CN111566077B - 四氟甲烷的制造方法 - Google Patents

四氟甲烷的制造方法 Download PDF

Info

Publication number
CN111566077B
CN111566077B CN201880085962.8A CN201880085962A CN111566077B CN 111566077 B CN111566077 B CN 111566077B CN 201880085962 A CN201880085962 A CN 201880085962A CN 111566077 B CN111566077 B CN 111566077B
Authority
CN
China
Prior art keywords
reaction
fluorine gas
gas
tetrafluoromethane
fluorinated hydrocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201880085962.8A
Other languages
English (en)
Other versions
CN111566077A (zh
Inventor
福地阳介
菅原智和
小黑慎也
小林浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lishennoco Co ltd
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Publication of CN111566077A publication Critical patent/CN111566077A/zh
Application granted granted Critical
Publication of CN111566077B publication Critical patent/CN111566077B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/361Preparation of halogenated hydrocarbons by reactions involving a decrease in the number of carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/361Preparation of halogenated hydrocarbons by reactions involving a decrease in the number of carbon atoms
    • C07C17/367Preparation of halogenated hydrocarbons by reactions involving a decrease in the number of carbon atoms by depolymerisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/08Acyclic saturated compounds containing halogen atoms containing fluorine

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

提供一种四氟甲烷的制造方法,其难以损坏反应装置,能够安全且廉价地稳定制造四氟甲烷。向含有氟化烃的原料液(1)导入氟气并且以气体状导入反应诱导剂来制造四氟甲烷,氟化烃由化学式CpHqClrFs(化学式中的p为3以上且18以下的整数,q为0以上且3以下的整数,r为0以上且9以下的整数,s为5以上且30以下的整数)表示并且不具有碳‑碳不饱和键。反应诱导剂通过与氟气反应而诱导由氟化烃和氟气生成四氟甲烷的反应,并且是选自在常温常压下为气体的烃和氢气中的至少一种。

