲器电路;所述输入缓冲器电路将输入控制信号转换为互补的两路信号进行缓冲放大;所述输入缓冲器与输出缓冲器之间通过双端互补输入双端互补输出相连接;所述控制电路与输出缓冲器电路相连接;所述输出缓冲器包含负载电流切换电路,通过调节负载电流的大小,来达到提高驱动能力与降低电路功耗的作用。

Description

输出电流可调的GaAs开关驱动电路
技术领域
本发明涉及集成电路技术领域,尤其涉及一种输出电流可调的GaAs开关驱动电路。
背景技术
GaAs开关管由于其导通内阻低,开关速度快等优点广泛被用于作为通信开关器件,驱动电路被选为控制开关管的基本任务就是将传送来的控制信号按照其目标要求,转换为可以使开关管导通或者关断的信号。
GaAs拥有相较于Si更好的电子特性,有着较高的饱和电子速率与电子迁移率,使得GaAs可以应用射频以及微波通信领域,同时GaAs有着较高的击穿电压,相比较Si器件更适合高功率的场合;但是由于目前受GaAs的工艺所限,集成大规模的控制电路比较困难,同时与Si工艺相比GaAs在功耗与工作速度上也有较大的劣势,从而影响到整体芯片的功耗,切换时间等指标。
目前业界传统的GaAs开关驱动结构,驱动负载开关管的负载电流不可控,如遇到不同负载的开关管,使用固定的驱动电流,从而会导致驱动能力不足所导致的开关时间变慢,或者驱动能力过剩导致整个芯片的功耗增加。
发明内容
本发明的目的在于克服上述技术的不足,而提供一种输出电流可调的GaAs开关驱动电路。
本发明为实现上述目的,采用以下技术方案:一种输出电流可调的GaAs开关驱动电路,其特征在于:包括输入缓冲器、控制电路和输出缓冲器;所述输入缓冲器采用负压转换电路,并将控制信号转换为互补信号;所述控制电路生成的控制信号与输出缓冲器电路相连;所述输入缓冲器与输出缓冲器之间通过双端互补输入双端互补输出相连接;所述输出缓冲器包含负载电流切换电路,通过调节负载电流的大小,来达到提高驱动能力与降低电路功耗的作用。
优选地,所述输入缓冲器的输入信号经由串联的四个二极管与耗尽型场效应管M1,电阻R1共同组成了电平转换电路,经过转换的控制信号继续经由降压电阻R2传送至互补信号生成电路,该电路共有两个增强型场效应管M2与M3、两个耗尽型场效应管M4与M5、两个负载电阻R3与R4共同组成负载,所生成的互补控制信号连接至输出缓冲器电路。
优选地,所述输出缓冲器由两个增强型场效应管M6与M7、八个耗尽型场效应管M8-M15,八个开关管SPST1-SPST8共同组成,输入缓冲器输出的互补控制信号连接输出缓冲器的增强型场效应管M6与M7,控制电路输出的控制信号分别于输出缓冲器的开关管SPST1-SPST8相连,其中开关管SPST1-SPST8分别与耗尽型场效应管M8-M15相并联;该输出缓冲放大器输出双端互补驱动信号,最终直接驱动GaAs开关。
优选地,所述输出缓冲器由两个增强型场效应管M16与M17、八个电阻R5-R12,八个开关管SPST9-SPST16共同组成,输入缓冲器输出的互补控制信号连接输出缓冲器的增强型场效应管M16与M17,控制电路输出的控制信号分别于输出缓冲器的开关管SPST9-SPST16相连,其中开关管SPST9-SPST16分别与电阻R5-R12相并联;电阻R8-R12与开关管SPST9-SPST16共同构成了输出缓冲器的负载端,通过改变负载的大小,从而改变驱动电流的大小,进而可以改变驱动器的驱动能力与功耗水平,通过控制并联在负载电阻两端的开关管的导通与关闭,来实现接入负载支路电阻的数量,从而达到改变负载大小的功能。
优选地,所述输出缓冲器由两个增强型场效应管M18与M19、两个耗尽型场效应管M20-M21、八个电阻R13-R20,八个个开关管SPST17-SPST21共同组成,输入缓冲器输出的互补控制信号连接输出缓冲器的增强型场效应管M18与M19,控制电路输出的控制信号分别于输出缓冲器的开关管SPST17-SPST21以及耗尽型场效应管M20-M21相连,其中开关管SPST17-SPST21分别与电阻R13-R20相并联;耗尽型场效应管M20、M21、电阻R13-R20与开关管SPST17-SPST24共同构成了输出缓冲器的负载端,通过改变负载的大小,从而改变驱动电流的大小,进而可以改变驱动器的驱动能力与功耗水平,通过控制并联在负载电阻两端的开关管的导通与关闭,来实现接入负载支路电阻的数量,从而达到改变负载大小的功能。
