WO2023174451A2 - 一种二氧化碳捕集方法 - Google Patents

一种二氧化碳捕集方法 Download PDF

Info

Publication number
WO2023174451A2
WO2023174451A2 PCT/CN2023/094975 CN2023094975W WO2023174451A2 WO 2023174451 A2 WO2023174451 A2 WO 2023174451A2 CN 2023094975 W CN2023094975 W CN 2023094975W WO 2023174451 A2 WO2023174451 A2 WO 2023174451A2
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
guanidine sulfate
dioxide capture
capture method
guanidine
Prior art date
Application number
PCT/CN2023/094975
Other languages
English (en)
French (fr)
Other versions
WO2023174451A3 (zh
Inventor
刘波
向志凌
Original Assignee
中国科学技术大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学技术大学 filed Critical 中国科学技术大学
Publication of WO2023174451A2 publication Critical patent/WO2023174451A2/zh
Publication of WO2023174451A3 publication Critical patent/WO2023174451A3/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1418Recovery of products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1425Regeneration of liquid absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/205Other organic compounds not covered by B01D2252/00 - B01D2252/20494
    • B01D2252/2056Sulfur compounds, e.g. Sulfolane, thiols
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present disclosure relates to carbon dioxide capture technology, particularly technology that utilizes adsorbents to separate carbon dioxide from a gas mixture.
  • Carbon dioxide is an important greenhouse gas. As human carbon dioxide emissions continue to increase, the greenhouse effect is gradually increasing. In order to reduce carbon dioxide emissions and slow down the trend of global warming, it is very important to develop carbon dioxide capture technology.
  • MAA monoethanolamine
  • the tail gas discharged from the coal-fired power plant contacts the monoethanolamine solution in the absorption tower.
  • the carbon dioxide in the tail gas is absorbed, and the unabsorbed gas is discharged from the top of the absorption tower.
  • the monoethanolamine solution that has absorbed a large amount of carbon dioxide at the bottom of the tower is transported to the stripping tower by a pump, and steam is used to heat the monoethanolamine solution in the stripping tower to 110°C to release carbon dioxide and regenerate monoethanolamine.
  • the regenerated monoethanolamine solution is transported back to the absorption tower and continues to participate in the circulation process.
  • monoethanolamine binds carbon dioxide strongly
  • regeneration of monoethanolamine requires a large amount of energy input, which results in a significant decrease in the economics of coal-fired power plants.
  • monoethanolamine solution has the problem of equipment corrosion, which increases equipment investment.
  • monoethanolamine also has the problem of being easily oxidized by air.
  • the present disclosure provides a carbon dioxide capture method, wherein the carbon dioxide capture method includes:
  • An aqueous solution of guanidine sulfate is used to absorb carbon dioxide in the gas and form an inclusion complex of carbon dioxide and guanidine sulfate to capture carbon dioxide from the gas.
  • the carbon dioxide capture method includes selectively capturing and separating carbon dioxide from a carbon dioxide-containing gas mixture through the following steps:
  • the gas mixture is contacted with an aqueous guanidine sulfate solution to form a mixture of carbon dioxide and guanidine sulfate. Precipitate of the clathrate, thereby separating carbon dioxide from the gas mixture into the precipitate.
  • the carbon dioxide capture method further includes the following steps:
  • the carbon dioxide released is collected.
  • the carbon dioxide capture method also includes capturing carbon dioxide through the following steps:
  • the regenerated guanidine sulfate is used as guanidine sulfate in the aqueous solution.
  • the carbon dioxide capture method further includes: storing and/or transporting the clathrate or the slurry containing the clathrate after separating the clathrate or the slurry containing the clathrate material.
  • the storage and/or transportation of the slurry is performed under normal pressure.
  • carbon dioxide reacts with guanidine sulfate as follows: CO 2 +(C(NH 2 ) 3 ) 2 SO 4 ⁇ CO 2 @(C(NH 2 ) 3 ) 2 SO 4 ⁇ .
  • the guanidine sulfate aqueous solution is a saturated guanidine sulfate aqueous solution blended with guanidine sulfate powder.
  • the present disclosure provides a carbon dioxide capture composition, wherein the carbon dioxide capture composition includes an aqueous guanidine sulfate solution.
  • the carbon dioxide capture composition consists essentially of water and guanidine sulfate.
  • the carbon dioxide capture composition is a slurry of a saturated guanidine sulfate aqueous solution and guanidine sulfate powder blended.
  • the present disclosure provides the use of an aqueous guanidine sulfate solution in the capture, purification, storage and transportation of carbon dioxide.
  • the present disclosure provides a carbon dioxide capture method that achieves carbon dioxide separation with low energy consumption and high selectivity through the use of appropriate absorbents.
  • the obtained carbon dioxide@guanidinium sulfate inclusion complex can realize economical and efficient storage and transportation of carbon dioxide at normal temperature and pressure, and can avoid the energy consumption problem of using high pressure or liquefied methods to store and transport carbon dioxide, and does not require the use of high pressure-resistant containers.
  • the disclosed carbon dioxide capture method utilizes guanidine sulfate (C 2 H 12 N 6 O 4 S, CAS number: 594-14-9 or 1184-68-5) solution selectively absorbs carbon dioxide in the gas.
  • guanidine sulfate C 2 H 12 N 6 O 4 S, CAS number: 594-14-9 or 1184-68-5
  • gas containing carbon dioxide comes into contact with a guanidine sulfate solution
  • the carbon dioxide will form an inclusion complex with guanidine sulfate and precipitate from the solution.
  • the generated carbon dioxide and guanidine sulfate inclusion complex is dense and precipitates at the bottom of the solution.
  • the slurry containing a large amount of carbon dioxide guanidine sulfate inclusion complex at the bottom of the solution is pumped out, and the absorbed carbon dioxide is released through stirring, ultrasound or heating, and the guanidine sulfate solution is regenerated.
  • the regenerated guanidine sulfate solution can continue to be recycled to capture carbon dioxide.
  • the gas mixture is a gas mixture containing carbon dioxide, and may be a carbon dioxide/nitrogen mixture, a carbon dioxide/nitrogen/oxygen mixture, a carbon dioxide/methane mixture, a carbon dioxide/methane/nitrogen mixture, etc., or a gas mixture whose main component is the above gas.