Description

四氟甲烷的制造方法
技术领域
本发明涉及四氟甲烷的制造方法。
背景技术
作为四氟甲烷的制造方法,已知有使氟气与固体的碳反应的方法,使氟气与气体的烃反应的方法,在碳材料中混合金属、金属氟化物或熔融氧化铝后与氟气反应的方法(参照专利文献1、2)等。
使氟气与固体的碳反应的方法是伴随火焰的燃烧反应,会产生非常大的反应热,因此氟气的吹入口或反应容器的材质本身有可能与氟气反应而被侵蚀。如果以不产生火焰的方式进行反应,则反应热不充分,有时会降低四氟甲烷的产率。
另外,使氟气与气体的烃反应的方法也是伴随火焰的燃烧反应,会产生非常大的反应热,因此氟气的吹入口或反应容器的材质本身有可能与氟气反应而被侵蚀。为了以不产生火焰的方式进行反应,采取了用氮气等惰性气体稀释氟气来减小反应热的手段,但由于需要将所得到的四氟乙烷与惰性气体分离纯化的工序,因此存在制造成本上升之类的问题。
在碳材料中混合金属、金属氟化物或熔融氧化铝后与氟气反应的方法,是平稳进行碳材料与氟气的反应的方法,由于不是切断碳-碳间键的反应条件,因此不适合四氟甲烷的合成。
在先技术文献
专利文献1:日本特许公开公报平成6年第298681号
专利文献2:日本特许公开公报平成11年第180706号
发明内容
像这样,现有的四氟甲烷的制造方法中,会进行损伤反应装置的程度的激烈反应,而如果在平稳的条件下进行反应,虽然能够抑制反应装置的损伤,但四氟甲烷难以成为主要产物。
本发明的课题是提供一种难以损伤反应装置、能够安全且廉价地稳定制造四氟甲烷的制造方法。
为解决上述课题,本发明的一技术方案如以下的[1]~[3]所述。
[1]一种四氟甲烷的制造方法,包括向含有氟化烃的原料液导入氟气并且以气体状导入反应诱导剂的工序,所述氟化烃由化学式CpHqClrFs(所述化学式中的p为3以上且18以下的整数,q为0以上且3以下的整数,r为0以上且9以下的整数,s为5以上且30以下的整数)表示并且不具有碳-碳不饱和键,
所述反应诱导剂通过与所述氟气反应而诱导由所述氟化烃和所述氟气生成四氟甲烷的反应,并且是选自在常温常压下为气体的烃和氢气中的至少一种。
[2]根据[1]所述的四氟甲烷的制造方法,所述反应诱导剂是氢气。
[3]根据[1]或[2]所述的四氟甲烷的制造方法,所述氟化烃是选自全氟化碳、氢氟化碳、氯氟化碳、氢氯氟化碳、氯三氟乙烯聚合物和全氟聚醚中的至少一种含氟物质。
通过本发明,能够难以损伤反应装置、安全且廉价地稳定制造四氟甲烷。
附图说明
图1是用于说明本发明涉及的四氟甲烷的制造方法的一实施方式的图,是用于说明四氟甲烷的反应装置的结构的示意图。
具体实施方式
以下对本发明的一实施方式进行说明。再者,本实施方式表示本发明的一例,本发明不限定于本实施方式。另外,可以对本实施方式施加各种变更或改良,施加了这些变更或改良的方案也包含在本发明中。
在使活性炭与氟气反应来制造四氟甲烷的现有的四氟甲烷制造方法中,作为从反应场中除去反应热的路径,有经由被反应热加热了的气氛中的气体将热量排出到外部的路径,和经由被反应热加热了的反应装置(例如氟气的吹入口、反应容器)将热量排出到外部的路径。但是,由于气体的热容量小,因此经由气体排出的热量少,大部分反应热被用于加热反应装置。其结果,反应装置成为高温,发生反应装置与氟气的反应,导致反应装置被侵蚀而损伤。
本发明人认真研究的结果,发现通过在液相中进行由氟化烃和氟气生成四氟甲烷的反应来降低反应场的温度,并且使诱导由氟化烃和氟气生成四氟甲烷的反应的反应诱导剂在反应场共存,由此能够在低温的液相中发生必须在非常高的温度下才发生的氟化烃的碳-碳键的断裂反应。
即,本发明人发现即使向液体的氟化烃吹入氟气,也难以发生氟化烃与氟气的反应,但如果使反应诱导剂共存,则在反应诱导剂与氟气的反应中发生诱导,使氟化烃与氟气的反应在低温下发生,生成四氟甲烷。
其机制可以如下考虑。当从吹入口向液体的氟化烃吹入氟气和气体状的反应诱导剂时,在氟气的吹入口的周边形成含有氟气和反应诱导剂的气泡,在该气泡内发生氟气与反应诱导剂的反应,通过该反应的反应热导致气泡的温度上升。反应诱导剂会使气泡的温度上升,因此只能在反应初期使用。
在气泡从氟气的吹入口离开之前,在温度上升了的气泡与周围的液相的气液界面处发生气泡中的氟气与液相中的氟化烃的反应。通过该反应的反应热,气泡周围的氟化烃气化,与气泡内的氟气反应。由此,在氟气的吹入口的周边形成温度比液相的温度高出大致20℃以上的区域(以下记为“高温反应区域”)。认为通过持续供给氟气,在该高温反应区域内氟化烃与氟气的反应持续进行,但由于其反应热使周围的液相(即氟化烃)持续蒸发,因此液相的温度上升得到抑制。
本实施方案涉及的四氟甲烷的制造方法包括向含有氟化烃的原料液导入氟气并且以气体状导入反应诱导剂的工序,氟化烃由化学式CpHqClrFs表示且不具有碳-碳不饱和键(本说明书中有时也简称为“氟化烃”)。该反应诱导剂通过与氟气反应而诱导由氟化烃和氟气生成四氟甲烷的反应,并且是选自在常温常压下为气体的烃和氢气中的至少一种。在此,上述化学式中的p为3以上且18以下的整数,q为0以上且3以下的整数,r为0以上且9以下的整数,s为5以上且30以下的整数。
即使在氟化烃难以与氟气反应的情况下,也能通过上述机理在反应诱导剂与氟气的反应中发生诱导,从而即使在低温下也能发生氟化烃与氟气的反应,因此除了难以发生反应场的异常温度上升和氟气对反应装置的损伤以外,还能以高产率安全且廉价地稳定制造四氟甲烷。
另外,不需要使用对氟气具有耐腐蚀性的高价的材料(例如镍合金、哈氏合金(注册商标)、蒙乃尔合金(注册商标))制造反应装置,能够用不锈钢等一般的钢制造反应装置,因此反应装置廉价。
所得到的四氟甲烷,例如可用作半导体制造工序中基板的蚀刻剂、腔室的清洁剂。
以下,对本实施方式涉及的四氟甲烷的制造方法进行更详细的说明。
(1)氟化烃
氟化烃是由化学式CpHqClrFs表示且不具有碳-碳不饱和键的饱和烃。该氟化烃可以是直链状烃、支链状烃、环状烃中的任一种,也可以是不含有氢原子或氯原子的化合物。作为氟化烃的例子,可举出选自全氟化碳、氢氟化碳、氯氟化碳、氢氯氟化碳、氯三氟乙烯聚合物和全氟聚醚中的至少1种含氟物质。
作为氯三氟乙烯聚合物的具体例可举出ダイフロンオイル(注册商标),作为全氟聚醚的具体例可举出フォンブリンオイル(注册商标)。ダイフロンオイル是在常温下具有流动性(流动点5~15℃)的分子量约为1000以下的聚三氟氯乙烯。
氟化烃在常温常压下可以是气体、液体、固体中的任一种,优选为液体。再者,本发明中常温是指25℃,常压是指101.325kPa(1个大气压)。
在氟化烃为液体的情况下,可以将氟化烃作为原料液,也可以与溶剂混合将氟化烃与溶剂的混合物作为原料液。在氟化烃为气体或固体的情况下,反应需要使用溶剂,需要将氟化烃与该溶剂混合制成原料液。该情况下,固体状的氟化烃可以溶解于原料液中,也可以呈粉末状分散于原料液中。或者,可以将块状的氟化烃配置于原料液中。气体状的氟化烃可以溶解于原料液中,也可以呈气泡状分散于原料液中。即、在本实施方式涉及的四氟甲烷的制造方法中,四氟甲烷的合成反应可在无溶剂下进行,也可在溶剂中进行。
上述氟化烃是即使在40℃、101.325kPa下吹入100容量%的氟气也难以与氟气反应的有机化合物。氟化烃与氟气的反应式如下所述。
CpHqClrFs+(4p+q+r-s)/2F2→pCF4+rClF+qHF
从该反应式考虑,为了将供给的氟气有效地用于四氟甲烷的生成,可以说优选化学式CpHqClrFs中的q和r为小的值。
如果化学式CpHqClrFs中的p为3以上,则氟化烃在常温常压下不成为气体的情况较多(成为液体或固体的情况较多),因此不需要为了使气体成为液体而进行冷却或设为高压,是经济的。另一方面,如果p为18以下,则氟化烃在常温常压下不成为固体的情况较多(成为气体或液体的情况较多),因此不需要为了使固体成为液体而进行加热,是经济的。p为3以上且18以下的整数,优选为3以上且10以下的整数,更优选为3以上且5以下的整数,尽可能小的p值可以减少用于得到1摩尔四氟甲烷所需的氟气的量,因此是经济的。
如果化学式CpHqClrFs中的q为3以下,则氢原子与氟气反应而副生成氟化氢的比例减少,因此为了得到1摩尔四氟甲烷所需要的氟气的量较少,是经济的。q为0以上且3以下的整数,优选为0以上且2以下的整数,更优选为0或1。另外,为了提高四氟甲烷的反应选择性,更优选氟化烃是q为0的全氟化碳或氯氟化碳。
如果化学式CpHqClrFs中的r为0以上且9以下,则氟化烃在常温常压下不为固体的情况较多(为气体或液体的情况较多),因此不需要为了使固体成为液体而进行加热,是经济的。另外,由于氯原子与氟气反应而副生成氯化氟的比例减少,因此为了得到1摩尔四氟甲烷所需的氟气的量较少,是经济的。r为0以上且9以下的整数,优选为0以上且4以下的整数。另外,更优选氟化烃是q和r都为0的全氟化碳。
(2)反应诱导剂
反应诱导剂是容易与氟气反应的化合物。反应诱导剂通过与氟气反应而诱导由氟化烃和氟气生成四氟甲烷的反应,并且是选自在常温常压下为气体的烃和氢气中的至少一种。再者,反应诱导剂以气体状被导入原料液,既可以溶解于原料液中,也可以呈气泡状分散于原料液中。
作为反应诱导剂的例子,可举出甲烷、乙烷、乙烯等在常温常压下为气体的碳原子数为1以上且10以下的饱和烃或氢气。如果使用烃则氟气与反应诱导剂反应的比例增加,经济性降低,因此更优选氢气。再者,有时也会由于反应诱导剂与氟气的反应而生成四氟甲烷。
关于反应诱导剂的导入量,只要是能够诱导由氟化烃和氟气生成四氟甲烷的反应的量就没有特别限定,优选为氟气的导入量的15容量%以下。一旦能够通过反应诱导剂诱导由氟化烃和氟气生成四氟甲烷的反应,则即使之后停止反应诱导剂的导入,氟化烃和氟气的反应也会持续进行。由此,可以在通过反应诱导剂诱导了由氟化烃和氟气生成四氟甲烷的反应之后,停止向原料液导入反应诱导剂。
用于使气体状的反应诱导剂导入原料液的吹入口,优选配置在用于使氟气导入原料液的吹入口附近。对于将氟气和反应诱导剂导入反应容器内的原料液的配管的形态没有特别限定,例如可以将用于向原料液导入气体的配管设为二重管,将氟气和反应诱导剂中的一者从内管导入,将另一者从外管导入。或者,可以将用于向原料液导入氟气的配管和用于向原料液导入反应诱导剂的配管设置于反应容器,使这些配管的两个吹入口相邻。
(3)反应装置
参照图1对实施本实施方式涉及的四氟甲烷制造方法制造四氟甲烷的反应装置的一例进行说明。
图1的反应装置具备:进行生成四氟甲烷的反应的金属制的反应容器11;将含有由化学式CpHqClrFs表示且不具有碳-碳不饱和键的氟化烃的原料液1导入反应容器11的原料液装入用配管21;在顶端具有向反应容器11内的原料液1导入氟气的吹入口23a的氟气用配管23;在顶端具有将选自在常温常压下为气体的烃和氢气中的至少一种的反应诱导剂以气体状向反应容器11内的原料液1导入的吹入口27a的反应诱导剂用配管27;以及将反应容器11内的气相部分排出到外部的排气用配管25。再者,作为形成反应容器11的金属,例如可举出不锈钢。
另外,图1所示的反应装置具备循环设备,该循环设备将反应中的反应容器11内的原料液1的一部分抽出到反应容器11的外部并使其返回反应容器11内。更具体而言,环状的循环用配管28的两端连接到反应容器11,从而能够通过设置在循环用配管28的液体循环泵15输送原料液1,并将从反应容器11取出的原料液1经由循环用配管28返回到反应容器11内。
在循环用配管28的途中且液体循环泵15的下游侧设置有热交换器19,能够进行抽出的原料液1的冷却。由热交换器19冷却了的原料液1返回反应容器11内。即、图1所示的反应装置,可以一边进行将反应容器11内的原料液1的一部分取出冷却并使冷却的原料液1返回反应容器11的操作,一边进行反应。
通过反应生成的含有四氟甲烷的生成气体经由排气用配管25被取出到反应容器11的外部。在排气用配管25的下游侧设置有热交换器17,能够将从反应容器11内排出的生成气体冷却。通过用热交换器17将生成气体冷却,即使作为原料的氟化烃气化而包含在生成气体中,也能够使氟化烃液化而返回反应容器11。因此,能够防止未反应的氟化烃从反应容器11流出到外部而损失。
对于氟气用配管23的吹入口23a的形状没有特别限定,可以将形成在氟气用配管23的圆形的贯通孔作为吹入口23a,贯通孔的直径例如可以设为0.5mm以上且5mm以下。设在氟气用配管23的吹入口23a的数量可以是一个也可以是多个。另外,也可以在吹入口23a的附近安装热电偶等温度测定装置,测定吹入口23a附近的温度。关于反应诱导剂用配管27的吹入口27a也是同样的。
在氟气的吹入口23a的附近形成上述高温反应区域,优选该高温反应区域不与反应装置的构件例如反应容器11的槽壁、热电偶、搅拌叶片、挡板等接触。由于高温反应区域接触的部位的温度变高,因此有可能发生反应装置的构件的腐蚀。
如果将吹入口23a的直径设为D(mm)、将温度和压力设为0℃、将作为0MPaG换算的氟气的吹入线速度设为LV(m/s)、将产生的高温反应区域的长度(氟气的喷出方向的长度)设为L(mm),则能够用ln(LV)=aln(L/D)的式子(以下有时称为式(1))表示高温反应区域的范围。其中,式中的ln为自然对数,a为常数,作为a可以使用1.2以上且1.4以下的值。根据该式子,能够计算出设想的高温反应区域的长度,因此能够设计成高温反应区域不与反应装置的构件接触。
对于高温反应区域的长轴(沿着氟气的喷出方向的轴)所朝向的方向没有特别限定,为了尽可能稳定地维持高温反应区域,优选在将铅垂方向下方设为0°、将铅垂方向上方设为180°时,以90°(水平方向)以上且180°以下的角度从吹入口23a喷出氟气。
反应装置具备测定原料液1的温度的未图示的温度测定装置和具有热交换器19的循环设备,因此能够一边冷却原料液1并控制原料液1的温度一边进行反应。由此,能够抑制反应场的异常的温度上升或反应装置的损伤。作为原料液1的温度,例如可以设为0℃以上且200℃以下。另外,反应压力例如可以设为0.01MPaA(绝对压力)以上且1.0MPaA(绝对压力)以下,优选设为常压以上且0.9MPaG以下。
反应装置可以具备测定原料液1的液面水平的装置。例如,可以使用根据反应容器11内的液相与气相之间的压力差来测定液面水平的装置,或者通过浮子测定液面水平的装置。
随着四氟甲烷的合成反应的进行,原料液1的液面水平降低,但如果能够测定液面水平,则能够连续或间歇地将原料液1向反应容器11内供给并监测液面水平,从而能够连续地合成四氟甲烷。
对于反应中使用的氟气的浓度没有特别限定,可以是100%的氟气,也可以使用通过氮气、氩气等惰性气体稀释了的氟气。关于气体状的反应诱导剂也是同样的,对于其浓度没有特别限定,可以是100%,也可以使用通过氮气、氩气等惰性气体稀释了的气体状的反应诱导剂。
另外,为了使吹入的氟气与原料液1均匀反应,可以在反应容器11中设置具备用于搅拌原料液1的搅拌叶片的搅拌机。
实施例
以下示出实施例和比较例,对本发明进行更具体的说明。
〔实施例1〕
使用除了不具备热交换器19、循环用配管28和液体循环泵15以外与图1的反应装置大致相同的反应装置,进行四氟甲烷的合成。向容量1L的SUS制的反应容器中,作为原料液加入600mL(1030g)常压下的沸点为103℃的全氟正辛烷。
从在氟气用配管的顶端设置的1个直径1mm的吹入口向原料液中导入氟气。在导入氟气的同时,从在反应诱导剂配管的顶端设置的1个直径1mm的吹入口向原料液中导入氢气。反应诱导剂用配管的吹入口配置在氟气用配管的吹入口附近(间隔2mm的位置)。氟气的吹入流量是将温度和压力作为0℃、0MPaG换算得到的数值,为400mL/min,吹入线速度为2.1m/s。另外,氢气的吹入流量是将温度和压力作为0℃、0MPaG换算得到的数值,为20mL/min,吹入线速度为0.1m/s。此时的氢气的导入量相对于氟气的导入量为5容量%。
另外,在将所述式(1)的a的值设为1.27的情况下,能够预想到在各吹入口形成长度为1.8mm的高温反应区域,因此不在高温反应区域的形成范围配置除了1个热电偶以外的反应装置的构件。
当开始导入氟气和氢气时,氟气的吹入口的温度上升到200℃,因此停止氢气的导入。一边从外部冷却反应容器一边继续反应,并且一边将原料液的温度维持在25℃、将反应压力维持在常压一边进行反应。其结果,停止导入氢气后,在氟气的吹入口的温度维持在200℃的状态下进行反应。
收集生成气体并进行分析,生成气体的95体积%为四氟甲烷,5体积%为六氟乙烷。反应的全氟正辛烷中95摩尔%转化成四氟甲烷,因此四氟甲烷的产率为95%。未反应的氟气没有从生成气体中检测出。
反应结束后,确认氟气用配管的吹入口,完全没有发生腐蚀等,保持了与反应前的形状相同的形状。另外,用于测定原料液、吹入口的温度的热电偶和反应容器也没有发生腐蚀等。
〔比较例1〕
除了不进行反应诱导剂(氢气)的导入以外,与实施例1同样地进行反应。氟气的导入持续了5小时,但氟气的吹入口的温度没有发生变化,导入的氟气的全部量从用于将反应容器内的气相部分排出到外部的排气用配管中未反应地排出。在排出的氟气中没有检测出四氟甲烷,四氟甲烷的产率为0%。
〔实施例2〕
使用除了不具备热交换器19、循环用配管28和液体循环泵15以外与图1的反应装置大致相同的反应装置,进行四氟甲烷的合成。向容量1L的SUS制反应容器中,加入600mL(1000g)下述组成的氯氟丁烷混合物作为原料液。即、氯氟丁烷混合物是20质量%的三氯七氟丁烷、5质量%的二氯八氟丁烷、70质量%的五氯五氟丁烷和5质量%的四氯五氟丁烷的混合物。再者,该氯氟丁烷混合物是通过四氯丁烷与氟气的反应合成四氯六氟丁烷时生成的副产物。
从在氟气用配管的顶端设置的1个直径1mm的吹入口向原料液中导入氟气。在导入氟气的同时,从在反应诱导剂配管的顶端设置的1个直径1mm的吹入口向原料液中导入氢气。反应诱导剂用配管的吹入口配置在氟气用配管的吹入口附近(间隔2mm的位置)。氟气的吹入流量是将温度和压力作为0℃、0MPaG换算得到的数值,为600mL/min,吹入线速度为3.2m/s。另外,氢气的吹入流量是将温度和压力作为0℃、0MPaG换算得到的数值,为60mL/min,吹入线速度为0.32m/s。此时的氢气的导入量相对于氟气的导入量为10容量%。
当开始导入氟气和氢气时,氟气的吹入口的温度上升到300℃,因此停止氢气的导入。一边从外部冷却反应容器一边继续反应,并且一边将原料液的温度维持在60℃、将反应压力维持在常压一边进行反应。其结果,停止导入氢气后,在氟气的吹入口的温度维持在300℃的状态下进行反应。
收集生成气体并进行分析,生成气体的80体积%为四氟甲烷,20体积%为三氟氯甲烷。反应的全氟正辛烷中95摩尔%转化成四氟甲烷,因此四氟甲烷的产率为95%。未反应的氟气没有从生成气体中检测出,但检测到了氟化氯和氟化氢。
反应结束后,确认氟气用配管的吹入口,完全没有发生腐蚀等,保持了与反应前的形状相同的形状。另外,用于测定原料液、氟气的吹入口的温度的热电偶和反应容器也没有发生腐蚀等。
〔比较例2〕
除了不进行反应诱导剂(氢气)的导入以外,与实施例2同样地进行反应。氟气的导入持续了5小时,但氟气的吹入口的温度没有发生变化,导入的氟气的全部量从用于将反应容器内的气相部分排出到外部的排气用配管中未反应地排出。在排出的氟气中没有检测出四氟甲烷,四氟甲烷的产率为0%。
附图标记说明
1 原料液
11 反应容器
23 氟气用配管
23a 吹入口
27 反应诱导剂用配管
27a 吹入口

Claims (3)

1.一种四氟甲烷的制造方法,包括向含有氟化烃的原料液导入氟气并且以气体状导入反应诱导剂的工序,所述氟化烃由化学式CpHqClrFs表示并且不具有碳-碳不饱和键,所述化学式中的p为3以上且18以下的整数,q为0以上且3以下的整数,r为0以上且9以下的整数,s为5以上且30以下的整数,
所述反应诱导剂通过与所述氟气反应而诱导由所述氟化烃和所述氟气生成四氟甲烷的反应,并且是选自在常温常压下为气体的烃和氢气中的至少一种。
2.根据权利要求1所述的四氟甲烷的制造方法,
所述反应诱导剂是氢气。
3.根据权利要求1或2所述的四氟甲烷的制造方法,
所述氟化烃是选自全氟化碳、氢氟化碳、氯氟化碳、氢氯氟化碳和氯三氟乙烯聚合物中的至少一种含氟物质。
CN201880085962.8A 2018-01-17 2018-12-25 四氟甲烷的制造方法 Active CN111566077B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018005823 2018-01-17
JP2018-005823 2018-01-17
PCT/JP2018/047653 WO2019142626A1 (ja) 2018-01-17 2018-12-25 テトラフルオロメタンの製造方法

Publications (2)

Publication Number Publication Date
CN111566077A CN111566077A (zh) 2020-08-21
CN111566077B true CN111566077B (zh) 2023-03-24

Family

ID=67301718

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880085962.8A Active CN111566077B (zh) 2018-01-17 2018-12-25 四氟甲烷的制造方法

Country Status (7)

Country Link
US (1) US11034636B2 (zh)
EP (1) EP3741736B1 (zh)
JP (1) JP7243003B2 (zh)
KR (1) KR102487699B1 (zh)
CN (1) CN111566077B (zh)
TW (1) TWI710545B (zh)
WO (1) WO2019142626A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4128589A (en) * 1977-06-22 1978-12-05 Hughes Aircraft Company Generation of CF4 from Teflon for reactive atmosphere processing and growth of metal fluorides
JPS58162536A (ja) * 1982-03-23 1983-09-27 Kanto Denka Kogyo Kk 四フツ化炭素の製造方法
JPS5913739A (ja) * 1982-07-13 1984-01-24 Asahi Glass Co Ltd テトラフルオロメタンの製造方法
US5611896A (en) * 1993-10-14 1997-03-18 Atomic Energy Corporation Of S. Africa Limited Production of fluorocarbon compounds
JPH09183743A (ja) * 1995-12-29 1997-07-15 Daikin Ind Ltd 低級パーフルオロアルカンの製造方法
US5675046A (en) * 1996-04-10 1997-10-07 Showa Denko K.K. Process for producing perfluorocarbon
CN1161952A (zh) * 1996-03-26 1997-10-15 昭和电工株式会社 生产全氟化碳的方法
CN1438979A (zh) * 2000-08-30 2003-08-27 昭和电工株式会社 八氟丙烷的制备和用途
JP2016084293A (ja) * 2014-10-23 2016-05-19 ダイキン工業株式会社 フッ化メタンの製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US180706A (en) 1876-08-08 Improvement in mechanisms for operating sliding doors
DE2712732C2 (de) * 1977-03-23 1986-03-13 Hoechst Ag, 6230 Frankfurt Verfahren zur Herstellung von Oktafluorpropan
JP2513758B2 (ja) * 1988-01-08 1996-07-03 関東電化工業株式会社 トリフルオロメチル基を有する炭化水素化合物のフッ素化方法
JPH0764765B2 (ja) * 1988-01-08 1995-07-12 関東電化工業株式会社 ポリ四フッ化エチレンのフッ素化分解法
JPH06298681A (ja) 1993-04-20 1994-10-25 Kanto Denka Kogyo Co Ltd フッ化炭素の製造法
JP3159043B2 (ja) 1996-03-08 2001-04-23 昭和電工株式会社 テトラフルオロメタンの製造方法
DE19733470C1 (de) 1997-08-02 1998-12-10 Daimler Benz Ag Vorzugsweise U-förmiger Profilträger, insbesondere Rahmenlängsträger, für einen Tragrahmen eines Nutzfahrzeuges und Verfahren zu seiner Herstellung
JPH11180706A (ja) 1997-12-24 1999-07-06 Kanto Denka Kogyo Co Ltd フッ化炭素の製造法
JP4539793B2 (ja) 2000-08-30 2010-09-08 昭和電工株式会社 オクタフルオロプロパンの製造方法及びその用途
KR100519140B1 (ko) * 2001-02-23 2005-10-04 쇼와 덴코 가부시키가이샤 퍼플루오로탄소의 제조방법 및 그 용도
CN101723797A (zh) 2008-10-16 2010-06-09 浙江师范大学 一种气相催化生产四氟甲烷的方法
TWI485154B (zh) 2013-05-09 2015-05-21 Univ Nat Cheng Kung 具鈣鈦礦結構吸光材料之有機混成太陽能電池及其製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4128589A (en) * 1977-06-22 1978-12-05 Hughes Aircraft Company Generation of CF4 from Teflon for reactive atmosphere processing and growth of metal fluorides
JPS58162536A (ja) * 1982-03-23 1983-09-27 Kanto Denka Kogyo Kk 四フツ化炭素の製造方法
JPS5913739A (ja) * 1982-07-13 1984-01-24 Asahi Glass Co Ltd テトラフルオロメタンの製造方法
US5611896A (en) * 1993-10-14 1997-03-18 Atomic Energy Corporation Of S. Africa Limited Production of fluorocarbon compounds
JPH09183743A (ja) * 1995-12-29 1997-07-15 Daikin Ind Ltd 低級パーフルオロアルカンの製造方法
CN1161952A (zh) * 1996-03-26 1997-10-15 昭和电工株式会社 生产全氟化碳的方法
US5675046A (en) * 1996-04-10 1997-10-07 Showa Denko K.K. Process for producing perfluorocarbon
CN1438979A (zh) * 2000-08-30 2003-08-27 昭和电工株式会社 八氟丙烷的制备和用途
JP2016084293A (ja) * 2014-10-23 2016-05-19 ダイキン工業株式会社 フッ化メタンの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Synthesis of Tetrafluoromethane by Graphite Fluorination with Elemental Fluorine;D. S. Pashkevich et al.;《Russian Journal of Applied Chemistry》;20041231;第77卷(第1期);第92-97页 *

Also Published As

Publication number Publication date
EP3741736A1 (en) 2020-11-25
KR20200093025A (ko) 2020-08-04
WO2019142626A1 (ja) 2019-07-25
EP3741736A4 (en) 2021-03-03
JPWO2019142626A1 (ja) 2021-01-07
CN111566077A (zh) 2020-08-21
JP7243003B2 (ja) 2023-03-22
TW201938518A (zh) 2019-10-01
TWI710545B (zh) 2020-11-21
US11034636B2 (en) 2021-06-15
US20200407295A1 (en) 2020-12-31
KR102487699B1 (ko) 2023-01-12
EP3741736B1 (en) 2023-08-02

Similar Documents

Publication Publication Date Title
CN111566077B (zh) 四氟甲烷的制造方法
CN112313197A (zh) 用于生产1-氯-3,3,3-三氟丙烯的方法
CN111479794B (zh) 四氟甲烷的制造方法
CN111587234B (zh) 四氟甲烷的制造方法
JP4997975B2 (ja) フッ化カルボニルの製造方法
JPS58108226A (ja) ポリカ−ボネ−トオリゴマ−の連続製造法
WO2004108644A1 (ja) 含フッ素アルキルエーテルの製造方法
JPS58108225A (ja) ポリカ−ボネ−トオリゴマ−の連続製造方法
JP2000256229A (ja) ペルフルオロアルカン類の製造方法
JP2017510613A (ja) α−ヨードパーフルオロアルカンおよびα,ω−ジヨードパーフルオロアルカンを製造する方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: Tokyo, Japan

Patentee after: Lishennoco Co.,Ltd.

Address before: Tokyo, Japan

Patentee before: Showa electrical materials Co.,Ltd.

CP01 Change in the name or title of a patent holder
TR01 Transfer of patent right

Effective date of registration: 20230413

Address after: Tokyo, Japan

Patentee after: Showa electrical materials Co.,Ltd.

Address before: Tokyo, Japan

Patentee before: SHOWA DENKO Kabushiki Kaisha

TR01 Transfer of patent right