优选地,所述输出缓冲器由两个增强型场效应管M32与M33、八个电阻R21-28、八个开关管SPST33-SPST40共同组成,输入缓冲器输出的互补控制信号连接输出缓冲器的增强型场效应管M32与M33,控制电路输出的控制信号分别于输出缓冲器的开关管SPST33-SPST40相连,其中开关管SPST33-SPST40分别与电阻R21-28相串联;电阻R21-R28与开关管SPST33-SPST40共同构成了输出缓冲器的负载端,通过改变负载的大小,从而改变驱动电流的大小,进而可以改变驱动器的驱动能力与功耗水平,通过控制与电阻串联开关的关断与导通,来实现接入负载支路电阻的数量,从而达到改变负载大小的功能。
优选地,所述输出缓冲器由两个增强型场效应管M22与M23、八个耗尽型场效应管M24-M31、八个开关管SPST25-SPST32共同组成,输入缓冲器输出的互补控制信号连接输出缓冲器的增强型场效应管M22与M23,控制电路输出的控制信号分别于输出缓冲器的开关管SPST25-SPST32相连,其中开关管SPST25-SPST32分别与耗尽型场效应管M24-M31相串联;耗尽型场效应管M24-M31与开关管SPST25-SPST32共同构成了输出缓冲器的负载端,通过改变负载的大小,从而改变驱动电流的大小,进而可以改变驱动器的驱动能力与功耗水平,通过控制串联在耗尽型场效应管源极的开关的关断与导通,来实现接入负载支路耗尽型场效应管的数量,从而达到改变负载大小的功能。
优选地,所述输出缓冲器由两个增强型场效应管M34与M35、八个耗尽型场效应管M36-M43、八个电阻R29-R36与八个开关管SPST41-SPST48共同组成,输入缓冲器输出的互补控制信号连接输出缓冲器的增强型场效应管M34与M35,控制电路输出的控制信号分别于输出缓冲器的开关管SPST41-SPST48相连,其中开关管SPST41-SPST48分别与电阻R29-R36及耗尽型场效应管M36-M43相串联;耗尽型场效应管M36-M43、电阻R29-R36与开关管SPST33-SPST40共同构成了输出缓冲器的负载端,通过改变负载的大小,从而改变驱动电流的大小,进而可以改变驱动器的驱动能力与功耗水平,通过控制与电阻串联开关的关断与导通,来实现接入负载支路电阻与耗尽型场效应管的数量,从而达到改变负载大小的功能。
优选地,所述控制电路中包含八个三输入与门电路,每个三输入与门电路由四个增强型场效应管,两个耗尽型场效应管,两个电阻共同构成。控制电路的输入信号与增强型场效应管M46-M48的相连,电阻R37-R38与增强型场效应管M44-M45组成负载端;组合的八个三输入与门电路构成编码电路,通过改变输入控制信号来实现编码电路的输出,从而对输出缓冲器的负载进行控制。
本发明的有益效果是: 本发明由于输出缓冲器采用了负载可切换结构,从而达到了驱动输出电流可变的效果,使用该结构的GaAs开关驱动芯片对于GaAs的适应性大大增强,一款芯片可以匹配多种不同开关尺寸的GaAs开关,并且根据使用场合的不同,可以达到开关时间与芯片功耗的相互取舍。
附图说明
图1为输出电流可控的GaAs开关驱动电路的整体框图;
图2为输入缓冲器的电路图;
图3为本发明第一种互补输出的电流可控的输出缓冲器电路图;
图4为本发明第二种互补输出的电流可控的输出缓冲器电路图;
图5为本发明第三种互补输出的电流可控的输出缓冲器电路图;
图6为本发明第四种互补输出的电流可控的输出缓冲器电路图;
图7为本发明第五种互补输出的电流可控的输出缓冲器电路图;
图8为本发明第六种互补输出的电流可控的输出缓冲器电路图;
图9为控制电路的电路图;
图10为本发明驱动开关时间仿真图;
图11为本发明的电流功耗仿真图。
具体实施方式
需要说明的是,本发明所提供的电路所需的供电电源上轨为GND=0V,下轨为VEE=-5V,从而使该驱动电路与GaAs开关电路所兼容。
如图1所示,图1为电流可调GaAs开关驱动电路的整体框图,该驱动电路包含输入缓冲器电路,控制电路,输出缓冲器电路。本发明在传统GaAs开关驱动的基础架构上进行了改进,提出了一种电流可调的GaAs开关驱动结构。通过调节驱动电流的大小,从而所需可以针对不同驱动能力的GaAs开关进行调节驱动电流,来达到良好的匹配,从而达到较好的开关时间,同时获得最低的功耗。
