CN111500330B - 一种基于木耳增强的水合物法储运天然气的方法 - Google Patents

一种基于木耳增强的水合物法储运天然气的方法 Download PDF

Info

Publication number
CN111500330B
CN111500330B CN202010292637.8A CN202010292637A CN111500330B CN 111500330 B CN111500330 B CN 111500330B CN 202010292637 A CN202010292637 A CN 202010292637A CN 111500330 B CN111500330 B CN 111500330B
Authority
CN
China
Prior art keywords
agaric
hydrate
surfactant
natural gas
gas storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010292637.8A
Other languages
English (en)
Other versions
CN111500330A (zh
Inventor
宋永臣
凌铮
石常瑞
周航
赵佳飞
杨明军
杨磊
李洋辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN202010292637.8A priority Critical patent/CN111500330B/zh
Publication of CN111500330A publication Critical patent/CN111500330A/zh
Application granted granted Critical
Publication of CN111500330B publication Critical patent/CN111500330B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/108Production of gas hydrates

Abstract

本发明公开了一种基于木耳增强的水合物法储运天然气方法,使用干燥木耳吸入表面活性剂,在低温、高压的反应条件下形成水合物。所述的天然气储运方法诱导时间为3‑48分钟,体积存储量为83‑101v/v,循环存储保持率为87.6‑89.5%。本发明通过使用木耳吸入表面活性剂溶液,木耳丰富的多孔结构增大了气‑液接触面积,显著缩短了水合反应的诱导时间,对水合物的形成过程的加速和提高储气量起到了积极的促进作用。本发明由于使用的木耳具有良好的结构韧性,实现了存储天然气的高循环稳定性,并有效解决了表面活性剂在水合物分解过程中产生泡沫的问题。本发明的一种基于木耳增强的水合物法储运天然气方法具有工艺过程简单、水合反应迅速、循环稳定性高、生产成本低等优点。