  • the gas mixture in the absorption tower needs to be pressurized to increase the carbon dioxide partial pressure, thereby improving the carbon dioxide removal rate.
  • the concentration of guanidine sulfate solution should be increased as much as possible, and a slurry composed of guanidine sulfate powder and guanidine sulfate solution is preferred.
  • the place where the gas mixture comes into contact with the guanidine sulfate solution can be a reaction kettle or an absorption tower.
  • the spray tower in the absorption tower is preferred.
  • guanidine sulfate solution When using guanidine sulfate solution to adsorb carbon dioxide, it can be done at an appropriate temperature, as long as the inclusion compound can be stably formed at this temperature.
  • Adsorption can be performed at room temperature or at low temperatures below room temperature. From the perspective of enhancing the adsorption rate, it is preferably carried out at a low temperature (for example, -10°C to 10°C).
  • the inclusion compound of guanidine sulfate that has absorbed carbon dioxide can be regenerated, for example, by pumping out the slurry containing the inclusion compound through a pump for regeneration.
  • the regeneration method is to input energy to destroy the stable state of the clathrate, for example, stirring, ultrasound, heating, etc. can be used.
  • the carbon dioxide gas released from the solution can be collected as high-purity carbon dioxide gas, for example using negative pressure.
  • the solid of carbon dioxide@guanidinium sulfate inclusion compound can be stored and transported at normal temperature and pressure.
  • the mass fraction of carbon dioxide in the inclusion compound is about 17%.
  • reaction equation for adsorbing carbon dioxide in this disclosure can be as follows: CO 2 +(C(NH 2 ) 3 ) 2 SO 4 ⁇ CO 2 @(C(NH 2 ) 3 ) 2 SO 4 ⁇
  • the adsorbent guanidine sulfate in the present disclosure can be prepared in batches through the neutralization reaction of guanidine carbonate and sulfuric acid or other cost-effective methods.
  • the present disclosure uses guanidine sulfate to capture carbon dioxide.
  • the material is cheap, easy to obtain, has good stability, is acid-resistant, alkali-resistant, and high-temperature resistant, and there is no loss during the separation process;
  • the carbon dioxide separated by the method of the present disclosure has extremely high purity
  • the disclosed process has good applicability and can separate carbon dioxide from a variety of gases through highly selective adsorption
  • Carbon dioxide@guanidine sulfate inclusion compound can store carbon dioxide with high capacity at normal temperature and pressure, and is suitable for the storage and transportation of carbon dioxide.
  • the present disclosure provides a carbon dioxide capture method, wherein the carbon dioxide capture method includes:
  • An aqueous solution of guanidine sulfate is used to absorb carbon dioxide in the gas and form an inclusion complex of carbon dioxide and guanidine sulfate to capture carbon dioxide from the gas.
  • Guanidine sulfate can be dissolved in water to form an aqueous solution containing guanidine cations and sulfate anions.
  • the inventor unexpectedly discovered that guanidine cations and sulfate anions can selectively combine with carbon dioxide molecules in the gas to form an inclusion complex of carbon dioxide and guanidine sulfate, thereby converting free carbon dioxide into non-free carbon dioxide bound to guanidine sulfate. This achieves the capture of carbon dioxide.
  • the carbon dioxide capture method includes selectively capturing and separating carbon dioxide from a carbon dioxide-containing gas mixture by:
  • the gas mixture is contacted with an aqueous guanidine sulfate solution to form a precipitate of a clathrate of carbon dioxide and guanidine sulfate, thereby separating carbon dioxide from the gas mixture into the precipitate.
  • the carbon dioxide capture method of the present disclosure can achieve selective capture of carbon dioxide because guanidine sulfate specifically only forms inclusion complexes with carbon dioxide and does not combine with other gases such as nitrogen, oxygen, methane, etc. . Therefore, when the gas mixture containing carbon dioxide comes into contact with the guanidine sulfate aqueous solution, other gases remain basically free, and only carbon dioxide is captured by guanidine sulfate, thereby achieving the selective capture of carbon dioxide from the gas mixture containing carbon dioxide.
  • Guanidine cations and sulfate anions combine with carbon dioxide molecules to form an inclusion complex of carbon dioxide and guanidine sulfate.
  • This inclusion compound is poorly soluble in water and is therefore a precipitate. Therefore, free carbon dioxide gas will be trapped in the solid clathrate precipitate, so that it can be easily and efficiently combined with Separation of other gases in a gas mixture.
  • gases other than carbon dioxide may include any gas that does not react with guanidine sulfate, preferably a gas that does not react with water, such as nitrogen, oxygen, methane, and the like.
  • the gas mixture may be a carbon dioxide/nitrogen mixture, a carbon dioxide/nitrogen/oxygen mixture, a carbon dioxide/methane mixture, or a carbon dioxide/methane/nitrogen mixture, or a gas mixture whose main component is the above gas.
  • the carbon dioxide capture method further includes the following steps:
  • inclusion compounds facilitate their separate isolation for subsequent processing.
  • a clathrate of carbon dioxide and guanidine sulfate When a clathrate of carbon dioxide and guanidine sulfate is formed, the clathrate forms a precipitate, and a slurry containing the clathrate may be formed at the bottom of the aqueous solution.
  • the clathrate can be separated by conventional methods for subsequent processing, as long as the separation process does not substantially cause the release of carbon dioxide from the clathrate.
  • a solid inclusion compound can be obtained by filtration and natural drying.
  • a solid inclusion compound can be obtained by removing the supernatant after standing and drying naturally.
  • the slurry containing the clathrate (i.e., the mixture of the solid clathrate and a portion of the aqueous phase) can also be separated by conventional methods for subsequent processing, as long as the separation process does not substantially cause the release of carbon dioxide from the clathrate.
  • the bottom slurry can be obtained by pumping it out.
  • the bottom slurry can be obtained by removing the supernatant.
  • an energy input is applied to the clathrate or slurry containing the clathrate to release carbon dioxide.
  • the carbon dioxide can be released from it into guanidine sulfate with unbound carbon dioxide.
