CN111647581A - 一种容受甲基化半乳糖的琼胶酶及其应用 - Google Patents

一种容受甲基化半乳糖的琼胶酶及其应用 Download PDF

Info

Publication number
CN111647581A
CN111647581A CN202010563594.2A CN202010563594A CN111647581A CN 111647581 A CN111647581 A CN 111647581A CN 202010563594 A CN202010563594 A CN 202010563594A CN 111647581 A CN111647581 A CN 111647581A
Authority
CN
China
Prior art keywords
agarase
enzyme
ser
agarose
val
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010563594.2A
Other languages
English (en)
Inventor
常耀光
曹斯琦
张玉莹
薛长湖
申晶晶
王玉明
薛勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ocean University of China
Original Assignee
Ocean University of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ocean University of China filed Critical Ocean University of China
Priority to CN202010563594.2A priority Critical patent/CN111647581A/zh
Publication of CN111647581A publication Critical patent/CN111647581A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2468Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1) acting on beta-galactose-glycoside bonds, e.g. carrageenases (3.2.1.83; 3.2.1.157); beta-agarase (3.2.1.81)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/75Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Bacillus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • C12N15/815Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts for yeasts other than Saccharomyces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/04Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/12Disaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01081Beta-agarase (3.2.1.81)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01158Alpha-agarase (3.2.1.158)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Mycology (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

本发明涉及生物技术领域,尤其涉及一种容受甲基化半乳糖的琼胶酶及其应用。所述琼胶酶的氨基酸序列为SEQ ID NO.1以及经过取代、缺失或添加一个或多个氨基酸且具有相同酶活性的,由此所衍生的酶。本发明的琼胶酶能够容受甲基化半乳糖,对于甲基化的琼脂糖结构片段以及经典的琼脂糖结构片段均具有高效的催化能力;相比于普通的琼胶酶能更完全的降解琼胶,提高其生物利用率。通过控制加酶量或反应时间等条件,可快速降解琼脂糖生成分子量为6kDa‑900kDa的不同分子量琼脂糖及寡糖。