Description

一种基于木耳增强的水合物法储运天然气的方法
技术领域
本发明属于天然气存储以及气体水合物生成与利用技术应用领域,涉及一种基于天然多孔材料增强的水合物法储运天然气方法。
背景技术
天然气作为最清洁的化石燃料在一次能源消费中所占的比重越来越高,开发更加安全高效的天然气储运技术的需求日益增长。液化天然气、压缩天然气等传统的储运方式生产条件苛刻、设备昂贵及安全风险高的缺点限制了其大规模储运天然气的应用。现在,以水合物形式进行天然气的储运受到科学界与工业界的广泛关注。
气体水合物是水分子与气体分子在热力学有利条件(高压和低温)下形成的笼状结晶固体,其中水分子通过氢键形成规则的晶格点阵结构,气体分子通过范德华力作用填充进笼状结构中。理论上,每立方米的水合物中可以储存180立方米天然气,能量密度较高;水合物还具有生产条件温和、安全性高以及对环境友好等一系列优点,因此,水合物技术被认为是具有巨大应用前景的天然气储运方式。此外,气体水合物技术还广泛应用于二氧化碳封存、气体分离、海水淡化等领域。但是,缓慢的形成动力学是水合物技术大规模应用面临的一大挑战。
目前已经有机械扰动、添加动力学促进剂等多种方法用于增强天然气水合物形成。刘艳军等在“一种天然气水合物快速合成装置”(CN106010698A)中介绍了一种通过机械搅拌促进天然气水合物转化的装置,机械搅拌增大了气液接触面积从而强化了水合物的形成,但是大规模应用会产生非常高的能源消耗。王树立等在“一种复合型气体水合物促进剂及其使用方法”(CN104893660A)中介绍了一种由表面活性剂石油磺酸盐、烷基氧化铵与添加剂乙酸甜菜碱混合而成的复合型促进剂,表面活性剂能够减小水的表面张力,因此气液两相的传质阻力降低,水合物的形成得以强化,遗憾的是由于水合物分解时表面活性剂产生大量泡沫,这将造成表面活性剂的损失。郭荣波等在“一种复合型气体水合物纳米促进剂及其制备方法和应用”(CN109701444A)中介绍了一种利用氧化碳纳米管作为分散载体固载金属纳米粒子的复合型水合物纳米促进剂,促进剂为水合物成核提供了更多的位点并且强化了传热、传质,水合物形成的诱导时间明显缩短,生长过程显著加速。然而,这些促进剂通常造价昂贵,因此大大提高了储气成本。此外,樊栓狮等在“气体水合物生成促进剂及其制法和应用”(CN102784604A)中介绍了一种使用疏水性二氧化硅颗粒与表面活性剂制备的“干水”,在静态体系下实现了水合物的快速形成并且具有较高的储气量,缺点在于水合物分解过程中“干水”结构的破坏导致了较差的循环存储性能。
发明内容
本发明的目的是针对现有技术的缺陷提出了一种生产成本低廉,循环存储性能优异,利用木耳作为天然多孔材料代表,促进水合物的高效形成,实现天然气的安全高效储运。
为了实现上述目的,本发明采用的技术方案如下:
一种基于木耳增强的水合物法储运天然气方法,使用干燥木耳吸入表面活性剂,在低温、高压的反应条件下形成水合物。所述的天然气储运方法诱导时间为3~48min,体积存储量为83~101v/v,循环存储保持率为87.6~89.5%。
所述干燥木耳通过吸胀作用可以吸入自身质量7~9倍的表面活性剂溶液。
所述表面活性剂为阴离子表面活性剂、阳离子表面活性剂、两性表面活性剂及非离子表面活性剂的一种或两种以上。
一种基于木耳增强的水合物法储运天然气方法,包括如下步骤:
第一步,干燥木耳吸入表面活性剂溶液;
将干燥木耳在浓度为100~500ppm的表面活性剂溶液中泡发4~24小时,然后将木耳取出沥干表面水分。
第二步,富含表面活性剂的木耳放入水合物生成设备;
将第一步得到的吸入表面活性剂的木耳放入反应容器中并密封,对反应容器及管线抽真空以排除空气,然后将反应容器放置于-3~2℃的恒定温度下至容器中温度稳定。
第三步,低温及高压条件下生成水合物;
向上述温度稳定反应容器中注入天然气至6~9MPa进行水合反应,待反应容器中压力及温度稳定后,水合反应结束。
上述干燥木耳的质量与表面活性剂的体积比例为3g/200mL。
上述抽真空后反应容器及管线中真空度达到0.1MPa。
本发明相对于现有技术的优点及有益效果在于:本发明通过使用木耳吸入表面活性剂溶液,木耳丰富的多孔结构增大了气-液接触面积,显著缩短了水合反应的诱导时间,对水合物的形成过程的加速和提高储气量起到了积极的促进作用。本发明由于使用的木耳具有良好的结构韧性,实现了存储天然气的高循环稳定性,并有效解决了表面活性剂在水合物分解过程中产生泡沫的问题。在强化方法上,本发明利用木耳作为限制底物吸入表面活性剂溶液增强水合物的形成,具有廉价易得、使用方法简便、绿色环保的优势,由于避免了采用机械扰动产生的能量消耗,进一步降低了生产成本。本发明的一种基于木耳增强的水合物法储运天然气方法具有工艺过程简单、水合反应迅速、循环稳定性高、生产成本低等优点,该方法可应用于天然气储运、二氧化碳封存、气体分离等领域。
具体实施实例
下面结合具体实施例对本发明作进一步详细说明,但不局限于下述实例。
本发明实施例中的表面活性剂可以是阳离子表面活性剂、阴离子表面活性剂、两性表面活性剂及非离子表面活性剂的一种或几种,优选浓度为100ppm、300ppm、500ppm的十二烷基硫酸钠(SDS)为例,但不限于此。
实施例1:
一种基于木耳增强的水合物法储运天然气方法,包括以下步骤:
S1、干燥木耳吸入表面活性剂溶液
将质量为3克的干燥木耳在体积为200毫升、浓度为500ppm的SDS溶液中在室温下浸泡4小时,然后将泡发后的木耳取出并沥干表面水分,得到吸入表面活性剂的木耳。
S2、富含表面活性剂的木耳放入水合物生成设备