如图2所示输入缓冲器由四个二极管,四个电阻,两个增强型场效应管,三个耗尽型场效应管组成;输入信号CT连接至二极管D1的正极,负极连接下一个二极管D2的正极,D2二极管至D4二极管依次相连,D4二极管的负极与耗尽型场效应管M1的漏极相连,M1耗尽型场效应管的源极与电阻R1的一端相连,栅极与电阻R1的另一端相连并连接至电压VEE;二极管D4的负极与M1耗尽型场效应管的漏极与电阻R2的一端相连,电阻R2的另一端与增强型场效应管M1的栅极相连,增强型场效应管M1的源极与电源VEE相连,增强型场效应管M1的漏极与增强型场效应管M2和耗尽型场效应管M3的栅极相连,并且同时与电阻R3的一端相连,电阻R3的另一端与耗尽型场效应管M4的源极相连,耗尽型场效应管M4的漏极与地相连;增强型场效应管M3的源极与VEE相连,漏极与耗尽型场效应管M5的栅极和电阻R4的一端相连,电阻R4的另一端与耗尽型场效应管M5的源极相连,耗尽型场效应管M5的漏极与地相连;输入缓冲器的输出分别从增强型场效应管M2、M3的漏极引出,分别为OUT_A、OUT_B。
如图3所示输出缓冲器由两个增强型场效应管、八个耗尽型场效应管,八个开关管共同组成。输出缓冲器的输入信号是两个互补输入电平IN_A、IN_B,分别与输入缓冲器的输出信号OUT_A、OUT_B相连;输入信号IN_A、IN_B与增强型场效应管M6、M7的栅端相连,增强型场效应管M6的源极与VEE相连接,漏极与M8、M9、M10、M11的栅极相连接,同时与耗尽型场效应管M11的源极、开关管SPST4的一端相连接,耗尽型场效应管M11的漏极与耗尽型场效应管M10的源极、开关管SPST3的相连接,耗尽型场效应管M10的漏极与耗尽型场效应管M9的源极、开关管SPST2相连接,耗尽型场效应管M9的漏极与耗尽型场效应管M8的源极、开关管SPST1相连接,耗尽型场效应管M8的漏极与地相连接;增强型场效应管M7的源极与VEE相连接,漏极与M12、M13、M14、M15的栅极相连接,同时与耗尽型场效应管M15的源极、开关管SPST8的一端相连接,耗尽型场效应管M15的漏极与耗尽型场效应管M14的源极、开关管SPST7相连接,耗尽型场效应管M14的漏极与耗尽型场效应管M13的源极、开关管SPST6相连接,耗尽型场效应管M13的漏极与耗尽型场效应管M12的源极、开关管SPST5相连接,耗尽型场效应管M12的漏极与地相连接;输出缓冲器的输出分别从增强型场效应管M6、M7的漏极引出,分别为DRV_A、DRV_B。M8-M11、M12-M15与SPST1-SPST8共同构成了输出缓冲器的负载端,通过改变负载的大小,从而可以改变驱动电流的大小,进而可以改变驱动器的驱动能力与功耗水平,通过并联在耗尽型场效应管源漏两端的开关管的导通与关闭,来实现接入负载支路场效应管的数量,从而达到改变负载大小的功能。
如图4所示为另一种输出缓冲器由两个增强型场效应管、八个电阻,八个开关管共同组成。输出缓冲器的输入信号是两个互补输入电平IN_A、IN_B,分别与输入缓冲器的输出信号OUT_A、OUT_B相连;输入信号IN_A、IN_B与增强型场效应管M16、M17的栅端相连,增强型场效应管M16的源极与VEE相连接,漏极与电阻R8相连接,同时与开关管SPST12的一端相连接,电阻R8的另一端与电阻R7的一端相连接,同时与开关管SPST12相连接,电阻R7的另一端与电阻R6的一端相连接,同时与开关管SPST11相连接,电阻R6的另一端与电阻R5的一端相连接,同时与开关管SPST10相连接,电阻R5的另一端与地相连接,同时与开关管SPST9相连接;增强型场效应管M17的源极与VEE相连接,漏极与电阻R12相连接,同时与开关管SPST16的一端相连接,电阻R12的另一端与电阻R11的一端相连接,同时与开关管SPST16相连接,电阻R11的另一端与电阻R10的一端相连接,同时与开关管SPST15相连接,电阻R10的另一端与电阻R9的一端相连接,同时与开关管SPST14相连接,电阻R9的另一端与地相连接,同时与开关管SPST13相连接。输出缓冲器的输出分别从增强型场效应管M16、M17的漏极引出,分别为DRV_A、DRV_B。R8-R12与SPST9-SPST16共同构成了输出缓冲器的负载端,通过改变负载的大小,从而可以改变驱动电流的大小,进而可以改变驱动器的驱动能力与功耗水平,通过控制并联在负载电阻两端的开关管的导通与关闭,来实现接入负载支路电阻的数量,从而达到改变负载大小的功能。