Description

一种容受甲基化半乳糖的琼胶酶及其应用
技术领域
本发明涉及生物技术领域,尤其涉及一种容受甲基化半乳糖的琼胶酶及其应用。
背景技术
琼胶是从海洋红藻细胞壁中提取的多糖,是一种重要的海洋多糖。琼脂糖是琼胶的主要组分,具有优良的凝胶特性,广泛地应用于食品及食品相关工业、化妆品、药品等行业。琼脂糖由(1-3)-O-β-d-吡喃半乳糖残基(G残基)及(1-4)-O-3,6-内醚-α-l-吡喃半乳糖残基(LA残基)交替组成。多项研究表明,琼脂糖的结构具有高度异质性,其结构中的G残基往往被甲基化修饰,且修饰程度高达20%。
琼脂糖在室温下不易溶解,生物利用率低。由琼脂糖降解得到的低分子琼脂糖以及寡糖具有水溶性好、粘度低、生物利用率高的特点,并且具有抗菌、保湿皮肤、黑色素瘤细胞增白、抗肥胖、抗糖尿病等多种生物活性,是潜在的功能食品因子,在食品、医药行业中展现出良好的应用前景。
糖苷水解酶能特异性的切割琼脂糖主链中的糖苷键并且不改变其天然结构中的取代基。与常用的酸解相比,采用酶降解琼脂糖不仅反应条件温和,绿色环保,能耗低,并且具有酶的高效性与底物专一性的特点,可有效的克服酸解存在的条件难控制、产物不均一、产物分析和回收难等问题。琼胶酶是一类可特异性降解琼胶中的琼脂糖组分,生成琼脂寡糖的水解酶,根据酶切位点不同,琼胶酶可被分为α-琼胶酶和β-琼胶酶,分别切割α-1,3糖苷键和β-1,4糖苷键。
糖苷水解酶的高度特异性以及多糖结构的异质性,意味着多糖的完全转化需要特异性不同的水解酶。目前已被表征的传统的琼胶酶特异性强,只能降解经典的琼胶结构片段,即(LA-G)n,而无法降解含有甲基的多糖片段。因此,这些琼胶酶无法完全降解含甲基的天然琼脂糖。寻找能够容受甲基化半乳糖的琼胶酶对于提高琼脂糖的生物利用率与转化率至关重要。在目前的研究报道中,仅有一个来自Pseudomonas atlantica的野生型琼胶酶能水解甲基化的琼脂糖,但野生酶需要在琼脂糖的诱导下才可产生,且其制备成本高、纯化难度大,且产酶总量低、活力低,难以用于工业的大规模生产应用中。分子克隆可以依据基因实现酶的高效表达及大量获取,是解决以上问题的理想策略。实现产酶序列的克隆表达可为酶法降解琼脂糖提供工具,为低分子量琼脂糖及寡糖的大规模生产应用提供前提。
发明内容
本发明要解决的技术问题为野生型容受甲基化半乳糖的琼胶酶产量低、活力低、纯化难度大,产酶菌株需在琼脂糖底物的诱导下才可产酶,致使酶的制备成本高、缺少完全转化琼脂糖的关键工具酶。
为解决上述问题,本发明从Wenyingzhuangiafucanilytica CZ1127T菌株中发掘得到一条基因,其原始核苷酸编码735个氨基酸,其氨基酸序列如SEQ ID NO.1所示,利用ExPASy软件预测其理论分子量为79.73kDa。根据序列比对发现此酶与目前报道的同家族的琼胶酶的相似性最高仅为47%,所以此酶为一种序列新颖的酶。以此为基础提供一种容受甲基化半乳糖的琼胶酶的基因及其应用,从而突破该类酶的高效获取及实际应用、琼脂糖的完全转化、低分子量琼脂糖及寡糖规模化制备的关键瓶颈。
为达到上述目的,本发明提供一种容受甲基化半乳糖的琼胶酶,其氨基酸序列为SEQ ID NO.1以及经过取代、缺失或添加一个或多个氨基酸且具有1中酶活性的,由1所衍生的酶。
SEQ ID NO.1:
MRVKSVYKKLSVSFILVMLSASQEVNSQAKVSVNLNVKHVVGGISEFDRTKYITIHANQIENEWDGDNFTSDLRDHFLNGFDVYLGRDTGGITWNLNNMQEDASRPGFANPSNIISKGINTRNNYASKTHLHVYENRKSNHVVAAQLHPFWTGESQIATKGTGWELASPTATGEYMGRYFNEFYGGNGEPVPSWIEVINEPAYEALGGKKNFTNSLQEIADFHVEVADAIRVQNPNLKIGGYTAAFPDFETGDFQRWINRDKLFIDVAGEKMDFWSWHLYDFPVIGGKEDIRSGSNVEATFDMHDHYSMLKLGHKKPYVISEYGAQTHDFRNEGWSSYRDWLFVRAQNSLMMSFMERPEDIAMAIPFTIVKAEWGFNTDKNLPYPARLMRKANEPESYTGEWVYTDRVKFYDLWKNVKGTRIDTKSTDLDIQVDAYVDGNKGYLILNNLESEETEITLDVFEKYDSSITNILKRHLTLSSNNVVIEEETFSSSISTVQLGAGSTMILEYTFANSLTIDETSTEEKYYADSYLQPIVASQPILFAVNNVVKSATYGEAVLRLGLGRDHGKSLKPIVKVNNTEVVVPDDWRGYDQADKGRFFGTIEIPVSYDLLTTNNTVSVEFPDSSGHVSSVIMQVFNFSSDIRTLSVNDVTASDTKTLLISPNPVKDGMLNMTIPAKLKNPIASIYNVSGSLLIKQSMKHSQTSIPVNLFDKGVYLLVLQDGSKKIGESKFVIQ
该酶与其他已知酶的序列相似度最高仅为47%(与来源于Saccharophagusdegradans 2-40产Aga86C相似度最高),为一种序列新颖的酶。利用MEGA6将该酶与CAZy数据库中的GH86家族已性质研究的序列构建系统发育树,结果如图6所示:可以看出该酶处于GH86家族琼胶酶的系统发育树中。因此,本发明中的琼胶酶是GH86家族的一个新成员。
一种编码上述容受甲基化半乳糖的琼胶酶的基因,其核苷酸序列为SEQ ID NO.2及可翻译出SEQ ID NO.1的所有基因。
SEQ ID NO.2:
ATGAGGGTTAAATCTGTATATAAAAAACTTAGTGTGAGTTTTATTTTAGTAATGCTATCTGCTTCTCAAGAGGTAAATAGTCAAGCTAAAGTTTCTGTTAATTTAAATGTAAAACACGTTGTTGGTGGGATATCTGAATTTGATAGAACAAAGTATATCACAATTCATGCAAATCAAATTGAAAATGAGTGGGATGGTGATAATTTTACATCAGATTTAAGAGATCATTTTTTAAATGGCTTTGATGTATATTTAGGAAGAGATACAGGAGGGATTACTTGGAATTTAAATAATATGCAAGAAGATGCTTCTAGACCTGGTTTTGCAAATCCTTCTAACATAATATCAAAAGGTATAAACACTAGAAATAATTATGCTTCTAAAACGCATTTACATGTATATGAAAATAGAAAAAGCAATCATGTAGTCGCAGCACAATTACATCCGTTTTGGACAGGTGAAAGTCAAATAGCTACTAAAGGTACAGGTTGGGAATTGGCAAGTCCAACTGCAACTGGAGAATATATGGGACGTTATTTTAATGAATTTTATGGAGGTAATGGAGAGCCTGTACCTAGTTGGATAGAAGTAATTAATGAACCAGCATATGAAGCTCTTGGAGGAAAGAAAAATTTTACAAACTCACTACAAGAGATAGCAGATTTTCATGTAGAGGTAGCAGATGCTATTAGAGTACAAAATCCAAATTTAAAAATAGGAGGATACACAGCAGCATTTCCAGATTTTGAAACGGGTGATTTTCAAAGATGGATAAATAGAGATAAATTATTTATAGATGTTGCGGGTGAAAAAATGGATTTTTGGTCTTGGCATTTGTATGATTTTCCTGTAATAGGAGGAAAAGAAGATATACGATCGGGGAGTAACGTAGAGGCAACTTTTGATATGCATGATCATTATAGTATGTTAAAGTTGGGACATAAAAAACCTTATGTAATTTCAGAATATGGGGCTCAAACACACGATTTTAGAAATGAAGGTTGGTCTTCTTACAGAGATTGGTTGTTTGTAAGGGCTCAAAACTCATTAATGATGTCTTTTATGGAAAGACCAGAAGATATAGCTATGGCAATTCCATTTACAATTGTAAAAGCAGAATGGGGTTTTAATACAGATAAAAATTTACCTTATCCGGCTAGATTAATGCGTAAGGCTAATGAGCCAGAAAGTTATACAGGAGAATGGGTGTACACAGATAGAGTTAAGTTTTACGATTTATGGAAAAACGTAAAAGGAACTAGAATTGACACAAAATCTACGGATTTAGACATACAGGTAGATGCGTATGTTGATGGAAACAAAGGATATTTAATTTTAAATAATTTAGAATCTGAGGAGACTGAAATTACTTTAGATGTTTTTGAAAAATATGATAGCAGTATTACAAATATTTTAAAAAGACATTTAACACTTTCTAGTAATAACGTTGTAATAGAAGAGGAGACTTTTTCATCTTCAATTTCTACAGTCCAATTAGGAGCTGGATCTACAATGATTTTGGAGTATACCTTTGCAAATTCCCTTACCATTGATGAGACTTCTACCGAAGAAAAATATTATGCAGACAGTTATTTACAGCCTATAGTTGCTTCTCAACCTATTTTGTTTGCAGTTAATAATGTAGTTAAATCGGCTACATATGGAGAGGCTGTGTTGAGGTTAGGACTAGGTAGAGATCATGGTAAGTCTTTAAAACCAATTGTAAAAGTAAATAATACAGAAGTGGTTGTACCAGATGATTGGAGAGGTTACGATCAGGCAGATAAAGGGAGGTTTTTTGGGACTATAGAAATACCAGTCTCGTATGATTTGTTAACTACAAACAATACCGTTTCTGTTGAATTCCCAGACTCTAGCGGACATGTAAGTAGTGTAATTATGCAAGTATTTAATTTTAGTTCAGATATTAGAACATTGTCTGTGAATGATGTTACTGCATCAGATACAAAAACGCTATTGATTTCTCCAAACCCAGTAAAAGATGGAATGTTAAATATGACTATACCAGCAAAATTAAAAAATCCAATAGCTTCTATTTATAATGTTTCAGGTAGTTTGTTAATAAAACAATCAATGAAACATAGTCAAACTAGTATTCCTGTAAACTTATTTGACAAAGGAGTTTATTTATTGGTTCTACAAGATGGAAGTAAAAAAATAGGAGAATCTAAATTTGTAATACAATAA
本发明提供了一种上述容受甲基化半乳糖的琼胶酶的制备方法,将酶异源表达在大肠杆菌、枯草芽孢杆菌、毕赤酵母等体系中,通过诱导产酶即可大量制备容受甲基化半乳糖的琼胶酶。上述的容受甲基化半乳糖的琼胶酶成功异源表达在了大肠杆菌、枯草芽孢杆菌、毕赤酵母等体系中可用于大量生产、制备目标酶,且在毕赤酵母表达体系中的表达活力最高,可有效地应用于化学分析、食品工业等领域。
本发明的有益效果在于:
(1)本发明的琼胶酶基因可以通过克隆表达的方式实现容受甲基化半乳糖的琼胶酶的高效制备;
(2)本发明的琼胶酶能够以内切方式降解琼胶,该酶对于甲基化的琼胶结构片段以及经典的琼胶结构片段均具有高效的催化能力;在控制加酶量或反应时间的条件下,短时间内即可迅速降解琼胶生成分子量为6kDa-900kDa的不同分子量琼胶及寡糖。
附图说明
图1:本发明的琼胶酶目的基因PCR扩增后的核酸电泳图谱;
图2:本发明的琼胶酶的最适反应条件示意图;
图3:本发明的琼胶酶的降解终产物提取离子流色谱图;
图4:本发明的琼胶酶在控制加酶量产生不同分子量的琼脂糖示意图;
图5:本发明的琼胶酶在控制反应时间的条件下产生不同分子量的琼脂糖示意图;
图6:本发明的琼胶酶的系统发育分析图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明的实施例,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:琼胶酶在大肠杆菌中的异源表达
在2216E培养基中培养Wenyingzhuangiafucanilytica CZ1127T直至对数末期并提取全基因组DNA,根据目的基因设计上下游引物,以全基因组为模板进行PCR,PCR反应条件为:95℃3min,95℃20s,42℃22s,72℃60s,22个循环,最后72℃持续5min,得到了琼胶酶的基因片段。BamHI和XhoI双酶切目的基因与pET 28a(+)载体,连接构成重组质粒。将重组质粒导入BL21(DE3)感受态细胞中构成重组菌株。在含卡那霉素的LB培养基中利用异丙基硫代半乳糖苷进行诱导表达,诱导温度为17℃,诱导时间为12h。离心收集菌体,加入一定量的20mM磷酸氢二钠-磷酸二氢钠(Na2HPO4-NaH2PO4)缓冲液悬浮,然后在冰水浴中进行超声破碎(功率400W,工作2s,间隙6s,循环99次),离心收集上清,此即为琼胶酶的粗酶液。
实施例2:琼胶酶在枯草芽孢杆菌中的异源表达
在2216E培养基中培养Wenyingzhuangiafucanilytica CZ1127T直至对数末期并提取全基因组DNA,根据目的基因设计上下游引物,以全基因组为模板如实施例1进行PCR,得到琼胶酶基因片段,BamHI和SacI双酶切目的基因与pHT01质粒,连接构成重组质粒。将重组质粒转化入枯草芽孢杆菌感受态细胞中,筛选阳性克隆并利用异丙基硫代半乳糖苷在LB培养液中进行诱导表达,诱导温度为37℃,诱导时间为12h。离心收集菌体,加入一定量的20mM Na2HPO4-NaH2PO4缓冲液悬浮,然后在冰水浴中进行超声破碎(功率400W,工作2s,间隙6s,循环99次),离心收集上清,此即为琼胶酶的粗酶液。
实施例3:琼胶酶在毕赤酵母中的异源表达
在2216E培养基中培养Wenyingzhuangiafucanilytica CZ1127T直至对数末期并提取全基因组DNA,根据目的基因设计上下游引物,以全基因组为模板如实施例1进行PCR,得到琼胶酶基因片段,利用EcoRI和BamHI双酶切目的基因与pPIC9k质粒,连接构成重组质粒,经Sac I酶切后,直接加入到毕赤酵母GS115感受态细胞中构成重组细胞。离心后用10mMpH8.0 N,N-二羟乙基甘氨酸重新悬浮菌体;将菌液涂布到含有氨苄青霉素的YPD平板,30℃倒置培养3-4天,将在抗性平板上生长的含有重组质粒的阳性克隆子接种于YPD培养基中,30℃培养20h,然后接种于发酵基本培养基中,加入0.3%甲醇诱导,发酵150h后,离心收集上清,此即为琼胶酶的粗酶液。
实施例4:琼胶酶在多种表达体系中的活力比较
将实施例1-实施例3中75μL适当稀释的酶液分别与75μL 2mg/mL琼胶溶液(含0.2MNaCl)混合30℃反应10min后,100℃灭活5min。同样使用75μL适当稀释的灭活酶液与琼胶溶液混合于相同条件下反应,作为对照。使用还原糖增量法pHBH法检测实验组和对照组体系中的还原糖,计算琼胶酶的酶活。1U活力定义为1min内生成1μmol还原糖的活力。利用pHBH法检测1mL发酵液在不同表达体系下的活力如下表所示:
Figure BDA0002546921650000051
从以上结果可以看出,本发明中的琼胶酶可成功表达在大肠杆菌、枯草芽孢杆菌、毕赤酵母等异源体系中,且在毕赤酵母中的表达活力最高。毕赤酵母表达体系可实现重组酶的胞外表达,且外源蛋白含量低,简化了后续重组酶的分离纯化操作,有助于其应用于保健品、食品及药物的开发与生产。
实施例5:琼胶酶的生化性质
使用实施例1中大肠杆菌获得的重组酶液,进行生化性质的探究。
1)温度对酶活的影响
最适反应温度:将适量酶液与琼胶底物溶液混合,混匀后置于15℃-50℃温度下反应10min,于100℃金属浴中放置5min以灭酶,pHBH法测定酶活力。
温度稳定性:将纯化后的酶液于4℃、25℃、30℃、40℃分别放置24h,间隔时间取样并检测酶活力,将放置0h的酶的活力定义为100%,分析琼胶酶在不同放置温度下的温度稳定性。结果表明,该酶在30℃展现出最高的酶活力,在4℃~30℃具有较好的稳定性。
2)pH对酶活的影响
缓冲体系:pH 4.0-6.5:20mM柠檬酸-磷酸氢二钠缓冲液;pH 6.5-9.0:20mM PBS缓冲液;pH 9.0-11.0:20mM碳酸钠-碳酸氢钠缓冲液。
最适反应pH:以上述不同pH值的缓冲液配制琼胶底物,使底物浓度为2mg/mL。使用上述不同pH值的缓冲液置换酶液原来的缓冲环境,并将相应的pH的底物与酶液混匀,于30℃反应10min,100℃金属浴5min灭酶,pHBH法测定酶活力。
pH稳定性:使用上述不同pH值的缓冲液置换酶液原来的缓冲环境,并将酶液置于4℃下1h。然后将酶液的pH值调至pH6.5,按照酶活测定条件测定酶活。将未经任何处理的酶液酶活定义为100%,分析琼胶酶在不同放置pH条件下的pH稳定性。结果表明,该酶在pH6.5时具有最高的酶活力,在pH4.0-11.0的范围内活力保持稳定。
3)金属离子及有机试剂对酶活的影响
将酶解反应中添加有机试剂和金属离子(1mM),然后计算相对残余酶活,结果详见下表。二价离子如Mg2+、Cd2+、Ca2+都可促进琼胶酶的活力,SDS、Mn2+、Hg2+都会抑制酶的活力,Zn2+显著抑制酶活,K+、EDTA对酶的活力无明显影响。
Figure BDA0002546921650000061
实施例6:LC-MS分析琼胶酶降解终产物
使用实施例1中大肠杆菌获得的重组酶液,加入至100mg 2mg/mL琼胶底物(pH 6.5水溶液溶解,含0.1M NaCl)中,并添加pH 6.5的水溶液将反应体系补足至100mL,于30℃反应24h,100℃金属浴5min以灭酶,得到降解终产物,以0.22μm水系微孔滤膜过滤,待用。利用Thermo Scientific Q-Exactive Orbitrap质谱仪进行产物的LC-MS分析。如图3所示,质谱分析结果表明,降解产物主要由典型的新琼寡糖(二糖、四糖、六糖)以及不同甲基化程度的琼脂寡糖(二糖、四糖、六糖)。这表示该酶对于甲基化的琼胶结构片段以及经典的琼胶结构片段均具有高效的催化能力,这对于琼胶的完全转化具有重要意义。
实施例7:通过控制加酶量可制备不同分子量的琼脂糖
将向琼脂糖溶液中加入实施例1大肠杆菌体系所获得的重组酶,按照1g底物(0.5mg/mL)对应于1U、2U、4U、6U、8U、10U重组酶的比例进行反应。30℃反应1h后分别取500μL灭活。利用高效体积排阻色谱-示差折光检测器-多角激光光散射仪联用(HPSEC-MALLS法)监测琼脂糖的分子量,流动相为pH 7.4、含10mM PBS的0.15M NaCl,流速为0.5mL/min。分子量检测结果如图4所示,随着加酶量的增大,在1h内即可获得6kDa-900kDa的不同分子量琼脂糖及寡糖。
实施例8:通过控制反应时间可制备不同分子量的琼脂糖
向琼脂糖溶液中加入实施例1大肠杆菌体系所获得的重组酶,按照1g底物(0.5mg/mL)对应于6U重组酶的比例进行反应。30℃反应10min、20min、30min、40min、50min、60min后分别取500μL灭活。利用HPSEC-MALLS法监测琼脂糖的分子量,流动相条件同实施例7。分子量检测结果如图5所示,随着加酶量的增大,在1h内即可获得30kDa-900kDa的不同分子量琼脂糖及寡糖。
综合实施例7-8,通过控制加酶量、反应时间,可制备出6kDa-900kDa的不同分子量琼脂糖及寡糖。不同分子量的琼脂糖为琼脂糖构效关系研究奠定了基础。
最后需要说明,以上实施例虽然描述了本发明的具体实施方式,但是并非限制本发明;本领域的技术人员应当理解,这些仅是举例说明,本发明的保护范围是由所附权利要求书所限定的。而一切进行修改或等同替换,其均应包含在本发明的保护范围内。
Figure BDA0002546921650000081
Figure BDA0002546921650000091
Figure BDA0002546921650000101
Figure BDA0002546921650000111
Figure BDA0002546921650000121
Figure BDA0002546921650000131
Figure BDA0002546921650000141
Figure BDA0002546921650000151
Figure BDA0002546921650000161
序列表
<110> 中国海洋大学
<120> 一种容受甲基化半乳糖的琼胶酶及其应用
<130> 中国海洋大学
<140> 1
<141> 2020-06-16
<160> 2
<170> SIPOSequenceListing 1.0
<210> 1
<211> 735
<212> PRT
<213> Wenyingzhuangia fucanilytica CZ1127T
<400> 1
Met Arg Val Lys Ser Val Tyr Lys Lys Leu Ser Val Ser Phe Ile Leu
1 5 10 15
Val Met Leu Ser Ala Ser Gln Glu Val Asn Ser Gln Ala Lys Val Ser
20 25 30
Val Asn Leu Asn Val Lys His Val Val Gly Gly Ile Ser Glu Phe Asp
35 40 45
Arg Thr Lys Tyr Ile Thr Ile His Ala Asn Gln Ile Glu Asn Glu Trp
50 55 60
Asp Gly Asp Asn Phe Thr Ser Asp Leu Arg Asp His Phe Leu Asn Gly
65 70 75 80
Phe Asp Val Tyr Leu Gly Arg Asp Thr Gly Gly Ile Thr Trp Asn Leu
85 90 95
Asn Asn Met Gln Glu Asp Ala Ser Arg Pro Gly Phe Ala Asn Pro Ser
100 105 110
Asn Ile Ile Ser Lys Gly Ile Asn Thr Arg Asn Asn Tyr Ala Ser Lys
115 120 125
Thr His Leu His Val Tyr Glu Asn Arg Lys Ser Asn His Val Val Ala
130 135 140
Ala Gln Leu His Pro Phe Trp Thr Gly Glu Ser Gln Ile Ala Thr Lys
145 150 155 160
Gly Thr Gly Trp Glu Leu Ala Ser Pro Thr Ala Thr Gly Glu Tyr Met
165 170 175
Gly Arg Tyr Phe Asn Glu Phe Tyr Gly Gly Asn Gly Glu Pro Val Pro
180 185 190
Ser Trp Ile Glu Val Ile Asn Glu Pro Ala Tyr Glu Ala Leu Gly Gly
195 200 205
Lys Lys Asn Phe Thr Asn Ser Leu Gln Glu Ile Ala Asp Phe His Val
210 215 220
Glu Val Ala Asp Ala Ile Arg Val Gln Asn Pro Asn Leu Lys Ile Gly
225 230 235 240
Gly Tyr Thr Ala Ala Phe Pro Asp Phe Glu Thr Gly Asp Phe Gln Arg
245 250 255
Trp Ile Asn Arg Asp Lys Leu Phe Ile Asp Val Ala Gly Glu Lys Met
260 265 270
Asp Phe Trp Ser Trp His Leu Tyr Asp Phe Pro Val Ile Gly Gly Lys
275 280 285
Glu Asp Ile Arg Ser Gly Ser Asn Val Glu Ala Thr Phe Asp Met His
290 295 300
Asp His Tyr Ser Met Leu Lys Leu Gly His Lys Lys Pro Tyr Val Ile
305 310 315 320
Ser Glu Tyr Gly Ala Gln Thr His Asp Phe Arg Asn Glu Gly Trp Ser
325 330 335
Ser Tyr Arg Asp Trp Leu Phe Val Arg Ala Gln Asn Ser Leu Met Met
340 345 350
Ser Phe Met Glu Arg Pro Glu Asp Ile Ala Met Ala Ile Pro Phe Thr
355 360 365
Ile Val Lys Ala Glu Trp Gly Phe Asn Thr Asp Lys Asn Leu Pro Tyr
370 375 380
Pro Ala Arg Leu Met Arg Lys Ala Asn Glu Pro Glu Ser Tyr Thr Gly
385 390 395 400
Glu Trp Val Tyr Thr Asp Arg Val Lys Phe Tyr Asp Leu Trp Lys Asn
405 410 415
Val Lys Gly Thr Arg Ile Asp Thr Lys Ser Thr Asp Leu Asp Ile Gln
420 425 430
Val Asp Ala Tyr Val Asp Gly Asn Lys Gly Tyr Leu Ile Leu Asn Asn
435 440 445
Leu Glu Ser Glu Glu Thr Glu Ile Thr Leu Asp Val Phe Glu Lys Tyr
450 455 460
Asp Ser Ser Ile Thr Asn Ile Leu Lys Arg His Leu Thr Leu Ser Ser
465 470 475 480
Asn Asn Val Val Ile Glu Glu Glu Thr Phe Ser Ser Ser Ile Ser Thr
485 490 495
Val Gln Leu Gly Ala Gly Ser Thr Met Ile Leu Glu Tyr Thr Phe Ala
500 505 510
Asn Ser Leu Thr Ile Asp Glu Thr Ser Thr Glu Glu Lys Tyr Tyr Ala
515 520 525
Asp Ser Tyr Leu Gln Pro Ile Val Ala Ser Gln Pro Ile Leu Phe Ala
530 535 540
Val Asn Asn Val Val Lys Ser Ala Thr Tyr Gly Glu Ala Val Leu Arg
545 550 555 560
Leu Gly Leu Gly Arg Asp His Gly Lys Ser Leu Lys Pro Ile Val Lys
565 570 575
Val Asn Asn Thr Glu Val Val Val Pro Asp Asp Trp Arg Gly Tyr Asp
580 585 590
Gln Ala Asp Lys Gly Arg Phe Phe Gly Thr Ile Glu Ile Pro Val Ser
595 600 605
Tyr Asp Leu Leu Thr Thr Asn Asn Thr Val Ser Val Glu Phe Pro Asp
610 615 620
Ser Ser Gly His Val Ser Ser Val Ile Met Gln Val Phe Asn Phe Ser
625 630 635 640
Ser Asp Ile Arg Thr Leu Ser Val Asn Asp Val Thr Ala Ser Asp Thr
645 650 655