  • Any suitable energy input may be used, such as stirring, ultrasound, heating, radiation, etc. Stirring, sonication or heating are preferably applied as they are cheap and easy to implement in terms of process and equipment.
  • the carbon dioxide released is collected. Since only carbon dioxide is released during the process, the collected carbon dioxide can be of extremely high purity. Therefore, the carbon dioxide capture method of the present disclosure can also be used as a method for purifying carbon dioxide.
  • the carbon dioxide capture method further includes capturing carbon dioxide through the following steps:
  • the regenerated guanidine sulfate is used as guanidine sulfate in the aqueous solution.
  • the regenerated guanidine sulfate after releasing carbon dioxide has the same properties as the initially used guanidine sulfate and can be recycled for use in the carbon dioxide capture method of the present disclosure.
  • the circulation of guanidinium sulfate is easy to implement, and thus carbon dioxide capture can be achieved at low overall cost.
  • the carbon dioxide capture method further comprises: storing and/or transporting the clathrate or the slurry containing the clathrate after isolating the clathrate or the slurry containing the clathrate of slurry. That is, the clathrate or the slurry containing the clathrate can serve as a storage and/or transport vehicle for carbon dioxide. In this way, carbon dioxide can be released from the clathrate or slurry containing the clathrate when and where required.
  • said storing and/or transporting said slurry occurs at atmospheric pressure.
  • whether the inclusion compound of carbon dioxide and guanidine sulfate will release the carbon dioxide to the environment is mainly related to the temperature and the oxygen partial pressure in the environment.
  • the inventor found that as the temperature increases, the partial pressure of carbon dioxide required to maintain the clathrate will increase accordingly. For example, at 25°C, as long as the partial pressure of carbon dioxide in the environment is higher than 52kPa, the clathrate will not release carbon dioxide.
  • the partial pressure of carbon dioxide in the environment needs to be higher than 75kPa.
  • the present disclosure actually provides an efficient and economical storage and transportation of carbon dioxide using carbon dioxide@guanidinium sulfate inclusion complex.
  • carbon dioxide reacts with guanidine sulfate as follows: CO 2 +(C(NH 2 ) 3 ) 2 SO 4 ⁇ CO 2 @(C(NH 2 ) 3 ) 2 SO 4 ⁇ .
  • reaction can be any organic compound. More specifically, the reaction can be any organic compound.
  • the guanidine sulfate aqueous solution is a saturated guanidine sulfate aqueous solution blended with guanidine sulfate powder.
  • guanidine sulfate powder An excess of guanidine sulfate powder can be used to form a saturated aqueous guanidine sulfate solution blended with the guanidine sulfate powder.
  • sulfate ions and guanidine ions in the aqueous solution form inclusion complexes with carbon dioxide and are consumed, they can be replenished by guanidine sulfate powder, thereby increasing the carbon dioxide capacity of the system.
  • Guanidine sulfate in powder form was chosen because of its ease of solubility, allowing for easy ion replenishment.
  • the present disclosure provides a carbon dioxide capture composition, wherein the carbon dioxide capture composition includes an aqueous guanidine sulfate solution.
  • the carbon dioxide capture composition containing a guanidine sulfate aqueous solution can capture carbon dioxide by forming an inclusion complex of carbon dioxide and guanidine sulfate.
  • the carbon dioxide capture composition consists essentially of water and guanidine sulfate, most preferably only water and guanidine sulfate. Such a carbon dioxide capture composition has the strongest capture selectivity for carbon dioxide.
  • the carbon dioxide capture composition is a slurry of a saturated aqueous guanidine sulfate solution and guanidine sulfate powder blended. As described above, such a carbon dioxide capture composition provides a high capacity for carbon dioxide through excess guanidine sulfate powder, and maintains a saturated guanidine sulfate aqueous solution with high carbon dioxide absorption efficiency.
  • the present disclosure provides the use of an aqueous guanidine sulfate solution in the capture, purification, storage and transportation of carbon dioxide.
  • an aqueous guanidine sulfate solution can be used to capture carbon dioxide, particularly to selectively capture carbon dioxide from a gas mixture containing carbon dioxide.
  • Aqueous guanidine sulfate solutions can also be used to purify carbon dioxide to provide extremely high purity carbon dioxide.
  • Guanidine sulfate aqueous solution can also be used to store and transport carbon dioxide.
  • the absorption rate can be as high as about 17%, and it can be stored and transported at normal temperature and pressure.
  • the carbon dioxide adsorbed by the guanidine sulfate solution can be completely released by applying ultrasound, and the guanidine sulfate solution can be regenerated.
  • the selected gas mixture is carbon dioxide/nitrogen (15 mol% carbon dioxide + 85 mol% nitrogen), and the gas pressure in the kettle is set to 3MPa. Analysis found that the carbon dioxide removal rate reached 82%.
  • the selected gas mixture is carbon dioxide/nitrogen (15 mol% carbon dioxide + 85 mol% nitrogen), and the gas pressure in the kettle is set to 6 MPa. Analysis found that the carbon dioxide removal rate reached 91%.
  • the gas mixture selected is carbon dioxide/nitrogen (30 mol% carbon dioxide + 70 mol% nitrogen), and the gas pressure in the kettle is set to 1 MPa. Analysis found that the carbon dioxide removal rate reached 77%.
  • the selected gas mixture is carbon dioxide/nitrogen (30 mol% carbon dioxide + 70 mol% nitrogen), and the gas pressure in the kettle is set to 3MPa. Analysis found that the carbon dioxide removal rate reached 91%.
  • the present disclosure discloses a method for capturing carbon dioxide, which uses a guanidine sulfate solution to selectively absorb carbon dioxide in a gas mixture.
  • a gas mixture containing carbon dioxide comes into contact with the guanidine sulfate solution, the carbon dioxide will react with the guanidine sulfate to form an inclusion compound. precipitate from solution.
  • This disclosure utilizes guanidinium sulfate aqueous solution to capture carbon dioxide.
  • the material is cheap and easy to obtain, has good stability, is acid-resistant, alkali-resistant, and high-temperature resistant, and has no loss during the separation process.
  • the carbon dioxide separated by the method of the present disclosure is of extremely high purity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

本公开提供一种二氧化碳捕集方法,其中,所述二氧化碳捕集方法包括:利用硫酸胍水溶液吸收气体中的二氧化碳,形成二氧化碳与硫酸胍的包合物,以从所述气体捕集二氧化碳。本公开还提供一种二氧化碳捕集组合物,以及硫酸胍水溶液在二氧化碳的捕集、提纯、储存和运输中的用途。

Description

一种二氧化碳捕集方法 技术领域
本公开涉及一种二氧化碳捕集技术,特别是利用吸附剂将二氧化碳从气体混合物中分离出来的技术。
背景技术
二氧化碳是一种重要的温室气体。随着人类二氧化碳排放量的不断增加,温室效应逐渐增强。为了降低二氧化碳排放量,减缓全球变暖的趋势,开发二氧化碳捕集技术显得非常重要。
在工业领域,利用单乙醇胺(MEA)溶液吸附燃煤电厂尾气中的二氧化碳是一个古老且有效的方式。由燃煤电厂排出的尾气在吸收塔与单乙醇胺溶液接触,尾气中的二氧化碳被吸收,未被吸收的气体由吸收塔顶部排出。塔底吸收了大量二氧化碳的单乙醇胺溶液由泵输送到汽提塔,利用蒸汽加热汽提塔中的单乙醇胺溶液至110℃以释放出二氧化碳并再生单乙醇胺。再生后的单乙醇胺溶液输送回吸收塔,继续参与循环过程。
由于单乙醇胺对二氧化碳的结合力很强,再生单乙醇胺需要大量的能量输入,这导致燃煤电厂的经济性大幅下降。单乙醇胺溶液作为一个强碱性溶液,存在设备腐蚀的问题,这又增加了设备投资。此外,单乙醇胺还存在着易被空气氧化的问题。这些问题阻碍着单乙醇胺吸附工艺在工业上的大规模应用。
概述
在一个方面,本公开提供一种二氧化碳捕集方法,其中,所述二氧化碳捕集方法包括:
利用硫酸胍水溶液吸收气体中的二氧化碳,形成二氧化碳与硫酸胍的包合物,以从所述气体捕集二氧化碳。
可选地,所述二氧化碳捕集方法包括通过以下步骤从含二氧化碳的气体混合物中选择性捕集并分离二氧化碳:
使所述气体混合物与硫酸胍水溶液接触,以形成二氧化碳与硫酸胍的 包合物的沉淀物,从而将二氧化碳从所述气体混合物分离至所述沉淀物中。
可选地,所述二氧化碳捕集方法还包括以下步骤:
分离所述包合物或含有所述包合物的浆料,对所述包合物或所述含有所述包合物的浆料施加能量输入,优选施加搅拌、超声或加热,以释放二氧化碳,并获得再生的硫酸胍。
可选地,收集被释放的所述二氧化碳。
可选地,所述二氧化碳捕集方法还包括通过以下步骤捕集二氧化碳:
使用所述再生的硫酸胍作为所述水溶液中的硫酸胍。
可选地,所述二氧化碳捕集方法还包括:在分离所述包合物或含有所述包合物的浆料之后储存和/或运输所述包合物或含有所述包合物的浆料。
可选地,所述储存和/或运输所述浆料在常压下进行。
可选地,二氧化碳与硫酸胍发生以下反应:
CO2+(C(NH2)3)2SO4→CO2@(C(NH2)3)2SO4↓。
可选地,所述硫酸胍水溶液是与硫酸胍粉末共混的饱和硫酸胍水溶液。
在另一个方面,本公开提供一种二氧化碳捕集组合物,其中,所述二氧化碳捕集组合物包含硫酸胍水溶液。
可选地,所述二氧化碳捕集组合物基本上由水和硫酸胍组成。
可选地,所述二氧化碳捕集组合物是饱和硫酸胍水溶液与硫酸胍粉末共混的浆料。
在又一个方面,本公开提供硫酸胍水溶液在二氧化碳的捕集、提纯、储存和运输中的用途。
具体实施方式
至少为了部分解决二氧化碳捕获技术中所存在的能耗高、设备腐蚀等问题,本公开提供一种二氧化碳捕集的方法,通过合适的吸收剂的使用实现低能耗高选择性的二氧化碳分离。得到的二氧化碳@硫酸胍包合物可以实现在常温常压下经济高效的对二氧化碳的储存运输,可以避免使用高压或液化方式储存运输二氧化碳的能耗问题且无需使用耐高压容器。
为实现上述目的,本公开采用如下技术方案:
本公开的二氧化碳捕集方法,是利用硫酸胍(C2H12N6O4S,CAS号: 594-14-9或1184-68-5)溶液对气体中的二氧化碳进行选择性吸收。当含二氧化碳的气体与硫酸胍溶液接触时,二氧化碳会与硫酸胍形成包合物从溶液中沉淀下来。生成的二氧化碳硫酸胍包合物密度较大,沉淀在溶液的底部。将溶液底部含有大量二氧化碳硫酸胍包合物的浆料用泵输出,通过搅拌、超声或加热的方式释放出被吸收的二氧化碳,并再生硫酸胍溶液。再生的硫酸胍溶液可以继续循环捕集二氧化碳。
所述气体混合物为含二氧化碳的气体混合物,可以为二氧化碳/氮气混合物、二氧化碳/氮气/氧气混合物、二氧化碳/甲烷混合物或二氧化碳/甲烷/氮气混合物等,也可以为主成分为上述气体的气体混合物。
当气体混合物的二氧化碳分压过低时,需要对吸收塔内的气体混合物进行增压,以增加二氧化碳的分压,从而提高二氧化碳去除率。
为了提高气体混合物中二氧化碳的去除率以及吸收容量,应该尽可能提高硫酸胍溶液的浓度,优先选用由硫酸胍粉末和硫酸胍溶液组成的浆料。
气体混合物与硫酸胍溶液接触的场所可以为反应釜、吸收塔。为了增加气液接触界面,以及提高生产效率,优先选择吸收塔中的喷淋塔。
利用硫酸胍溶液吸附二氧化碳时,可以在适当的温度下进行,只要包合物可以在该温度下稳定形成即可。可以在室温或者低于室温的低温下进行吸附。从增强吸附速率的角度考虑,优选在低温(例如-10℃~10℃)下进行。
吸收了二氧化碳的硫酸胍的包合物可以进行再生,例如将包含包合物的浆料由泵泵出进行再生。再生方式为输入能量破坏包合物的稳定状态,例如可以采用搅拌、超声、加热等。从溶液中释放出的二氧化碳气体可以作为高纯度的二氧化碳气体被收集,例如利用负压收集。
二氧化碳@硫酸胍包合物的固体可以在常温常压下储存运输,包合物中二氧化碳的质量分数为约17%。
本公开中吸附二氧化碳的反应方程可以如下:
CO2+(C(NH2)3)2SO4→CO2@(C(NH2)3)2SO4
本公开中吸附剂硫酸胍可以由碳酸胍与硫酸的中和反应批量制备或其它经济高效的方法制备。
本公开的有益效果可以体现在:
1、本公开利用硫酸胍实现二氧化碳的捕集,材料便宜易得、稳定性好,能够耐酸、耐碱、耐高温,在分离的过程中没有损耗;
2、通过本公开的方法分离得到的二氧化碳纯度极高;
3、本公开的工艺适用性好,能从多种气体中将二氧化碳通过高选择性吸附分离出来;
4、本公开的分离过程能耗低;
5、二氧化碳@硫酸胍包合物可以在常温常压下以高容量储存二氧化碳,适于二氧化碳的储存和运输。
在一个实施方案中,本公开提供一种二氧化碳捕集方法,其中,所述二氧化碳捕集方法包括:
利用硫酸胍水溶液吸收气体中的二氧化碳,形成二氧化碳与硫酸胍的包合物,以从所述气体捕集二氧化碳。
硫酸胍可以溶解在水中形成包含胍阳离子和硫酸根阴离子的水溶液。发明人出入意料地发现,胍阳离子和硫酸根阴离子可以选择性地与气体中的二氧化碳分子结合,形成二氧化碳与硫酸胍的包合物,从而将游离态二氧化碳转变为结合至硫酸胍的非游离态二氧化碳,由此实现对二氧化碳的捕集。
在一个实施方案中,所述二氧化碳捕集方法包括通过以下步骤从含二氧化碳的气体混合物中选择性捕集并分离二氧化碳:
使所述气体混合物与硫酸胍水溶液接触,以形成二氧化碳与硫酸胍的包合物的沉淀物,从而将二氧化碳从所述气体混合物分离至所述沉淀物中。
发明人出人意料地发现,本公开的二氧化碳捕集方法可以实现对二氧化碳的选择性捕集,因为硫酸胍特异性地仅与二氧化碳形成包合物,而不与其他气体如氮气、氧气、甲烷等结合。因此,当含有二氧化碳的气体混合物与硫酸胍水溶液接触后,其他气体仍基本保持游离态,仅二氧化碳被硫酸胍捕集,从而实现了从含二氧化碳的气体混合物中选择性捕集二氧化碳。
胍阳离子和硫酸根阴离子与二氧化碳分子结合后形成二氧化碳与硫酸胍的包合物。该包合物难溶于水,因此是一种沉淀物。因此,游离态的二氧化碳气体将被捕集到固态的包合物沉淀物中,从而可以方便高效地与 气体混合物中其他气体分离。
含二氧化碳的气体混合物中,除了二氧化碳之外的气体的实例可以包括任何不与硫酸胍反应的气体,优选是也不与水反应的气体,例如氮气、氧气、甲烷等。气体混合物的实例可以是二氧化碳/氮气混合物、二氧化碳/氮气/氧气混合物、二氧化碳/甲烷混合物或二氧化碳/甲烷/氮气混合物等,也可以为主成分为上述气体的气体混合物。
在一个实施方案中,所述二氧化碳捕集方法还包括以下步骤:
分离所述包合物或含有所述包合物的浆料,对所述包合物或所述含有所述包合物的浆料施加能量输入,优选搅拌、超声或加热,以释放二氧化碳,并获得再生的硫酸胍。
包合物的难溶特性有利于其被单独分离出来进行后续处理。当形成二氧化碳与硫酸胍的包合物后,该包合物形成沉淀,并且可以在水溶液的底部形成含有包合物的浆料。可以通过常规方法将所述包合物分离出来用于后续处理,只要分离过程基本上不引起二氧化碳从包合物释放即可。例如,可以通过过滤并自然干燥获得固态的包合物。例如,可以通过在静置后移除上清液并自然干燥获得固态的包合物。也可以通过常规方法将含有包合物的浆料(即固体包合物和一部分水相的混合物)分离出来用于后续处理,只要分离过程基本上不引起二氧化碳从包合物释放即可。例如,可以通过用泵泵出获得底部浆料。例如,可以通过移除上清液获得底部浆料。随后,对包合物或含有包合物的浆料施加能量输入,以释放二氧化碳。当包合物接收足够的能量输入后,可以将二氧化碳从中释放,变为未结合二氧化碳的硫酸胍。可以使用任何合适的能量输入,例如搅拌、超声、加热、辐射等。优选施加搅拌、超声或加热,因为它们从工艺和设备上是廉价且易于实现的。发明人出人意料地发现,可以在与相关技术相比低得多的能量输入条件下释放二氧化碳。例如,该包合物所需的能量输入远远低于从吸收了二氧化碳的单乙醇胺释放二氧化碳所需的能量输入。当释放二氧化碳后,可以同时获得再生的硫酸胍。
在一个实施方案中,收集被释放的所述二氧化碳。由于在此过程中仅有二氧化碳被释放,因此收集到的二氧化碳可以具有极高的纯度。因此,本公开的二氧化碳捕集方法也可以作为一种用于提纯二氧化碳的方法。
在一个实施方案中,所述二氧化碳捕集方法还包括通过以下步骤捕集二氧化碳:
使用所述再生的硫酸胍作为所述水溶液中的硫酸胍。
释放了二氧化碳之后的再生的硫酸胍具有与初始使用的硫酸胍相同的性质,可以循环用于本公开的二氧化碳捕集方法。硫酸胍的循环易于实现,并且由此可以以低的综合成本实现二氧化碳捕集。
在一个实施方案中,所述二氧化碳捕集方法还包括:在分离所述包合物或含有所述包合物的浆料之后储存和/或运输所述包合物或含有所述包合物的浆料。即,包合物或含有包合物的浆料可以作为二氧化碳的储存和/或运输载体。这样,可以在需要的时间和地点从包合物或含有包合物的浆料中释放二氧化碳。
在一个实施方案中,所述储存和/或运输所述浆料在常压下进行。在没有能量输入时,二氧化碳与硫酸胍的包合物是否会向环境释放其中的二氧化碳,主要与温度和环境中的氧分压有关。发明人发现,随着温度升高,保持包合物所需的二氧化碳分压会随之相应升高。例如,在25℃,只要环境中的二氧化碳分压高于52kPa,包合物就不会释放二氧化碳。当环境温度升至35℃时,为了保持包合物不释放二氧化碳,环境中的二氧化碳分压需高于75kPa。不过,如上所述,即使在对于日常生产生活来说相当高的35℃的温度下,保持不释放二氧化碳所需的化碳的分压也仍低于1个大气压。因此,在日常环境温度下,例如常温下,可以使用一般的在常压下使用的气密容器完成包合物或含有包合物的浆料的储存和/或运输,而无需施加增高的压力或降低温度。相应地,无需专门的高压设备或低温设备,显著节约成本。
而且,由于作为捕集剂的硫酸胍本身分子量较低,因此在被储存的捕集剂中捕集的二氧化碳的重量比(也可以称为容量)可以达到约17%。因此,本公开实际上提供了一种利用二氧化碳@硫酸胍包合物高效而且经济的二氧化碳的储存运输。
在一个实施方案中,二氧化碳与硫酸胍发生以下反应:
CO2+(C(NH2)3)2SO4→CO2@(C(NH2)3)2SO4↓。
即,形成二氧化碳与硫酸胍的包合物。
更具体地,该反应可以是
CO2+2[C(NH2)3]++SO4 2-→CO2@(C(NH2)3)2SO4↓。
在一个实施方案中,所述硫酸胍水溶液是与硫酸胍粉末共混的饱和硫酸胍水溶液。
可以使用过量的硫酸胍粉末,形成与硫酸胍粉末共混的饱和硫酸胍水溶液。此时,当水溶液中的硫酸根离子和胍离子与二氧化碳形成包合物被消耗后,可以被硫酸胍粉末补充,从而可以提高体系的二氧化碳容量。选择粉末形式的硫酸胍是因为其易于溶解,便于实现离子补充。
在一个实施方案中,本公开提供一种二氧化碳捕集组合物,其中,所述二氧化碳捕集组合物包含硫酸胍水溶液。
如上所述,包含硫酸胍水溶液的二氧化碳捕集组合物可以通过形成二氧化碳与硫酸胍的包合物实现二氧化碳的捕集。
在一个实施方案中,所述二氧化碳捕集组合物基本上由水和硫酸胍组成,最优选仅由水和硫酸胍组成。这样的二氧化碳捕集组合物具有最强的针对二氧化碳的捕集选择性。
在一个实施方案中,所述二氧化碳捕集组合物是饱和硫酸胍水溶液与硫酸胍粉末共混的浆料。如上所述,这样的所述二氧化碳捕集组合物通过过量的硫酸胍粉末提供了对二氧化碳的高容量,并且保持饱和的硫酸胍水溶液具有高的二氧化碳吸收效率。
在一个实施方案中,本公开提供硫酸胍水溶液在二氧化碳的捕集、提纯、储存和运输中的用途。如上所述,硫酸胍水溶液可以用于捕集二氧化碳,特别是从含有二氧化碳的气体混合物中选择性捕集二氧化碳。硫酸胍水溶液也可以用于提纯二氧化碳,以提供极高纯度的二氧化碳。硫酸胍水溶液还可以用于储存和运输二氧化碳,吸收比率可高至约17%,并且可以在常温常压下进行储存和运输。
为使本公开的上述目的、特征和优点能够更加明显易懂,下面结合实施例对本公开的具体实施方式做详细的说明。
实施例1
取27g的硫酸胍粉末和7mL水加入一个容积为50mL的带机械搅拌的高压反应釜中,用1MPa的二氧化碳/氮气气体混合物(15mol%二氧化碳+85mol%氮气)置换三次釜内的气体,然后将釜内的气体压力设置为1MPa,关闭高压反应釜阀门。在0℃下搅拌24小时以使气体与溶液充分接触,利用气相色谱仪分析残留的气体中二氧化碳的含量。分析得出,该过程中二氧化碳的去除率为49%。从气体中去除的二氧化碳均被硫酸胍溶液吸附,实现了二氧化碳的捕集。
硫酸胍溶液吸附的二氧化碳可以通过施加超声被完全释放出来,硫酸胍溶液得以再生。
实施例2
操作参考实施例1,选用的气体混合物为二氧化碳/氮气(15mol%二氧化碳+85mol%氮气),釜内的气体压力设置为3MPa。经分析发现二氧化碳的去除率达82%。
实施例3
操作参考实施例1,选用的气体混合物为二氧化碳/氮气(15mol%二氧化碳+85mol%氮气),釜内的气体压力设置为6MPa。经分析发现二氧化碳的去除率达91%。
实施例4
操作参考实施例1,选用的气体混合物为二氧化碳/氮气(30mol%二氧化碳+70mol%氮气),釜内的气体压力设置为1MPa。经分析发现二氧化碳的去除率达77%。
实施例5
操作参考实施例1,选用的气体混合物为二氧化碳/氮气(30mol%二氧化碳+70mol%氮气),釜内的气体压力设置为3MPa。经分析发现二氧化碳的去除率达91%。
实施例6
经测量,吸附得到的固体沉淀物中,11.3克硫酸胍吸附2.3g二氧化碳,即二氧化碳@硫酸胍包合物中二氧化碳的质量百分比为17%,与理论值一致。其可以在室温下稳定保存于气密封闭的普通玻璃瓶或塑料瓶中,这表明其储存和运输可以无需高压容器或施加低温。
本公开公开了一种二氧化碳捕集方法,是利用硫酸胍溶液对气体混合物中的二氧化碳进行选择性吸收,当含二氧化碳的气体混合物与硫酸胍溶液接触时,二氧化碳会与硫酸胍反应形成包合物从溶液中沉淀下来。本公开利用硫酸胍水溶液实现二氧化碳的捕集,材料便宜易得、稳定性好,能够耐酸、耐碱、耐高温,在分离的过程中没有损耗。通过本公开的方法分离得到的二氧化碳纯度极高。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (13)

  1. 一种二氧化碳捕集方法,其中,所述二氧化碳捕集方法包括:
    利用硫酸胍水溶液吸收气体中的二氧化碳,形成二氧化碳与硫酸胍的包合物,以从所述气体捕集二氧化碳。
  2. 根据权利要求1所述的二氧化碳捕集方法,其中,所述二氧化碳捕集方法包括通过以下步骤从含二氧化碳的气体混合物中选择性捕集并分离二氧化碳:
    使所述气体混合物与硫酸胍水溶液接触,以形成二氧化碳与硫酸胍的包合物的沉淀物,从而将二氧化碳从所述气体混合物分离至所述沉淀物中。
  3. 根据权利要求1所述的二氧化碳捕集方法,其中,所述二氧化碳捕集方法还包括以下步骤:
    分离所述包合物或含有所述包合物的浆料,对所述包合物或所述含有所述包合物的浆料施加能量输入,优选搅拌、超声或加热,以释放二氧化碳,并获得再生的硫酸胍。
  4. 根据权利要求3所述的二氧化碳捕集方法,其中,收集被释放的所述二氧化碳。
  5. 根据权利要求3所述的二氧化碳捕集方法,其中,所述二氧化碳捕集方法还包括通过以下步骤捕集二氧化碳:
    使用所述再生的硫酸胍作为所述水溶液中的硫酸胍。
  6. 根据权利要求3所述的二氧化碳捕集方法,其中,所述二氧化碳捕集方法还包括:在分离所述包合物或含有所述包合物的浆料之后储存和/或运输所述包合物或含有所述包合物的浆料。
  7. 根据权利要求6所述的二氧化碳捕集方法,其中,所述储存和/或运输所述浆料在常压下进行。
  8. 根据权利要求1所述的二氧化碳捕集方法,其中,二氧化碳与硫酸胍发生以下反应:
    CO2+(C(NH2)3)2SO4→CO2@(C(NH2)3)2SO4↓。
  9. 根据权利要求1所述的二氧化碳捕集方法,其中,所述硫酸胍水溶液是与硫酸胍粉末共混的饱和硫酸胍水溶液。
  10. 一种二氧化碳捕集组合物,其中,所述二氧化碳捕集组合物包含硫酸胍水溶液。
  11. 根据权利要求10所述的二氧化碳捕集组合物,其中,所述二氧化碳捕集组合物基本上由水和硫酸胍组成。
  12. 根据权利要求11所述的二氧化碳捕集组合物,其中,所述二氧化碳捕集组合物是饱和硫酸胍水溶液与硫酸胍粉末共混的浆料。
  13. 硫酸胍水溶液在二氧化碳的捕集、提纯、储存和运输中的用途。
PCT/CN2023/094975 2022-03-18 2023-05-18 一种二氧化碳捕集方法 WO2023174451A2 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210271224.0A CN114768477B (zh) 2022-03-18 2022-03-18 一种二氧化碳捕集方法
CN202210271224.0 2022-03-18

Publications (2)

Publication Number Publication Date
WO2023174451A2 true WO2023174451A2 (zh) 2023-09-21
WO2023174451A3 WO2023174451A3 (zh) 2023-11-09

Family

ID=82425269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/094975 WO2023174451A2 (zh) 2022-03-18 2023-05-18 一种二氧化碳捕集方法

Country Status (2)

Country Link
CN (1) CN114768477B (zh)
WO (1) WO2023174451A2 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114768477B (zh) * 2022-03-18 2023-11-17 中国科学技术大学 一种二氧化碳捕集方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB639681A (en) * 1946-12-24 1950-07-05 American Cyanamid Co Improvements in or relating to the production of guandine sulphates
US2515244A (en) * 1946-12-24 1950-07-18 American Cyanamid Co Production of guanidine sulfates
FR1111516A (fr) * 1953-06-03 1956-03-01 Le Ministre De La Defense Nati Procédé de fabrication des sels de guanidine
RU2244587C2 (ru) * 2002-11-11 2005-01-20 Федеральное государственное унитарное предприятие Государственный научный центр РФ "Научно-исследовательский физико-химический институт им. Л.Я. Карпова" Абсорбент для извлечения диоксида углерода из газовых смесей
CN101088981B (zh) * 2007-05-22 2011-03-30 中国石化扬子石油化工有限公司 芳香羧酸的生产方法
CA2839004A1 (en) * 2011-07-06 2013-01-10 Liquid Light, Inc. Carbon dioxide capture and conversion to organic products
CN103084146B (zh) * 2011-10-28 2014-08-20 中国石油化工股份有限公司 复合脱碳吸收剂
FR2990880B1 (fr) * 2012-05-25 2017-04-28 Total Sa Procede d'elimination selective du sulfure d'hydrogene de melanges gazeux et utilisation d'un thioalcanol pour l'elimination selective du sulfure d'hydrogene.
CN102827037A (zh) * 2012-09-11 2012-12-19 绍兴文理学院 四甲基胍质子离子液体及其在捕集二氧化碳方面的应用
CN104402829A (zh) * 2014-11-27 2015-03-11 太仓运通生物化工有限公司 一种制备2-氯嘧啶的工艺
US9855525B2 (en) * 2015-05-06 2018-01-02 Aaron Esser-Kahn Methods and apparatuses for recovering CO2
US20180134655A1 (en) * 2016-11-15 2018-05-17 Ut-Battelle, Llc Guanidine compounds for removal of oxyanions from aqueous solutions and for carbon dioxide capture
WO2018226368A1 (en) * 2017-06-05 2018-12-13 Ut-Battelle, Llc Guanidine compounds for carbon dioxide capture
CN108003120B (zh) * 2017-11-24 2020-04-07 中山大学 一种含有呋喃骨架的亚胺胍衍生物及其制备和应用
CN110743326A (zh) * 2019-10-28 2020-02-04 大连理工大学 一类用于捕集二氧化碳的高效节能的非水吸收剂及应用
CN113289496A (zh) * 2021-05-26 2021-08-24 中国科学技术大学 用于油水分离的石墨相c3n4纳米片二维膜及制备方法
CN113861081B (zh) * 2021-10-25 2023-12-19 中国药科大学 一种胍基功能化离子液体及其制备方法和应用
CN114768477B (zh) * 2022-03-18 2023-11-17 中国科学技术大学 一种二氧化碳捕集方法

Also Published As

Publication number Publication date
WO2023174451A3 (zh) 2023-11-09
CN114768477A (zh) 2022-07-22
CN114768477B (zh) 2023-11-17

Similar Documents

Publication Publication Date Title
CN1113680C (zh) 变温吸附
EP3441505B1 (en) Ammonia production method
WO2023174451A2 (zh) 一种二氧化碳捕集方法
WO2018037481A1 (ja) バイオマス熱分解ガスからの水素回収方法
CN112076728B (zh) 一种烟气脱硫脱硝用绿色吸附剂制备和使用及再生方法
CN115253599B (zh) 一种用于碳捕集的弱相互作用的氨基功能化离子液体相变吸收剂
KR101189075B1 (ko) 이산화탄소 흡수제를 재생하는 공정을 포함한 이산화탄소 분리방법 및 이를 이용한 이산화탄소 분리장치
CN106111058A (zh) 一种离子水合物型吸附剂及其制备方法和应用
CN113731134B (zh) 一种船载二氧化碳捕集与封存装置及方法
JP4180991B2 (ja) 二酸化炭素の吸着方法
RU2576634C1 (ru) Адсорбент для улавливания, концентрирования и хранения диоксида углерода
TWI265149B (en) Process for removing water from gaseous substance
US10583388B2 (en) Amino acids react with carbon dioxide (CO2) and form nanofibers and nanoflowers
US20230264141A1 (en) Method for the bonding, transport, reaction activation, conversion, storage and release of water-soluble gases
KR20190057620A (ko) 친환경적 이산화탄소 처리 및 탄산칼슘 동시 제조방법
CN108144425B (zh) 一种三维石墨烯碳基复合脱硫材料及其制备方法
JP3111530B2 (ja) 二酸化炭素変換方法
Cho et al. A study on the adsorption and desorption characteristics of metal-impregnated activated carbons with metal precursors for the regeneration and concentration of ammonia
CN106943983A (zh) 一种吸附CO2的氧化物ZrO2的制备与改性方法
CN101590354B (zh) 一种用于脱除黄磷尾气中ph3的脱磷剂、其制备方法及应用
CN114539307B (zh) 一种co2捕集材料、其合成方法以及碳捕集工艺
CN217568203U (zh) 火电行业尾气脱硝脱硫二氧化碳回收一体化装置
CN115779652A (zh) 一种从氮氧化物尾气中回收氮氧化物的方法及系统
CN219663372U (zh) 一种脱硝scr低碳供氨系统
CN110882675B (zh) 一种可再生硫化氢气体吸附剂的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23769953

Country of ref document: EP

Kind code of ref document: A2