如图5所示为另一种输出缓冲器由两个增强型场效应管、两个耗尽型场效应管、八个电阻,八个开关管共同组成。输出缓冲器的输入信号是两个互补输入电平IN_A、IN_B,分别与输入缓冲器的输出信号OUT_A、OUT_B相连;输入信号IN_A、IN_B与增强型场效应管M18、M19的栅端相连,增强型场效应管M18的源极与VEE相连接,漏极与电阻R16和耗尽型场效应管M20的栅极相连接,同时与开关管SPST20的一端相连接,电阻R16的另一端与电阻R15的一端相连接,同时与开关管SPST20相连接,电阻R15的另一端与电阻R13的一端相连接,同时与开关管SPST19相连接,电阻R14的另一端与电阻R13的一端相连接,同时与开关管SPST18相连接,电阻R13的另一端与耗尽型场效应管M20的源极相连,同时与开关管SPST17相连接,耗尽型场效应管M20的漏极与地相连;增强型场效应管M19的源极与VEE相连接,漏极与电阻R20和耗尽型场效应管M21的栅极相连接,同时与开关管SPST24的一端相连接,电阻R20的另一端与电阻R19的一端相连接,同时与开关管SPST24相连接,电阻R19的另一端与电阻R18的一端相连接,同时与开关管SPST23相连接,电阻R18的另一端与电阻R17的一端相连接,同时与开关管SPST22相连接,电阻R17的另一端与耗尽型场效应管M21的源极相连,同时与开关管SPST21相连接,耗尽型场效应管M21的漏极与地相连。输出缓冲器的输出分别从增强型场效应管M18、M19的漏极引出,分别为DRV_A、DRV_B。耗尽型场效应管M20、M21、电阻R13-R20与开关管SPST17-SPST24共同构成了输出缓冲器的负载端,通过改变负载的大小,从而可以改变驱动电流的大小,进而可以改变驱动器的驱动能力与功耗水平,通过控制并联在负载电阻两端的开关管的导通与关闭,来实现接入负载支路电阻的数量,从而达到改变负载大小的功能。
如图6所示为另一种输出缓冲器由两个增强型场效应管、八个电阻、八个开关管共同组成。输出缓冲器的输入信号是两个互补输入电平IN_A、IN_B,分别与输入缓冲器的输出信号OUT_A、OUT_B相连;输入信号IN_A、IN_B与增强型场效应管M32、M33的栅端相连,增强型场效应管M32的源极与VEE相连接,漏极与开关管SPST33-SPST36的一端相连接,电阻R21与开关管SPST33的另一端相连,电阻R22与开关管SPST34的另一端相连,电阻R23与开关管SPST27的另一端相连,电阻R24与开关管SPST28的另一端相连,电阻R21-R24的另一端与地相连;增强型场效应管M33的源极与VEE相连接,漏极与开关管SPST37-SPST40的一端相连接,电阻R25与开关管SPST37的另一端相连,电阻R26与开关管SPST38的另一端相连,电阻R27与开关管SPST39的另一端相连,电阻R28与开关管SPST40的另一端相连,电阻R25-R28的另一端与地相连;输出缓冲器的输出分别从增强型场效应管M32、M33的漏极引出,分别为DRV_A、DRV_B。电阻R21-R28与开关管SPST33-SPST40共同构成了输出缓冲器的负载端,通过改变负载的大小,从而可以改变驱动电流的大小,进而可以改变驱动器的驱动能力与功耗水平,通过控制与电阻串联开关的关断与导通,来实现接入负载支路电阻的数量,从而达到改变负载大小的功能。
如图7所示为另一种输出缓冲器由两个增强型场效应管、八个耗尽型场效应管、八个开关管共同组成。输出缓冲器的输入信号是两个互补输入电平IN_A、IN_B,分别与输入缓冲器的输出信号OUT_A、OUT_B相连;输入信号IN_A、IN_B与增强型场效应管M22、M23的栅端相连,增强型场效应管M22的源极与VEE相连接,漏极与耗尽型场效应管M24-M27的栅极相连接,同时与开关管SPST25-SPST28的一端相连接,耗尽型场效应管M24的源极与开关管SPST25的另一端相连,耗尽型场效应管M25的源极与开关管SPST26的另一端相连,耗尽型场效应管M26的源极与开关管SPST27的另一端相连,耗尽型场效应管M27的源极与开关管SPST28的另一端相连,耗尽型场效应管M24-M27的漏极与地相连;增强型场效应管M23的源极与VEE相连接,漏极与耗尽型场效应管M28-M31的栅极相连接,同时与开关管SPST29-SPST32的一端相连接,耗尽型场效应管M28的源极与开关管SPST29的另一端相连,耗尽型场效应管M29的源极与开关管SPST30的另一端相连,耗尽型场效应管M30的源极与开关管SPST31的另一端相连,耗尽型场效应管M31的源极与开关管SPST32的另一端相连,耗尽型场效应管M28-M31的漏极与地相连;输出缓冲器的输出分别从增强型场效应管M22、M23的漏极引出,分别为DRV_A、DRV_B。耗尽型场效应管M24-M31与开关管SPST25-SPST32共同构成了输出缓冲器的负载端,通过改变负载的大小,从而可以改变驱动电流的大小,进而可以改变驱动器的驱动能力与功耗水平,通过控制串联在耗尽型场效应管源极的开关的关断与导通,来实现接入负载支路耗尽型场效应管的数量,从而达到改变负载大小的功能。
如图8所示为另一种输出缓冲器由两个增强型场效应管、八个耗尽型场效应管、八个电阻与八个开关管共同组成。输出缓冲器的输入信号是两个互补输入电平IN_A、IN_B,分别与输入缓冲器的输出信号OUT_A、OUT_B相连;输入信号IN_A、IN_B与增强型场效应管M34、M35的栅端相连,增强型场效应管M34的源极与VEE相连接,漏极与耗尽型场效应管M36-M39的栅极、开关管SPST41-SPST44的一端相连接,电阻R29一端与开关管SPST41的相连另一端与耗尽型场效应管M36的源极相连,电阻R30一端与开关管SPST42的相连另一端与耗尽型场效应管M37的源极相连,电阻R31一端与开关管SPST43的相连另一端与耗尽型场效应管M38的源极相连,电阻R32一端与开关管SPST44的相连另一端与耗尽型场效应管M39的源极相连;电阻R33一端与开关管SPST45的相连另一端与耗尽型场效应管M40的源极相连,电阻R34一端与开关管SPST46的相连另一端与耗尽型场效应管M41的源极相连,电阻R35一端与开关管SPST47的相连另一端与耗尽型场效应管M42的源极相连,电阻R36一端与开关管SPST48的相连另一端与耗尽型场效应管M43的源极相连。输出缓冲器的输出分别从增强型场效应管M34、M35的漏极引出,分别为DRV_A、DRV_B。耗尽型场效应管M36-M43、电阻R29-R36与开关管SPST33-SPST40共同构成了输出缓冲器的负载端,通过改变负载的大小,从而可以改变驱动电流的大小,进而可以改变驱动器的驱动能力与功耗水平,通过控制与电阻串联开关的关断与导通,来实现接入负载支路电阻与耗尽型场效应管的数量,从而达到改变负载大小的功能。
如图9所示为控制电路的编码电路,其中包含八个三输入与门电路,每个三输入与门电路由四个增强型场效应管,两个耗尽型场效应管,两个电阻共同构成。控制电路的输入信号C_IN1、C_IN2、C_IN3分别与增强型场效应管M46、M47、M48的栅极相连,增强型场效应管M48的源极与VEE相连接,电阻R37的一端与增强型场效应管M46的漏极、耗尽型场效应管M44的栅极相连,另一端与耗尽型场效应管M44的源极相连;增强型场效应管M49的源极与VEE相连接,电阻R38的一端与增强型场效应管M49的漏极、耗尽型场效应管M45的栅极相连,另一端与耗尽型场效应管M45的源极相连;通过改变输入信号来实现编码电路的输出,从而对输出缓冲器进行控制。
图10所示为本开关驱动的时间功能仿真结果,通过驱动同一开关时进行驱动电流的大小调节,来达到相对应开关时间的调节,从图10中可以看出,通过4档的电流调节,从而达到了开关时间的四挡变化,分别对应开关时间为20ns、50ns、80ns、100ns,证明了本发明具有开关时间可调的功能。
图11所示为本开关驱动的电流功耗仿真结果,通过调节驱动缓冲电路的驱动电流大小,来进行到功耗的调节,从图10中可以看出,通过4档的电流调节,从而达到了电流功耗的四挡变化,分别相对应的电流为1000uA、300uA、200uA、180uA,证明了本发明具有电流功耗可调的功能。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (6)