Lys Thr Leu Leu Ile Ser Pro Asn Pro Val Lys Asp Gly Met Leu Asn
660 665 670
Met Thr Ile Pro Ala Lys Leu Lys Asn Pro Ile Ala Ser Ile Tyr Asn
675 680 685
Val Ser Gly Ser Leu Leu Ile Lys Gln Ser Met Lys His Ser Gln Thr
690 695 700
Ser Ile Pro Val Asn Leu Phe Asp Lys Gly Val Tyr Leu Leu Val Leu
705 710 715 720
Gln Asp Gly Ser Lys Lys Ile Gly Glu Ser Lys Phe Val Ile Gln
725 730 735
<210> 2
<211> 2208
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 2
atgagggtta aatctgtata taaaaaactt agtgtgagtt ttattttagt aatgctatct 60
gcttctcaag aggtaaatag tcaagctaaa gtttctgtta atttaaatgt aaaacacgtt 120
gttggtggga tatctgaatt tgatagaaca aagtatatca caattcatgc aaatcaaatt 180
gaaaatgagt gggatggtga taattttaca tcagatttaa gagatcattt tttaaatggc 240
tttgatgtat atttaggaag agatacagga gggattactt ggaatttaaa taatatgcaa 300
gaagatgctt ctagacctgg ttttgcaaat ccttctaaca taatatcaaa aggtataaac 360
actagaaata attatgcttc taaaacgcat ttacatgtat atgaaaatag aaaaagcaat 420
catgtagtcg cagcacaatt acatccgttt tggacaggtg aaagtcaaat agctactaaa 480
ggtacaggtt gggaattggc aagtccaact gcaactggag aatatatggg acgttatttt 540
aatgaatttt atggaggtaa tggagagcct gtacctagtt ggatagaagt aattaatgaa 600
ccagcatatg aagctcttgg aggaaagaaa aattttacaa actcactaca agagatagca 660
gattttcatg tagaggtagc agatgctatt agagtacaaa atccaaattt aaaaatagga 720
ggatacacag cagcatttcc agattttgaa acgggtgatt ttcaaagatg gataaataga 780
gataaattat ttatagatgt tgcgggtgaa aaaatggatt tttggtcttg gcatttgtat 840
gattttcctg taataggagg aaaagaagat atacgatcgg ggagtaacgt agaggcaact 900
tttgatatgc atgatcatta tagtatgtta aagttgggac ataaaaaacc ttatgtaatt 960
tcagaatatg gggctcaaac acacgatttt agaaatgaag gttggtcttc ttacagagat 1020
tggttgtttg taagggctca aaactcatta atgatgtctt ttatggaaag accagaagat 1080
atagctatgg caattccatt tacaattgta aaagcagaat ggggttttaa tacagataaa 1140
aatttacctt atccggctag attaatgcgt aaggctaatg agccagaaag ttatacagga 1200
gaatgggtgt acacagatag agttaagttt tacgatttat ggaaaaacgt aaaaggaact 1260
agaattgaca caaaatctac ggatttagac atacaggtag atgcgtatgt tgatggaaac 1320
aaaggatatt taattttaaa taatttagaa tctgaggaga ctgaaattac tttagatgtt 1380
tttgaaaaat atgatagcag tattacaaat attttaaaaa gacatttaac actttctagt 1440
aataacgttg taatagaaga ggagactttt tcatcttcaa tttctacagt ccaattagga 1500
gctggatcta caatgatttt ggagtatacc tttgcaaatt cccttaccat tgatgagact 1560
tctaccgaag aaaaatatta tgcagacagt tatttacagc ctatagttgc ttctcaacct 1620
attttgtttg cagttaataa tgtagttaaa tcggctacat atggagaggc tgtgttgagg 1680
ttaggactag gtagagatca tggtaagtct ttaaaaccaa ttgtaaaagt aaataataca 1740
gaagtggttg taccagatga ttggagaggt tacgatcagg cagataaagg gaggtttttt 1800
gggactatag aaataccagt ctcgtatgat ttgttaacta caaacaatac cgtttctgtt 1860
gaattcccag actctagcgg acatgtaagt agtgtaatta tgcaagtatt taattttagt 1920
tcagatatta gaacattgtc tgtgaatgat gttactgcat cagatacaaa aacgctattg 1980
atttctccaa acccagtaaa agatggaatg ttaaatatga ctataccagc aaaattaaaa 2040
aatccaatag cttctattta taatgtttca ggtagtttgt taataaaaca atcaatgaaa 2100
catagtcaaa ctagtattcc tgtaaactta tttgacaaag gagtttattt attggttcta 2160
caagatggaa gtaaaaaaat aggagaatct aaatttgtaa tacaataa 2208

Claims (8)

1.一种容受甲基化半乳糖的琼胶酶,其氨基酸序列为SEQ ID NO.1以及经过取代、缺失或添加一个或多个氨基酸且具有此酶活性的,由此所衍生的酶。
2.编码权利要求1中琼胶酶对应的基因,其特征在于:所述核苷酸序列如SEQ ID NO.2所示及可翻译出SEQ ID NO.1的所有序列。
3.包含SEQ ID NO.2所示的核苷酸序列的重组表达载体、转基因细胞系统或转基因重组菌。
4.一种表达琼胶酶的重组质粒,其特征在于:包括权利要求3所述的基因序列。
5.一种表达琼胶酶的重组菌株,其特征在于:所述重组菌株中导入由权利要求4中所述表达琼胶酶的重组质粒。
6.根据权利要求5所述的重组菌株,其特征在于:所述重组质粒的宿主菌为大肠杆菌、枯草芽孢杆菌、毕赤酵母。
7.如权利要求1所述的琼胶酶,其特征在于:其最适反应条件是30℃、pH 6.5。
8.权利要求1中所述的琼胶酶在酶解琼胶中的应用。
CN202010563594.2A 2020-06-19 2020-06-19 一种容受甲基化半乳糖的琼胶酶及其应用 Pending CN111647581A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010563594.2A CN111647581A (zh) 2020-06-19 2020-06-19 一种容受甲基化半乳糖的琼胶酶及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010563594.2A CN111647581A (zh) 2020-06-19 2020-06-19 一种容受甲基化半乳糖的琼胶酶及其应用

Publications (1)

Publication Number Publication Date
CN111647581A true CN111647581A (zh) 2020-09-11

Family

ID=72345192

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010563594.2A Pending CN111647581A (zh) 2020-06-19 2020-06-19 一种容受甲基化半乳糖的琼胶酶及其应用

Country Status (1)

Country Link
CN (1) CN111647581A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115770198A (zh) * 2022-07-18 2023-03-10 蓝脑科技(厦门)有限公司 一种低聚琼脂糖磨砂颗粒和制备方法及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GENBANK: MK522486.1: "Wenyingzhuangia sp. OF219 betaagarase (Aga86A) mRNA, complete cds", 《GENBANK》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115770198A (zh) * 2022-07-18 2023-03-10 蓝脑科技(厦门)有限公司 一种低聚琼脂糖磨砂颗粒和制备方法及其应用

Similar Documents

Publication Publication Date Title
CN108285900A (zh) 一种重组褐藻胶裂解酶及其构建方法及应用
CN114410611B (zh) 昆布多糖降解酶OUC-BsLam26及其应用
CN112725319B (zh) polyG底物特异性的褐藻胶裂解酶FaAly7及其应用
CN114015675B (zh) λ-卡拉胶酶OUC-LuV及其应用
CN111690627B (zh) 一种内切-1,3-岩藻聚糖酶及其应用
KR20150043040A (ko) 신규한 아가로올리고당 분해효소 및 이를 이용한 아가로오스로부터 3,6-안하이드로-l-갈락토오스와 갈락토오스의 생산방법
CN111235133B (zh) 嗜几丁质类芽孢杆菌几丁质酶基因及其克隆表达与应用
CN115960875A (zh) 一种热稳定性提高的褐藻胶裂解酶的突变体酶
CN113980937A (zh) λ-卡拉胶酶OUC-G150-L7及其应用
CN113684198B (zh) 一种提高纤维素酶催化效率的方法及突变体5i77-m2
CN113337495B (zh) 一种提高唾液酸产量的方法与应用
CN110144341B (zh) 海藻酸裂解酶突变体
CN111647581A (zh) 一种容受甲基化半乳糖的琼胶酶及其应用
CN111187764B (zh) 一种深海来源的壳聚糖酶csn5及其编码基因和应用
CN110592119A (zh) 一种来源于类芽孢杆菌新型普鲁兰酶及其基因与应用
CN114214302B (zh) 琼胶酶、编码基因、重组载体和宿主细胞及其应用以及新琼寡糖及其制备方法
CN111575264B (zh) 一种容受甲基化半乳糖的紫菜多糖酶及其应用
CN110724677B (zh) 琼胶酶及其制备方法
CN113355305A (zh) 一种可降解菊粉果聚糖的外切菊粉酶Inu-2及其应用
CN103173476B (zh) 鞘氨醇单胞菌海藻酸裂解酶基因zh0-ii及其原核表达载体和应用
CN114908076B (zh) 一种定向获得褐藻寡糖三糖产物的褐藻胶裂解酶及其应用
CN114107260B (zh) 岩藻聚糖硫酸酯降解酶OUC-FaFcn1及其应用
CN114181923B (zh) 一种连续型内切-1,3-岩藻聚糖酶及其应用
CN114672522B (zh) 一种双酶催化n-乙酰-d-葡萄糖酸内酯生产2-酮基-3-脱氧-d-葡萄糖酸的方法
CN117467647B (zh) β-琼胶酶OUC-AgaC4-D242A及其编码基因与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200911