将吸入表面活性剂的木耳放入反应容器中,密封反应容器后与气体管线连接,对反应容器及管线抽真空10分钟,使真空度达到0.1MPa,将反应容器放置于0℃的恒定温度下至容器中温度稳定。
S3、低温及高压条件下生成水合物
向步骤S2温度稳定的反应容器注入甲烷气体至9MPa进行水合反应,注入甲烷气体4分钟后,反应容器中压力突然下降并且温度明显上升,表明水合物开始形成,与相同实验条件下仅使用浓度为500ppm的SDS溶液相比诱导时间显著缩短。水合反应开始9小时后,反应器中压力及温度趋于稳定,表明水合物生成结束。此外,水合物分解过程中,基本没有观察到泡沫的产生,这有利于后续工艺中气体的使用及提高循环存储性能。通过计算发现,该方法体积存储量为94v/v,在经历五次循环水合反应后,体积存储量保持率高达89.5%。
实施例2:
一种基于木耳增强的水合物法储运天然气方法,包括以下步骤:
S1、干燥木耳吸入表面活性剂溶液
将质量为3克的干燥木耳在体积为200毫升、浓度为300ppm的SDS溶液中在室温下浸泡4小时,然后将泡发后的木耳取出并沥干表面水分,得到吸入表面活性剂的木耳。
S2、富含表面活性剂的木耳放入水合物生成设备
将吸入表面活性剂的木耳放入反应容器中,密封反应容器后与气体管线连接,对反应容器及管线抽真空10分钟,使真空度达到0.1MPa,将反应容器放置于0℃的恒定温度下至容器中温度稳定。
S3、低温及高压条件下生成水合物
向步骤S2温度稳定的反应容器注入甲烷气体至9MPa进行水合反应,注入甲烷气体4分钟后,反应容器中压力突然下降并且温度明显上升,表明水合物开始形成,与相同实验条件下仅使用浓度为300ppm的SDS溶液相比诱导时间显著缩短。水合反应开始10小时后,反应器中压力及温度趋于稳定,表明水合物生成结束。此外,水合物分解过程中,基本没有观察到泡沫的产生,这有利于后续工艺中气体的使用及提高循环存储性能。通过计算发现,该方法体积存储量为101v/v,在经历五次循环水合反应后,体积存储量保持率高达87.6%。
实施例3:
一种基于木耳增强的水合物法储运天然气方法,包括以下步骤:
S1、干燥木耳吸入表面活性剂溶液
将质量为3克的干燥木耳在体积为200毫升、浓度为100ppm的SDS溶液中在室温下浸泡4小时,然后将泡发后的木耳取出并沥干表面水分,得到吸入表面活性剂的木耳。
S2、富含表面活性剂的木耳放入水合物生成设备
将吸入表面活性剂的木耳放入反应容器中,密封反应容器后与气体管线连接,对反应容器及管线抽真空10分钟,使真空度达到0.1MPa,将反应容器放置于0℃的恒定温度下至容器中温度稳定。
S3、低温及高压条件下生成水合物
向步骤S2温度稳定的反应容器注入甲烷气体至9MPa进行水合反应,注入甲烷气体6分钟后,反应容器中压力突然下降并且温度明显上升,表明水合物开始形成,与相同实验条件下仅使用浓度为100ppm的SDS溶液相比,诱导时间显著缩短。水合反应开始10小时后,反应器中压力及温度趋于稳定,表明水合物生成结束。此外,水合物分解过程中,基本没有观察到泡沫的产生,这有利于后续工艺中气体的使用及提高循环存储性能。通过计算发现,该方法体积存储量为86v/v。
实施例4:
一种基于木耳增强的水合物法储运天然气方法,包括以下步骤:
S1、干燥木耳吸入表面活性剂溶液
将质量为3克的干燥木耳在体积为200毫升、浓度为300ppm的SDS溶液中在室温下浸泡24小时,然后将泡发后的木耳取出并沥干表面水分,得到吸入表面活性剂的木耳。
S2、富含表面活性剂的木耳放入水合物生成设备
将吸入表面活性剂的木耳放入反应容器中,密封反应容器后与气体管线连接,对反应容器及管线抽真空10分钟,使真空度达到0.1MPa,将反应容器放置于-3℃的恒定温度下至容器中温度稳定。
S3、低温及高压条件下生成水合物
向步骤S2温度稳定的反应容器注入甲烷气体至9MPa进行水合反应,注入甲烷气体4分钟后,反应容器中压力突然下降并且温度明显上升,表明水合物开始形成,与相同实验条件下仅使用浓度为300ppm的SDS溶液相比,诱导时间显著缩短。水合反应开始7小时后,反应器中压力及温度趋于稳定,表明水合物生成结束。此外,水合物分解过程中,基本没有观察到泡沫的产生,这有利于后续工艺中气体的使用及提高循环存储性能。通过计算发现,该方法体积存储量为83v/v。
实施例5:
一种基于木耳增强的水合物法储运天然气方法,包括以下步骤:
S1、干燥木耳吸入表面活性剂溶液
将质量为3克的干燥木耳在体积为200毫升、浓度为300ppm的SDS溶液中在室温下浸泡4小时,然后将泡发后的木耳取出并沥干表面水分,得到吸入表面活性剂的木耳。
S2、富含表面活性剂的木耳放入水合物生成设备
将吸入表面活性剂的木耳放入反应容器中,密封反应容器后与气体管线连接,对反应容器及管线抽真空10分钟,使真空度达到0.1MPa,将反应容器放置于-3℃的恒定温度下至容器中温度稳定。
S3、低温及高压条件下生成水合物
向步骤S2温度稳定的反应容器注入甲烷气体至6MPa进行水合反应,注入甲烷气体26分钟后反应容器中压力突然下降,温度明显上升,表明水合物开始形成,与相同实验条件下仅使用浓度为300ppm的SDS溶液相比,诱导时间显著缩短。水合反应开始12小时后,反应器中压力及温度趋于稳定,表明水合物生成结束。此外,水合物分解过程中,基本没有观察到泡沫的产生,这有利于后续工艺中气体的使用及提高循环存储性能。通过计算发现,该方法体积存储量为87v/v。
以上所述的实施例仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明意图包含这些改动和变型在内。

Claims (6)

1.一种基于木耳增强的水合物法储运天然气方法,其特征在于,使用干燥木耳吸入表面活性剂,在低温、高压的反应条件下形成水合物;所述的天然气储运方法诱导时间为3~48min,体积存储量为83~101v/v,循环存储保持率为87.6~89.5%。
2.根据权利要求1所述的一种基于木耳增强的水合物法储运天然气方法,其特征在于,包括以下步骤:
第一步,干燥木耳吸入表面活性剂溶液;
将干燥木耳在浓度为100~500ppm的表面活性剂溶液中泡发4~24小时,然后将木耳取出沥干表面水分;
第二步,富含表面活性剂的木耳放入水合物生成设备;
将第一步得到的吸入表面活性剂的木耳放入反应容器中并密封,对反应容器及管线抽真空以排除空气,然后将反应容器放置于-3~2℃的恒定温度下至容器中温度稳定;
第三步,低温及高压条件下生成水合物;
向上述温度稳定反应容器中注入天然气至6~9MPa进行水合反应,待反应容器中压力及温度稳定后,水合反应结束。
3.根据权利要求1或2所述的一种基于木耳增强的水合物法储运天然气方法,其特征在于,所述的干燥木耳通过吸胀作用,能够吸入自身质量7~9倍的表面活性剂溶液。
4.根据权利要求1或2所述的一种基于木耳增强的水合物法储运天然气方法,其特征在于,所述的表面活性剂为阴离子表面活性剂、阳离子表面活性剂、两性表面活性剂及非离子表面活性剂中的一种或两种以上。
5.根据权利要求1或2所述的一种基于木耳增强的水合物法储运天然气方法,其特征在于,所述干燥木耳的质量与表面活性剂的体积比例为3g/200mL。
6.根据权利要求2所述的一种基于木耳增强的水合物法储运天然气方法,其特征在于,所述抽真空后反应容器及管线中真空度达到0.1MPa。
CN202010292637.8A 2020-04-15 2020-04-15 一种基于木耳增强的水合物法储运天然气的方法 Active CN111500330B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010292637.8A CN111500330B (zh) 2020-04-15 2020-04-15 一种基于木耳增强的水合物法储运天然气的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010292637.8A CN111500330B (zh) 2020-04-15 2020-04-15 一种基于木耳增强的水合物法储运天然气的方法

Publications (2)

Publication Number Publication Date
CN111500330A CN111500330A (zh) 2020-08-07
CN111500330B true CN111500330B (zh) 2021-06-08

Family

ID=71866170

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010292637.8A Active CN111500330B (zh) 2020-04-15 2020-04-15 一种基于木耳增强的水合物法储运天然气的方法

Country Status (1)

Country Link
CN (1) CN111500330B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114164029B (zh) * 2021-11-29 2022-09-06 大连理工大学 一种基于纤维素滤纸的气体水合物促进剂的制备方法及其应用
CN114591770A (zh) * 2022-01-26 2022-06-07 中冶南方工程技术有限公司 煤基天然气水合物浆及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1156401A (en) * 1981-02-26 1983-11-08 Robert E. Hill Water repellent aqueous wood treating solutions
CN101254447A (zh) * 2007-12-11 2008-09-03 上海理工大学 生成气体水合物的方法及其装置
CN101376853A (zh) * 2008-09-09 2009-03-04 中国石油大学(北京) 模拟一维条件下气体水合物成藏过程的方法及装置
CN106669387A (zh) * 2016-12-14 2017-05-17 华南理工大学 复合型水合物添加剂及其在混合气体分离与富集中的应用
CN108301816A (zh) * 2018-01-09 2018-07-20 中国石油大学(华东) 化学剂对天然气水合物分解特性影响评价的方法和装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3697175B2 (ja) * 2001-04-26 2005-09-21 クミアイ化学工業株式会社 農業用水和性組成物、その製造方法及びその保存方法
KR20140102238A (ko) * 2011-11-21 2014-08-21 바이엘 인텔렉쳐 프로퍼티 게엠베하 살진균제 n-[(트리치환실릴)메틸]-카르복사미드 유도체
KR101806285B1 (ko) * 2016-07-02 2017-12-07 현용호 목이버섯의 함유량과 멸균력을 높여 건강 기능성 및 유통기한을 향상시킨 목이버섯 김의 제조방법
AR110739A1 (es) * 2017-01-09 2019-05-02 Synexis Llc Aplicación de gas seco de peróxido de hidrógeno (dhp) a métodos para la producción de aves de corral

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1156401A (en) * 1981-02-26 1983-11-08 Robert E. Hill Water repellent aqueous wood treating solutions
CN101254447A (zh) * 2007-12-11 2008-09-03 上海理工大学 生成气体水合物的方法及其装置
CN101376853A (zh) * 2008-09-09 2009-03-04 中国石油大学(北京) 模拟一维条件下气体水合物成藏过程的方法及装置
CN106669387A (zh) * 2016-12-14 2017-05-17 华南理工大学 复合型水合物添加剂及其在混合气体分离与富集中的应用
CN108301816A (zh) * 2018-01-09 2018-07-20 中国石油大学(华东) 化学剂对天然气水合物分解特性影响评价的方法和装置

Also Published As

Publication number Publication date
CN111500330A (zh) 2020-08-07

Similar Documents

Publication Publication Date Title
CN111500330B (zh) 一种基于木耳增强的水合物法储运天然气的方法
CN107899371B (zh) 一种离子型低共熔溶剂高效可逆吸收氨气的方法
CN112456491B (zh) 一种环保再生活性炭生产工艺
CN111514857A (zh) 一种co2吸附剂制备方法及应用
CN104291333A (zh) 一种高比表面积石煤基中孔活性炭的制备方法
CN104291334A (zh) 一种促进气体水合物生长的方法
CN108212089B (zh) 一种功能麻类生物质碳气凝胶及其制备方法与应用
Liu et al. CO2 Hydrate Formation Promoted by a Bio-friendly Amino Acid L‐Isoleucine
CN111378515B (zh) 一种水合物生成促进剂及其在甲烷存储中的应用
CN105773767B (zh) 一种木材乙酰化及联产醋酸酯的方法
CN109160543A (zh) 一种氯化亚铁转化为氯化铁的方法
CN107551954A (zh) 一种利用疏水改性泡沫金属实现快速水合储气的方法
CN111909742B (zh) 硼酸溶液气体水合物促进剂及在制备高储气密度气体水合物中的应用
CN104860263B (zh) 一种利用水凝胶实现气体水合物可逆储气的方法
CN114164029B (zh) 一种基于纤维素滤纸的气体水合物促进剂的制备方法及其应用
WO2023174451A2 (zh) 一种二氧化碳捕集方法
EP4006127B1 (en) Medium for rapid hydrate formation and preparation method, use and use method thereof
CN105944508A (zh) 氨基酸作为水合物促进剂及其在二氧化碳捕捉与封存中的应用
TWI650286B (zh) 移動式加水產生氫氣的方法與容器罐
CN103482569B (zh) 三甲烯化硫作为水合物促进剂的应用
CN111940719A (zh) 一种纳米镁基储氢材料及其制备方法
CN113801709B (zh) 一种水玻璃与木质素复合的气体水合物促进剂及其应用
CN113817441A (zh) 含有纳米颗粒的水合物促进剂组合物及其应用以及水合物的制备方法
CN116694375A (zh) 黄腐酸在气体水合物制备中的应用
CN113893665B (zh) 一种连续分离捕集co2的水合物促进剂及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant