CN111519229A - 一种质子交换膜燃料电池不锈钢双极板的电化学表面改性方法 - Google Patents

一种质子交换膜燃料电池不锈钢双极板的电化学表面改性方法 Download PDF

Info

Publication number
CN111519229A
CN111519229A CN202010273753.5A CN202010273753A CN111519229A CN 111519229 A CN111519229 A CN 111519229A CN 202010273753 A CN202010273753 A CN 202010273753A CN 111519229 A CN111519229 A CN 111519229A
Authority
CN
China
Prior art keywords
stainless steel
bipolar plate
steel bipolar
fuel cell
exchange membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010273753.5A
Other languages
English (en)
Inventor
黄一川
王清
吴爱民
林国强
董闯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN202010273753.5A priority Critical patent/CN111519229A/zh
Publication of CN111519229A publication Critical patent/CN111519229A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/40Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions
    • C23C8/42Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions only one element being applied
    • C23C8/48Nitriding
    • C23C8/50Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • C23G1/081Iron or steel solutions containing H2SO4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • H01M8/021Alloys based on iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

本发明涉及一种质子交换膜燃料电池不锈钢双极板的电化学表面改性方法。将不锈钢双极板活化后进行电化学表面改性,在不锈钢双极板表面形成氮化物膜,使双极板耐蚀、导电等复合性能得到提升,满足作为基体材料在质子交换膜燃料电池中长时服役的要求,并可以实现低成本大批量生产。材料的性能指标为:在0.5mol/L H2SO4+2ppm环境下,自腐蚀电位高至99.22mV,自腐蚀电流密度Icorr低至0.43μA/cm2,0.064MPa下与碳纸接触电阻为1.03Ω·cm2。可以实现优异的防腐蚀性能和导电性以及与气体扩散层之间优异的低接触电阻性能,并赋予燃料电池优异的质量与耐久性。

Description

一种质子交换膜燃料电池不锈钢双极板的电化学表面改性 方法
技术领域
本发明属于金属表面处理及改性技术领域,特别涉及一种质子交换膜燃料电池技术领域中不锈钢双极板表面改性方法。
背景技术
质子交换膜燃料电池(PEMFC)是一种以氢气为燃料,氧气/空气作为氧化剂,将燃料与氧化剂中的化学能直接转化为电能的清洁无污染的发电装置。质子交换膜燃料电池对环境友好,能量转化效率高,能快速启动,因此,受到全世界的广泛关注。此外,其在汽车工业、备用应急电源、分散电站及军事等领域具有广阔的应用前景。
双极板作为质子交换膜燃料电池的关键部件之一,有连接单池、支撑电堆、提供气体流场、收集电流、散热、排水等作用。在酸性燃料电池环境中必须具有良好的机械性能,必须与石墨之间存在尽可能小的接触电阻,必须具备高的耐蚀性,其质量的优劣决定了燃料电池堆的输出功率大小及服役寿命长度。
不锈钢具有易加工成型,高导热性,价格低等优点,这使其成为了一种常用的质子交换膜燃料电池双极板基体材料。不锈钢的本身电阻较高,加之服役时表面的氧化物产物的附加电阻,使其与气体扩散层接触时的导电性降低,因此常使用表面改性的方法来克服此问题。
经过对现有技术的文献检索发现,吴博等在《金属学报》(2009年09期1125-1129页)上发表的(不锈钢双极板电弧离子镀Cr1-xNx薄膜改性研究)和金杰等在《材料工程》(2016年10期33-34页)上发表的(CrN和CrNiN涂层在模拟质子交换膜燃料电池环境中的电化学性能及疏水性能)指出合金经过表面氮化处理生成氮化物膜,可以提升双极板的服役性能,总的趋势是耐蚀性提升和接触电阻降低。
在众多的双极板的表面氮化改性方法当中,包括热扩渗、等离子体沉积法等。这些方法有的需要昂贵的设备,有的需要复杂的加工过程,有的重复性不高或者难以大面积制备,总之都存在着一些难以克服的缺陷,从而不利于真正的工业化生产以及实际应用的需要。电化学表面改性的方法仅需要恒电位仪和所需溶液,处理过程简单且节省设备成本,选择合适的基体材料与表面改性工艺参数是双极板服役性能的关键。
发明内容
本发明的目的是提供一种质子交换膜燃料电池不锈钢双极板的电化学表面改性的工艺方法。通过表面改性,在不锈钢双极板表面形成氮化物膜,使双极板耐蚀、导电等复合性能得到提升,满足作为基体材料在质子交换膜燃料电池中长时服役的要求,并可以实现低成本大批量生产。
本发明的技术方案是:
一种质子交换膜燃料电池不锈钢双极板的电化学表面改性方法,包括表面活化和电化学氮化,所述的表面活化是将不锈钢双极板置于酸溶液中活化;所述的电化学氮化是表面活化后的不锈钢双极板在氮化液中进行电化学氮化,形成不锈钢双极板改性层。
所述的不锈钢双极板使用的不锈钢成分为质量百分比组成Ni:19~21%,Cr:16.5~18.5%,余量为Fe以及不可避免的杂质,杂质总量小于0.5%。
所述的不锈钢双极板表面活化具体如下:先将不锈钢双极板置于丙酮中震荡10~12min除油,干燥后,在100~150g/L的H2SO4溶液中震荡5~10min酸洗活化。
所述的不锈钢双极板电化学氮化具体如下:
1)氮化液:
浓度为150~250g/L的HNO3
2)电化学工艺参数如下:
温度室温;
恒电位极化电压:1.2~1.6V;
恒电位极化时间:10~20min。
本发明的有益效果:
1.制备出的质子交换膜燃料电池双极板耐腐蚀性和导电性能好,而且工艺成熟,适合大批量低成本生产。
2.工艺简单,设备成本低廉,所需化学药品种类少,配置氮化液简单。
3.相比仅用硝酸浸泡的处理方法,能够获得更为优异的耐蚀性能。
附图说明
图1是实施例1和成分为Fe62.71Ni19.77Cr17.52(wt.%)的不锈钢双极板未经处理、经硝酸浸泡处理测试得到的极化曲线示意图,横坐标是电流密度,单位为A/cm2,纵坐标是电位,单位为V,参比电极为Ag/AgCl电极。实线代表未经处理的不锈钢双极板,虚线代表硝酸浸泡处理的不锈钢双极板,点划线代表实施例1。由图可见,在模拟燃料电池工作环境中,实施例1的自腐蚀电位为92.22mV,显著高于未经处理的不锈钢双极板(-265.21mV)和硝酸浸泡处理的不锈钢双极板(-224.98mV),拥有更低的热力学腐蚀倾向。实施例1的自腐蚀电流密度为0.43μA·cm-2,明显低于未经处理的不锈钢双极板(130μA·cm-2)和硝酸浸泡处理的不锈钢双极板(1.68μA·cm-2),耐蚀性能符合美国能源部的标准(<1μA·cm-2)。
具体实施方式
实施例1:
采用的不锈钢成分为Fe62.71Ni19.77Cr17.52(wt.%)。先将不锈钢双极板用丙酮震荡12min除油,干燥后,在100g/L的的H2SO4溶液中震荡5min酸洗活化。电化学氮化采用以下工艺及参数:
HNO3 200g/L
溶液温度室温
恒电位极化电压1.4V
恒电位极化时间15min
对上述方法制得的双极板作以下性能测试:
在室温下,以Ag/AgCl为参比电极,铂网为对电极,将制得的不锈钢双极板置于质子交换膜燃料电池模拟腐蚀环境(0.5mol/L H2SO4+2ppm HF)中进行动电位极化扫描,测定得出自腐蚀电流密度为0.43μA·cm-2,耐蚀能力比未钝化处理的不锈钢双极板(130μA·cm-2)有很大提高,比硝酸浸泡处理的双极板腐蚀电流密度(1.68μA·cm-2)低了一个数量级。采用伏安法测试双极板与气体扩散层的接触电阻,可测得0.064MPa下不锈钢双极板ICR=1.03Ω·cm2,仅比硝酸浸泡处理的结果(0.99Ω·cm2)略高。

Claims (3)

1.一种质子交换膜燃料电池不锈钢双极板的电化学表面改性方法,其特征在于,包括表面活化和电化学氮化,所述的表面活化是将不锈钢双极板置于酸溶液中活化;所述的电化学氮化是表面活化后的不锈钢双极板在氮化液中进行电化学氮化,形成不锈钢双极板改性层;
所述的不锈钢双极板使用的不锈钢成分为质量百分比组成Ni:19~21%,Cr:16.5~18.5%,余量为Fe以及不可避免的杂质,杂质总量小于0.5%。
2.根据权利要求1所述的一种质子交换膜燃料电池不锈钢双极板的电化学表面改性方法,其特征在于,所述的不锈钢双极板表面活化具体如下:先将不锈钢双极板置于丙酮中震荡10~12min除油,干燥后,在100~150g/L的H2SO4溶液中震荡5~10min酸洗活化。
3.根据权利要求1或2所述的一种质子交换膜燃料电池不锈钢双极板的电化学表面改性方法,其特征在于,所述的不锈钢双极板电化学氮化具体如下:
1)氮化液:浓度为150~250g/L的HNO3
2)电化学工艺参数如下:温度为室温;恒电位极化电压为1.2~1.6V;恒电位极化时间为10~20min。
CN202010273753.5A 2020-04-09 2020-04-09 一种质子交换膜燃料电池不锈钢双极板的电化学表面改性方法 Pending CN111519229A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010273753.5A CN111519229A (zh) 2020-04-09 2020-04-09 一种质子交换膜燃料电池不锈钢双极板的电化学表面改性方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010273753.5A CN111519229A (zh) 2020-04-09 2020-04-09 一种质子交换膜燃料电池不锈钢双极板的电化学表面改性方法

Publications (1)

Publication Number Publication Date
CN111519229A true CN111519229A (zh) 2020-08-11

Family

ID=71901349

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010273753.5A Pending CN111519229A (zh) 2020-04-09 2020-04-09 一种质子交换膜燃料电池不锈钢双极板的电化学表面改性方法

Country Status (1)

Country Link
CN (1) CN111519229A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112798513A (zh) * 2020-12-30 2021-05-14 新源动力股份有限公司 一种质子交换膜燃料电池金属双极板耐久性加速测试方法
CN114574759A (zh) * 2022-02-21 2022-06-03 山东产研先进材料研究院有限公司 用于燃料电池双极板的铁素体不锈钢、表面粗糙度的调控方法、形成钝化膜的方法和用途
CN118572138A (zh) * 2024-08-01 2024-08-30 东北大学 一种质子交换膜燃料电池耐蚀钛合金双极板基材及其提升导电性的方法
JP7566289B2 (ja) 2022-02-21 2024-10-15 山東産研先進材料研究院有限公司 燃料電池のバイポーラプレート用のフェライト系ステンレス鋼、表面粗さの調整制御方法、不動態化膜の形成方法および使用

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112798513A (zh) * 2020-12-30 2021-05-14 新源动力股份有限公司 一种质子交换膜燃料电池金属双极板耐久性加速测试方法
CN114574759A (zh) * 2022-02-21 2022-06-03 山东产研先进材料研究院有限公司 用于燃料电池双极板的铁素体不锈钢、表面粗糙度的调控方法、形成钝化膜的方法和用途
WO2023155264A1 (zh) * 2022-02-21 2023-08-24 山东产研先进材料研究院有限公司 用于燃料电池双极板的铁素体不锈钢、表面粗糙度的调控方法、形成钝化膜的方法和用途
JP7566289B2 (ja) 2022-02-21 2024-10-15 山東産研先進材料研究院有限公司 燃料電池のバイポーラプレート用のフェライト系ステンレス鋼、表面粗さの調整制御方法、不動態化膜の形成方法および使用
CN118572138A (zh) * 2024-08-01 2024-08-30 东北大学 一种质子交换膜燃料电池耐蚀钛合金双极板基材及其提升导电性的方法

Similar Documents

Publication Publication Date Title
CN111519229A (zh) 一种质子交换膜燃料电池不锈钢双极板的电化学表面改性方法
Ni et al. An electrochemical model of a solid oxide steam electrolyzer for hydrogen production
Nikiforov et al. Corrosion behaviour of construction materials for high temperature steam electrolysers
RU2521077C2 (ru) Металлическая сепараторная пластина для топливного элемента, имеющая покровную пленку на поверхности, и способ изготовления такой пластины
CN112201795B (zh) 聚合物复合涂层制备方法及双极板和质子交换膜燃料电池
CN1446383A (zh) 不锈钢基材处理
CN101601158A (zh) 提高用于聚合物电解质膜燃料电池的双极板的不锈钢的表面性能的方法
Nikam et al. Corrosion resistant low temperature carburized SS 316 as bipolar plate material for PEMFC application
CN102034990A (zh) 一种质子交换膜燃料电池金属双极板及其表面改性方法
CN107256975B (zh) 一种氮化硼纳米片改性质子交换膜燃料电池用铝合金双极板的方法
Bai et al. Surface modification and performance of inexpensive Fe-based bipolar plates for proton exchange membrane fuel cells
CN107317043B (zh) 一种铝合金双极板表面石墨烯/二氧化锡三明治结构薄膜的制备方法
Zhang et al. Modification and durability of carbon paper gas diffusion layer in proton exchange membrane fuel cell
Li et al. Electrochemical behavior of diverse vanadium ions at modified graphite felt electrode in sulphuric solution
CN100362684C (zh) 用作质子交换膜燃料电池双极板的不锈钢的表面改性工艺
CN114990568B (zh) 一种在泡沫镍上负载Ni3S2-C的电催化电极、制备方法及其应用
CN101393991B (zh) 质子交换膜燃料电池316l不锈钢双极板的表面改性方法
Tingting et al. Enhanced electrocatalytic activity of carbon cloth by synergetic effect of plasma and acid treatment
CN109811397B (zh) 一种用聚丙烯腈薄膜改性铝合金双极板表面的方法
CN110875482A (zh) 一种利用石墨为碳源在不锈钢双极板表面制备碳膜的方法
CN109772657A (zh) 一种质子交换膜燃料电池不锈钢双极板的表面处理方法
CN101485021B (zh) 用于燃料电池元件的导电板
Yang et al. Graphite-polypyrrole coated 316L stainless steel as bipolar plates for proton exchange membrane fuel cells
CN108832152B (zh) 一种带涂层的质子交换膜燃料电池金属流场板
KR20180010355A (ko) 고체산화물 연료전지용 공기극 집전체 및 이의 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200811