1.一种输出电流可调的GaAs开关驱动电路,其特征在于:包括输入缓冲器、控制电路和输出缓冲器;所述输入缓冲器采用负压转换电路,并将第一控制信号转换为互补信号;所述控制电路生成第二控制信号并与输出缓冲器相连;所述输入缓冲器与输出缓冲器之间通过双端互补输入双端互补输出相连接;所述输出缓冲器包含负载电流切换电路,通过调节负载电流的大小,来达到提高驱动能力与降低电路功耗的作用;
所述第一控制信号经由串联的四个二极管与耗尽型场效应管M1和电阻R1共同组成的电平转换电路,经过转换的第一控制信号继续经由降压电阻R2传送至互补信号生成电路,该生成电路共有两个增强型场效应管M2与M3、两个耗尽型场效应管M4与M5、两个负载电阻R3与R4共同组成,所生成的互补控制信号连接至输出缓冲器;
所述输出缓冲器由两个增强型场效应管M6与M7、八个耗尽型场效应管M8-M15,八个开关管SPST1-SPST8共同组成,输入缓冲器输出的互补控制信号连接输出缓冲器的增强型场效应管M6与M7,控制电路输出的八个控制信号分别于输出缓冲器的开关管SPST1-SPST8相连,其中开关管SPST1-SPST8分别与耗尽型场效应管M8-M15相并联;该输出缓冲器输出双端互补驱动信号,最终直接驱动GaAs开关;
所述控制电路中包含八个三输入与门电路,每个三输入与门电路由四个增强型场效应管,两个耗尽型场效应管,两个电阻共同构成,控制电路的输入信号C_IN1、C_IN2、C_IN3分别与增强型场效应管M46、M47、M48的栅极相连,增强型场效应管M48的源极与VEE相连接,电阻R37的一端与增强型场效应管M46的漏极、耗尽型场效应管M44的栅极相连,另一端与耗尽型场效应管M44的源极相连;增强型场效应管M49的源极与VEE相连接,电阻R38的一端与增强型场效应管M49的漏极、耗尽型场效应管M45的栅极相连,另一端与耗尽型场效应管M45的源极相连;通过改变输入信号来实现编码电路的输出,从而对输出缓冲器进行控制。
2.根据权利要求1所述的输出电流可调的GaAs开关驱动电路,其特征在于:所述输出缓冲器由两个增强型场效应管M16与M17、八个电阻R5-R12,八个开关管SPST9-SPST16共同组成,输入缓冲器输出的互补控制信号连接输出缓冲器的增强型场效应管M16与M17,控制电路输出的八个控制信号分别于输出缓冲器的开关管SPST9-SPST16相连,其中开关管SPST9-SPST16分别与电阻R5-R12相并联;电阻R8-R12与开关管SPST9-SPST16共同构成了输出缓冲器的负载端,通过改变负载的大小,从而改变驱动电流的大小,进而可以改变驱动器的驱动能力与功耗水平,通过控制并联在负载电阻两端的开关管的导通与关闭,来实现接入负载支路电阻的数量,从而达到改变负载大小的功能。
3.根据权利要求1所述的输出电流可调的GaAs开关驱动电路,其特征在于:所述输出缓冲器由两个增强型场效应管M18与M19、两个耗尽型场效应管M20-M21、八个电阻R13-R20,八个个开关管SPST17-SPST21共同组成,输入缓冲器输出的互补控制信号连接输出缓冲器的增强型场效应管M18与M19,控制电路输出的八个控制信号分别于输出缓冲器的开关管SPST17-SPST21以及耗尽型场效应管M20-M21相连,其中开关管SPST17-SPST21分别与电阻R13-R20相并联;耗尽型场效应管M20、M21、电阻R13-R20与开关管SPST17-SPST24共同构成了输出缓冲器的负载端,通过改变负载的大小,从而改变驱动电流的大小,进而可以改变驱动器的驱动能力与功耗水平,通过控制并联在负载电阻两端的开关管的导通与关闭,来实现接入负载支路电阻的数量,从而达到改变负载大小的功能。
4.根据权利要求1所述的输出电流可调的GaAs开关驱动电路,其特征在于:所述输出缓冲器由两个增强型场效应管M32与M33、八个电阻R21-28、八个开关管SPST33-SPST40共同组成,输入缓冲器输出的互补控制信号连接输出缓冲器的增强型场效应管M32与M33,控制电路输出的八个控制信号分别于输出缓冲器的开关管SPST33-SPST40相连,其中开关管SPST33-SPST40分别与电阻R21-28相串联;电阻R21-R28与开关管SPST33-SPST40共同构成了输出缓冲器的负载端,通过改变负载的大小,从而改变驱动电流的大小,进而可以改变驱动器的驱动能力与功耗水平,通过控制与电阻串联开关的关断与导通,来实现接入负载支路电阻的数量,从而达到改变负载大小的功能。
5.根据权利要求1所述的输出电流可调的GaAs开关驱动电路,其特征在于:所述输出缓冲器由两个增强型场效应管M22与M23、八个耗尽型场效应管M24-M31、八个开关管SPST25-SPST32共同组成,输入缓冲器输出的互补控制信号连接输出缓冲器的增强型场效应管M22与M23,控制电路输出的八个控制信号分别于输出缓冲器的开关管SPST25-SPST32相连,其中开关管SPST25-SPST32分别与耗尽型场效应管M24-M31相串联;耗尽型场效应管M24-M31与开关管SPST25-SPST32共同构成了输出缓冲器的负载端,通过改变负载的大小,从而改变驱动电流的大小,进而可以改变驱动器的驱动能力与功耗水平,通过控制串联在耗尽型场效应管源极的开关的关断与导通,来实现接入负载支路耗尽型场效应管的数量,从而达到改变负载大小的功能。
6.根据权利要求1所述的输出电流可调的GaAs开关驱动电路,其特征在于:所述输出缓冲器由两个增强型场效应管M34与M35、八个耗尽型场效应管M36-M43、八个电阻R29-R36与八个开关管SPST41-SPST48共同组成,输入缓冲器输出的互补控制信号连接输出缓冲器的增强型场效应管M34与M35,控制电路输出的八个控制信号分别于输出缓冲器的开关管SPST41-SPST48相连,其中开关管SPST41-SPST48分别与电阻R29-R36及耗尽型场效应管M36-M43相串联;耗尽型场效应管M36-M43、电阻R29-R36与开关管SPST33-SPST40共同构成了输出缓冲器的负载端,通过改变负载的大小,从而改变驱动电流的大小,进而可以改变驱动器的驱动能力与功耗水平,通过控制与电阻串联开关的关断与导通,来实现接入负载支路电阻与耗尽型场效应管的数量,从而达到改变负载大小的功能。
CN202010586604.4A 2020-06-24 2020-06-24 输出电流可调的GaAs开关驱动电路 Active CN111682866B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010586604.4A CN111682866B (zh) 2020-06-24 2020-06-24 输出电流可调的GaAs开关驱动电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010586604.4A CN111682866B (zh) 2020-06-24 2020-06-24 输出电流可调的GaAs开关驱动电路

Publications (2)

Publication Number Publication Date
CN111682866A CN111682866A (zh) 2020-09-18
CN111682866B true CN111682866B (zh) 2024-02-09

Family

ID=72456511

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010586604.4A Active CN111682866B (zh) 2020-06-24 2020-06-24 输出电流可调的GaAs开关驱动电路

Country Status (1)

Country Link
CN (1) CN111682866B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114567151B (zh) * 2022-02-25 2023-09-29 中国电子科技集团公司第二十九研究所 GaAs工艺驱动电路的改善方法、电路、开关、芯片

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4922135A (en) * 1988-04-29 1990-05-01 International Business Machines Corporation GaAs MESFET logic circuits including push pull output buffers
JPH06216743A (ja) * 1992-07-14 1994-08-05 Philips Electron Nv 出力バッファ回路と入力バッファ回路とを有するシステム
JPH06350353A (ja) * 1993-06-12 1994-12-22 Hitachi Ltd 増幅回路
JPH08204542A (ja) * 1995-01-30 1996-08-09 Nec Corp 論理回路
JPH09214323A (ja) * 1996-02-01 1997-08-15 Oki Electric Ind Co Ltd 入力回路
US5699007A (en) * 1994-02-14 1997-12-16 Cascade Design Automation Corporation High-speed solid state buffer circuit and method for producing the same
US5739701A (en) * 1995-03-30 1998-04-14 Seiko Epson Corporation Input/output buffer circuit having reduced power consumption
KR20000018503A (ko) * 1998-09-02 2000-04-06 윤종용 반도체 장치의 데이터 입력/출력 버퍼 회로
JP2000165227A (ja) * 1998-11-26 2000-06-16 Hitachi Ltd 論理出力回路
JP2002314394A (ja) * 2001-04-17 2002-10-25 Nec Access Technica Ltd 出力バッファ能力制御回路
CN101295975A (zh) * 2007-04-24 2008-10-29 中芯国际集成电路制造(上海)有限公司 Cmos驱动电路
CN101888245A (zh) * 2010-06-04 2010-11-17 西安电子科技大学 GaAs HBT超高速2分频器
JP2011205440A (ja) * 2010-03-26 2011-10-13 Hitachi Ltd 出力バッファ回路およびそれを用いたドライバ回路
CN104682967A (zh) * 2015-01-30 2015-06-03 陈普锋 基于差分结构的GaAs逻辑单元及其串并转换电路
TW201607245A (zh) * 2014-08-13 2016-02-16 旺宏電子股份有限公司 具輸出緩衝器之積體電路及控制輸出緩衝器之方法
CN110247651A (zh) * 2019-07-05 2019-09-17 中国电子科技集团公司第二十四研究所 一种基于GaAs HEMT工艺的正压转负压逻辑电路

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7830351B2 (en) * 2005-10-11 2010-11-09 Au Optronics Corporation LCD gate driver circuitry having adjustable current driving capacity
JP5008058B2 (ja) * 2006-06-22 2012-08-22 ルネサスエレクトロニクス株式会社 出力インピーダンス調整回路、半導体装置及び出力インピーダンス調整方法
JP6084764B2 (ja) * 2011-02-22 2017-02-22 ピーエスフォー ルクスコ エスエイアールエルPS4 Luxco S.a.r.l. 半導体装置
US20140049294A1 (en) * 2012-08-16 2014-02-20 Kabushiki Kaisha Toshiba Input buffer

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4922135A (en) * 1988-04-29 1990-05-01 International Business Machines Corporation GaAs MESFET logic circuits including push pull output buffers
JPH06216743A (ja) * 1992-07-14 1994-08-05 Philips Electron Nv 出力バッファ回路と入力バッファ回路とを有するシステム
JPH06350353A (ja) * 1993-06-12 1994-12-22 Hitachi Ltd 増幅回路
US5699007A (en) * 1994-02-14 1997-12-16 Cascade Design Automation Corporation High-speed solid state buffer circuit and method for producing the same
JPH08204542A (ja) * 1995-01-30 1996-08-09 Nec Corp 論理回路
US5739701A (en) * 1995-03-30 1998-04-14 Seiko Epson Corporation Input/output buffer circuit having reduced power consumption
JPH09214323A (ja) * 1996-02-01 1997-08-15 Oki Electric Ind Co Ltd 入力回路
KR20000018503A (ko) * 1998-09-02 2000-04-06 윤종용 반도체 장치의 데이터 입력/출력 버퍼 회로
JP2000165227A (ja) * 1998-11-26 2000-06-16 Hitachi Ltd 論理出力回路
JP2002314394A (ja) * 2001-04-17 2002-10-25 Nec Access Technica Ltd 出力バッファ能力制御回路
CN101295975A (zh) * 2007-04-24 2008-10-29 中芯国际集成电路制造(上海)有限公司 Cmos驱动电路
JP2011205440A (ja) * 2010-03-26 2011-10-13 Hitachi Ltd 出力バッファ回路およびそれを用いたドライバ回路
CN101888245A (zh) * 2010-06-04 2010-11-17 西安电子科技大学 GaAs HBT超高速2分频器
TW201607245A (zh) * 2014-08-13 2016-02-16 旺宏電子股份有限公司 具輸出緩衝器之積體電路及控制輸出緩衝器之方法
CN104682967A (zh) * 2015-01-30 2015-06-03 陈普锋 基于差分结构的GaAs逻辑单元及其串并转换电路
CN110247651A (zh) * 2019-07-05 2019-09-17 中国电子科技集团公司第二十四研究所 一种基于GaAs HEMT工艺的正压转负压逻辑电路

Also Published As

Publication number Publication date
CN111682866A (zh) 2020-09-18

Similar Documents

Publication Publication Date Title
CN111682866B (zh) 输出电流可调的GaAs开关驱动电路
CN101562449B (zh) 一种基于mos电流模逻辑的高速电流开关驱动器
CN101478289A (zh) 应用于低功率输出的e类功率放大器数字式功率控制电路
CN103762948A (zh) 一种集成于片上系统的cmos 射频功率放大器
US10158350B1 (en) Level shifter circuit for gate driving of gate control device
CN204347680U (zh) 基准电压温度系数校准电路
CN110247651A (zh) 一种基于GaAs HEMT工艺的正压转负压逻辑电路
CN109672428A (zh) 一种张弛振荡器
CN109391258B (zh) 基于低压管的电平位移电路
CN201937456U (zh) 一种mos管驱动电路
CN104052489B (zh) 一种应用于硅基oled微显示驱动芯片的电流型dac
CN108832921A (zh) 一种消除衬底偏置效应的模拟开关控制电路
CN209767384U (zh) 电荷泵调压电路
CN208384971U (zh) 一种用于点阵液晶驱动芯片的电压切换电路
CN115800991A (zh) 一种开关电源用的电平转换控制电路
CN109217645B (zh) 一种非绝缘栅型GaN HEMT驱动电路及控制方法
CN1190010C (zh) 大容量绝缘栅双极型晶体管驱动电路
CN111313880A (zh) 一种单电源门极边沿可控驱动电路
CN206595982U (zh) 电平移位器
CN205880721U (zh) 一种可调恒流源电路
CN112486234B (zh) 一种mos芯片亚阈值低供电基准电压源电路
CN205071361U (zh) Led驱动电路及使用该驱动电路的led驱动系统
CN112886795B (zh) 一种碳化硅场效应管的控制电路、功率模块及电力变换器
CN115001477B (zh) 一种用于正负电压输入的信号接口电路
CN103281039A (zh) 一种采用延迟控制泄放支路的差分e类功率放大器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant