CN111430401A - 单片光电集成电路及其形成方法 - Google Patents

单片光电集成电路及其形成方法 Download PDF

Info

Publication number
CN111430401A
CN111430401A CN202010115714.2A CN202010115714A CN111430401A CN 111430401 A CN111430401 A CN 111430401A CN 202010115714 A CN202010115714 A CN 202010115714A CN 111430401 A CN111430401 A CN 111430401A
Authority
CN
China
Prior art keywords
gan
ohmic contact
substrate
contact electrode
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010115714.2A
Other languages
English (en)
Other versions
CN111430401B (zh
Inventor
王永进
严嘉彬
朴金龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Posts and Telecommunications
Original Assignee
Nanjing University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Posts and Telecommunications filed Critical Nanjing University of Posts and Telecommunications
Priority to CN202010115714.2A priority Critical patent/CN111430401B/zh
Publication of CN111430401A publication Critical patent/CN111430401A/zh
Priority to PCT/CN2020/128348 priority patent/WO2021169411A1/zh
Priority to US17/853,757 priority patent/US20220334308A1/en
Application granted granted Critical
Publication of CN111430401B publication Critical patent/CN111430401B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/20Resistors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12004Combinations of two or more optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/1443Devices controlled by radiation with at least one potential jump or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66522Unipolar field-effect transistors with an insulated gate, i.e. MISFET with an active layer made of a group 13/15 material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03044Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds comprising a nitride compounds, e.g. GaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • H01L31/16Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources
    • H01L31/167Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources the light sources and the devices sensitive to radiation all being semiconductor devices characterised by potential barriers
    • H01L31/173Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources the light sources and the devices sensitive to radiation all being semiconductor devices characterised by potential barriers formed in, or on, a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1856Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising nitride compounds, e.g. GaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12123Diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Ceramic Engineering (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明涉及一种单片光电集成电路及其形成方法。所述单片光电集成电路包括:衬底,包括光子集成器件区域和外围电路区域;第一GaN基多量子阱光电PN结器件,位于光子集成器件区域,用作发光二极管,包括第一P‑型欧姆接触电极和第一N‑型欧姆接触电极;第一GaN基场效应晶体管,位于外围电路区域,包括具有第一凹槽的第一栅极介质层、填充于第一凹槽中的第一栅极、以及第一源极和第一漏极;第一源极电连接第一P‑型欧姆接触电极,第一漏极用于与第一电位电连接,第一N‑型欧姆接触电极用于与低于第一电位的第二电位电连接,第一栅极电连接控制端口,以控制发光二极管的亮灭。本发明制备的单片光电集成电路具有高性能,且能够有效降低其加工难度。

Description

单片光电集成电路及其形成方法
技术领域
本发明涉及集成光电子技术领域,尤其涉及一种单片光电集成电路及其形成方法。
背景技术
光电单片集成技术是未来通信与信息技术发展的重要方向,与传统的片外互连方式相比,单片光电集成电路具有面积小、可靠性高、噪声小、速度快以及抗干扰能力强等优势。随着材料科学和制造技术的进步,在单片衬底上集成光学、光电和电子元件成为可能。但是,当前的单片光电集成电路在电学性能、制造工艺以及结构复杂性方面存在着众多不足。
因此,如何提高单片光电集成电路的性能,降低单片光电集成电路的制造复杂度,并简化单片光电集成电路的结构,是目前亟待解决的技术问题。
发明内容
本发明提供一种单片光电集成电路及其形成方法,用于解决现有的单片光电集成电路性能较差的问题。
为了解决上述问题,本发明提供了一种单片光电集成电路,包括:
衬底,包括光子集成器件区域和外围电路区域;
第一GaN基多量子阱光电PN结器件,位于所述衬底表面的所述光子集成器件区域,用作单片光电集成电路中的发光二极管,包括第一P-型欧姆接触电极和第一N-型欧姆接触电极;
第一GaN基场效应晶体管,位于所述衬底表面的外围电路区域,所述第一GaN基场效应晶体管包括位于所述衬底表面且具有第一凹槽的第一栅极介质层、填充于所述第一凹槽中的第一栅极、以及位于所述第一栅极相对两侧的第一源极和第一漏极;
所述第一源极电连接所述第一P-型欧姆接触电极,所述第一漏极用于与第一电位电连接,所述第一N-型欧姆接触电极用于与低于所述第一电位的第二电位电连接,所述第一栅极电连接控制端口,以控制所述发光二极管的亮灭。
可选的,还包括:
第二GaN基多量子阱光电PN结器件,位于所述衬底表面的所述光子集成器件区域,用作所述单片光电集成电路中的光电检测器,包括第二P-型欧姆接触电极和第二N-型欧姆接触电极,且所述第二GaN基多量子阱光电PN结器件与所述第一GaN基多量子阱光电PN结器件通过光波导连接;
电阻,位于所述衬底表面的外围电路区域;
第二GaN基场效应晶体管,位于所述衬底表面的外围电路区域,所述第二GaN基场效应晶体管包括位于所述衬底表面且具有第二凹槽的第二栅极介质层、填充于所述第二凹槽中的第二栅极、以及位于所述第二栅极相对两侧的第二源极和第二漏极;
所述电阻的一端电连接所述第二N-型欧姆接触电极、另一端用于与第三电位电连接,所述第二P-型欧姆接触电极用于与低于所述第三电位的第四电位电连接,所述第二N-型欧姆接触电极与所述电阻之间的电位电连接到所述第二栅极,以控制所述第二GaN基场效应晶体管的导通与否。
可选的,所述衬底表面还包括AlGaN缓冲层、以及位于所述AlGaN缓冲层表面的未掺杂GaN层;
所述单片光电集成电路还包括一自所述衬底贯穿所述AlGaN缓冲层和所述未掺杂GaN层的空腔,所述光波导为悬于所述空腔上方的GaN固支梁结构,所述第一GaN基多量子阱光电PN结器件和所述第二GaN基多量子阱光电PN结器件形成于所述未掺杂GaN层表面、且均悬于所述空腔上方。
可选的,所述第一GaN基多量子阱光电PN结器件还包括沿垂直于所述衬底的方向依次叠置的第一N-型GaN外延层、第一InGaN/GaN多量子阱层和第一P-型GaN外延层,所述第二GaN基多量子阱光电PN结器件还包括沿垂直于所述衬底的方向依次叠置的第二N-型GaN外延层、第二InGaN/GaN多量子阱层和第二P-型GaN外延层;
在外围电路区域,还包括设置于所述未掺杂GaN层表面的第三N-型GaN外延层,所述第一源极、所述第一漏极、所述第二源极和所述第二漏极均设置于所述第三N-型GaN外延层表面;
所述第三N-型GaN外延层中具有暴露所述未掺杂GaN层的第一通孔和第二通孔,所述第一栅极介质层覆盖所述第一通孔的内壁以及部分的所述第三N-型GaN外延层表面,所述第二栅极介质层覆盖所述第二通孔的内壁以及部分的所述第三N-型GaN外延层表面。
可选的,还包括:
贯穿所述未掺杂GaN层和所述AlGaN缓冲层并暴露所述衬底的隔离槽,所述隔离槽用于隔离所述光子集成器件区域和所述外围电路区域。
可选的,在沿平行于所述衬底的方向上,所述第一P-型欧姆接触电极的截面为圆形,所述第一N-型欧姆接触电极的截面呈弧形环绕所述第一P-型欧姆接触电极的外周设置;
在沿平行于所述衬底的方向上,所述第二P-型欧姆接触电极的截面为圆形,所述第二N-型欧姆接触电极的截面呈弧形环绕所述第二P-型欧姆接触电极的外周设置。
可选的,所述电阻包括:
两个电阻电极,位于所述衬底表面;
电阻臂,位于所述衬底表面,且所述电阻臂的两端与两个所述电阻电极一一对应电连接。
为了解决上述问题,本发明还提供了一种如上述任一项所述的单片光电集成电路的形成方法,包括如下步骤:
提供一衬底,并于所述衬底表面定义光子集成器件区域和外围电路区域;
形成第一GaN基多量子阱光电PN结器件于所述衬底表面的所述光子集成器件区域,用作单片光电集成电路中的发光二极管,所述第一GaN基多量子阱光电PN结器件包括第一P-型欧姆接触电极和第一N-型欧姆接触电极;
形成第一GaN基场效应晶体管于所述衬底表面的外围电路区域,所述第一GaN基场效应晶体管包括位于所述衬底表面且具有第一凹槽的第一栅极介质层、填充于所述第一凹槽中的第一栅极、以及位于所述第一栅极相对两侧的第一源极和第一漏极;
电连接所述第一源极与所述第一P-型欧姆接触电极、所述第一漏极与第一电位、所述第一N-型欧姆接触电极与低于所述第一电位的第二电位、所述第一栅极与控制端口,以控制所述发光二极管的亮灭。
可选的,还包括如下步骤:
形成第二GaN基多量子阱光电PN结器件于所述衬底表面的所述光子集成器件区域,用作所述单片光电集成电路中的光电检测器,所述第二GaN基多量子阱光电PN结器件包括第二P-型欧姆接触电极和第二N-型欧姆接触电极;
通过光波导连接所述第一GaN基多量子阱光电PN结器件与所述第二GaN基多量子阱光电PN结器件;
形成第二GaN基场效应晶体管于所述衬底表面的外围电路区域,所述第二GaN基场效应晶体管包括位于所述衬底表面且具有第二凹槽的第二栅极介质层、填充于所述第二凹槽中的第二栅极、以及位于所述第二栅极相对两侧的第二源极和第二漏极;
形成电阻于所述衬底表面的外围电路区域;
电连接所述电阻的一端电连接所述第二N-型欧姆接触电极、另一端与第三电位、以及所述第二P-型欧姆接触电极与低于所述第三电位的第四电位,同时所述第二N-型欧姆接触电极与所述电阻之间的电位电连接到所述第二栅极,以控制所述第二GaN基场效应晶体管的导通与否。
可选的,还包括如下步骤:
形成AlGaN缓冲层、以及位于所述AlGaN缓冲层表面的未掺杂GaN层于所述衬底表面;
沉积N-型GaN材料于所述为掺杂的GaN层表面,形成N-型GaN材料层;
刻蚀所述N-型GaN材料层,同时形成所述第一GaN基多量子阱光电PN结器件的第一N-型GaN外延层、所述第二GaN基多量子阱光电PN结器件的第二N-型GaN外延层和位于所述外围电路区域的第三N-型GaN外延层;
刻蚀所述第三N-型GaN外延层,形成暴露所述未掺杂GaN层的第一通孔和第二通孔;
形成覆盖所述第一通孔的内壁以及部分的所述第三N-型GaN外延层表面的第一栅极介质层、同时形成覆盖所述第二通孔的内壁以及部分的所述第三N-型GaN外延层表面的第二栅极介质层。
本发明提供的单片光电集成电路及其形成方法,一方面,将第一GaN基多量子阱光电PN结器件与第一GaN基场效应晶体管集成在同一片衬底表面,利用GaN材料具有高电子迁移率、高热导率、高耐温、抗腐蚀以及抗辐射等优良特性,使得制备的单片光电集成电路中的第一GaN基多量子阱光电PN结器件与第一GaN基场效应晶体管具有高性能;另一方面,本发明提供的第一GaN基场效应晶体管无需使用复杂的离子注入技术进行制备加工过程中可以无需引入外延材料的生长,同时能够与第一GaN基多量子阱光电PN结器件的制备工艺完全兼容,从而有效降低了单片光电集成电路的加工难度。
附图说明
附图1是本发明具体实施方式中单片光电集成电路的整体结构示意图;
附图2是图1沿A-A’方向的剖面示意图;
附图3是本发明具体实施方式中第一GaN基场效应晶体管的结构示意图;
附图4是图3沿B-B’方向的剖面示意图;
附图5是本发明具体实施方式中电阻的结构示意图;
附图6是本发明具体实施方式中单片光电集成电路的形成方法流程图。
具体实施方式
下面结合附图对本发明提供的单片光电集成电路及其形成方法的具体实施方式做详细说明。
本具体实施方式提供了一种单片光电集成电路,附图1是本发明具体实施方式中单片光电集成电路的整体结构示意图,附图2是图1沿A-A’方向的剖面示意图,附图3是本发明具体实施方式中第一GaN基场效应晶体管的结构示意图,附图4是图3沿B-B’方向的剖面示意图。如图1-图4所示,本具体实施方式提供的单片光电集成电路,包括:
衬底10,包括光子集成器件区域1和外围电路区域2;
第一GaN基多量子阱光电PN结器件11,位于所述衬底10表面的所述光子集成器件区域1,用作单片光电集成电路中的发光二极管,包括第一P-型欧姆接触电极111和第一N-型欧姆接触电极112;
第一GaN基场效应晶体管21,位于所述衬底10表面的外围电路区域2,所述第一GaN基场效应晶体管21包括位于所述衬底10表面且具有第一凹槽的第一栅极介质层31、填充于所述第一凹槽中的第一栅极211、以及位于所述第一栅极211相对两侧的第一源极212和第一漏极213;
所述第一源极212电连接所述第一P-型欧姆接触电极111,所述第一漏极213用于与第一电位VDD1电连接,所述第一N-型欧姆接触电极112用于与低于所述第一电位VDD1的第二电位VSS1电连接,所述第一栅极211电连接控制端口24,以控制所述发光二极管的亮灭。
具体来说,所述衬底10可以为硅衬底,也可以为蓝宝石衬底。所述第一GaN基多量子阱光电PN结器件与所述第一GaN基场效应晶体管21均外延生长于所述衬底10表面。所述第一GaN基多量子阱光电PN结器件11用作所述单片光电集成电路中的发光二极管,用于向外界发送带有多媒体信息的可见光信号。所述第一源极212电连接所述第一P-型欧姆接触电极111,所述第一漏极213用于与第一电位VDD1(即高电位)电连接,所述第一N-型欧姆接触电极112用于与低于所述第一电位的第二电位VSS1(即低电位)电连接,所述第一栅极211电连接控制端口24,以控制所述发光二极管的亮灭。所述第一GaN基场效应晶体管21中的所述第一栅极211的材料可以与所述第一P-型欧姆接触电极111的材料相同,例如均为Ni和/或Au。所述第一源极212与所述第一漏极213的材料可以与所述第一N-型欧姆接触电极112的材料相同,例如均为Ti和/或Al。
可选的,所述单片光电集成电路还包括:
第二GaN基多量子阱光电PN结器件12,位于所述衬底10表面的所述光子集成器件区域1,用作所述单片光电集成电路中的光电检测器,包括第二P-型欧姆接触电极121和第二N-型欧姆接触电极122,且所述第二GaN基多量子阱光电PN结器件12与所述第一GaN基多量子阱光电PN结器件11通过光波导13连接;
电阻23,位于所述衬底10表面的外围电路区域2;
第二GaN基场效应晶体管22,位于所述衬底10表面的外围电路区域2,所述第二GaN基场效应晶体管22包括位于所述衬底10表面且具有第二凹槽的第二栅极介质层、填充于所述第二凹槽中的第二栅极221、以及位于所述第二栅极221相对两侧的第二源极222和第二漏极223;
所述电阻的23一端电连接所述第二N-型欧姆接触电极122、另一端用于与第三电位VDD2电连接,所述第二P-型欧姆接触电极121用于与低于所述第三电位VDD2的第四电位VSS2电连接,所述第二N-型欧姆接触电极122与所述电阻23之间的电位电连接到所述第二栅极221,以控制所述第二GaN基场效应晶体管22的导通与否。
具体来说,所述第二GaN基多量子阱光电PN结器件12用作所述单片光电集成电路中的光电检测器,使得所述第一GaN基多量子阱光电PN结器件11与所述第二GaN基多量子阱光电PN结器件12之间可以通过所述光波导13进行光路连接,从而进行可见光通信。所述电阻23的一端电连接所述第二N-型欧姆接触电极122、另一端接第三电位VDD2(即高电位),所述第二P-型欧姆接触电极121接第四电位VSS2(即低电位)。所述第二N-型欧姆接触电极122与所述电阻23之间的电位电连接到所述第二栅极221,以控制所述第二GaN基场效应晶体管22的导通与关闭,以进一步实现信号的输出。所述第二漏极223接第五电位VDD3(即高电位),所述第二源极222接低于所述第五电位VDD3的第六电位VSS3(即低电位)。
可选的,所述衬底10表面还包括AlGaN缓冲层14、以及位于所述AlGaN缓冲层14表面的未掺杂GaN层15;
所述单片光电集成电路还包括一自所述衬底10贯穿所述AlGaN缓冲层14和所述未掺杂GaN层15的空腔16,所述光波导13为悬于所述空腔16上方的GaN固支梁结构,所述第一GaN基多量子阱光电PN结器件11和所述第二GaN基多量子阱光电PN结器件12形成于所述未掺杂GaN层15表面、且均悬于所述空腔16上方。
可选的,所述第一GaN基多量子阱光电PN结器件11还包括沿垂直于所述衬底10的方向依次叠置的第一N-型GaN外延层113、第一InGaN/GaN多量子阱层115和第一P-型GaN外延层114,所述第二GaN基多量子阱光电PN结器件12还包括沿垂直于所述衬底10的方向依次叠置的第二N-型GaN外延层123、第二InGaN/GaN多量子阱层125和第二P-型GaN外延层124;
在外围电路区域2,还包括设置于所述未掺杂GaN层15表面的第三N-型GaN外延层32,所述第一源极212、所述第一漏极213、所述第二源极222和所述第二漏极223均设置于所述第三N-型GaN外延层32表面;
所述第三N-型GaN外延层32中具有暴露所述未掺杂GaN层15的第一通孔和第二通孔,所述第一栅极介质层31覆盖所述第一通孔的内壁以及部分的所述第三N-型GaN外延层32表面,所述第二栅极介质层覆盖所述第二通孔的内壁以及部分的所述第三N-型GaN外延层32表面。
具体来说,所述第一GaN基多量子阱PN结器件11与所述第二GaN基多量子阱PN结器件12呈对称设置,即所述第一GaN基多量子阱PN结器件11与所述第二GaN基多量子阱PN结器件12的结构相同,从而可以同步形成所述第一GaN基多量子阱PN结器件11与所述第二GaN基多量子阱PN结器件12。所述空腔16自所述衬底10的底面依次贯穿所述衬底10、所述AlGaN缓冲层14和所述未掺杂GaN层15,使得所述第一GaN基多量子阱PN结器件11、所述第二GaN基多量子阱PN结器件12与所述光波导13均悬于所述空腔16上方。所述第一P-型欧姆接触电极111的功函数大于所述第一P-型GaN外延层114、所述第二P-型欧姆接触电极121的功函数大于所述第二P-型GaN外延层124,从而能够分别在半导体一侧形成空穴积累层。所述第一N-型欧姆接触电极112的功函数小于所述第一N-型GaN外延层113、所述第二N-型欧姆接触电极122的功函数小于所述第二N-型GaN外延层124,从而能够分别在半导体一侧形成电子积累层。
所述第一GaN基场效应晶体管21与所述第二GaN基场效应晶体管22的结构也可以相同。以下以所述第一GaN基场效应晶体管21为例进行说明。所述第一栅极211位于所述第一源极212与所述第一漏极213之间。位于所述外围电路区域2的所述第三N-型GaN外延层32中具有暴露所述未掺杂GaN层15的第一通孔,介质材料完全覆盖所述第一通孔的侧壁及底壁,形成凹槽结构的所述第一栅极介质层31,使得所述第一栅极211与其下方的GaN材料电性绝缘,并能够通过所述栅极211上施加的电压控制其下方的载流子通道。本具体实施方式中的所述第一GaN基场效应晶体管21可以采用围栅、共源或者共漏中的一种或两种以上的组合结构形式,来进一步提高所述第一GaN基场效应晶体管的输出性能,并进一步减小器件尺寸。所述第三N-型GaN外延层32可以与所述第一N-型GaN外延层113、所述第二N-型GaN外延层123同步形成,以进一步简化所述单片光电集成电路的制造工艺,降低制造成本。
为了避免制程工艺以及电学性能的相互干扰,可选的,所述单片光电集成电路还包括:
贯穿所述未掺杂GaN层15和所述AlGaN缓冲层14并暴露所述衬底的隔离槽,所述隔离槽用于隔离所述光子集成器件区域1和所述外围电路区域2。
可选的,在沿平行于所述衬底10的方向上,所述第一P-型欧姆接触电极111的截面为圆形,所述第一N-型欧姆接触电极112的截面呈弧形环绕所述第一P-型欧姆接触电极111的外周设置;
在沿平行于所述衬底10的方向上,所述第二P-型欧姆接触电极121的截面为圆形,所述第二N-型欧姆接触电极122的截面呈弧形环绕所述第二P-型欧姆接触电极121的外周设置。
具体来说,所述第一P-型欧姆接触电极111与所述第二P-型欧姆接触电极121的结构可以相同,所述第一N-型欧姆接触电极112与所述第二N-型欧姆接触电极122的结构可以相同。以所述第一P-型欧姆接触电极111、所述第一N-型欧姆接触电极112为例,所述第一P-型欧姆接触电极111的截面呈圆形,所述第一N-型欧姆接触电极112的截面呈开环的环形、且围绕于所述第一P-型欧姆接触电极111的外围设置。
所述电阻23可以为N-型GaN薄膜电阻形式,也可以为所述第二GaN基场效应晶体管22的有源电阻形式,本领域技术人员可以根据实际需要进行选择。附图5是本发明具体实施方式中电阻的结构示意图。可选的,如图5所示,所述电阻23包括:
两个电阻电极232,位于所述衬底10表面;
电阻臂231,位于所述衬底10表面,且所述电阻臂231的两端与两个所述电阻电极232一一对应电连接。
具体来说,如图5所示,所述电阻23为N-型GaN薄膜电阻形式,包括平铺呈弯折状的所述电阻臂231、以及连接于所述电阻臂端部的所述电阻电极232。
不仅如此,本具体实施方式还提供了一种如上述任一项所述的单片光电集成电路的形成方法。附图6是本发明具体实施方式中单片光电集成电路的形成方法流程图,本具体实施方式形成的单片光电集成电路的结构可参见图1-图5。如图-图6所示,本具体实施方式提供的单片光电集成电路的形成方法,包括如下步骤:
步骤S61,提供一衬底10,并于所述衬底10表面定义光子集成器件区域1和外围电路区域2;
步骤S62,形成第一GaN基多量子阱光电PN结器件11于所述衬底10表面的所述光子集成器件区域1,用作单片光电集成电路中的发光二极管,所述第一GaN基多量子阱光电PN结器件11包括第一P-型欧姆接触电极111和第一N-型欧姆接触电极112;
形成第一GaN基场效应晶体管21于所述衬底10表面的外围电路区域2,所述第一GaN基场效应晶体管21包括位于所述衬底10表面且具有第一凹槽的第一栅极介质层31、填充于所述第一凹槽中的第一栅极211、以及位于所述第一栅极211相对两侧的第一源极212和第一漏极213;
电连接所述第一源极212与所述第一P-型欧姆接触电极111、所述第一漏极213与第一电位VDD1、所述第一N-型欧姆接触电极112与低于所述第一电位VDD1的第二电位VSS1、所述第一栅极211与控制端口24,以控制所述发光二极管的亮灭。
可选的,所述单片光电集成电路的形成方法还包括如下步骤:
形成第二GaN基多量子阱光电PN结器件12于所述衬底10表面的所述光子集成器件区域1,用作所述单片光电集成电路中的光电检测器,所述第二GaN基多量子阱光电PN结器件12包括第二P-型欧姆接触电极121和第二N-型欧姆接触电极122;
通过光波导13连接所述第一GaN基多量子阱光电PN结器件11与所述第二GaN基多量子阱光电PN结器件12;
形成第二GaN基场效应晶体管22于所述衬底10表面的外围电路区域2,所述第二GaN基场效应晶体管22包括位于所述衬底10表面且具有第二凹槽的第二栅极介质层、填充于所述第二凹槽中的第二栅极221、以及位于所述第二栅极221相对两侧的第二源极222和第二漏极223;
形成电阻23于所述衬底10表面的外围电路区域2;
电连接所述电阻23的一端电连接所述第二N-型欧姆接触电极122、另一端与第三电位VDD2、以及所述第二P-型欧姆接触电极121与低于所述第三电位VDD2的第四电位VSS2,同时所述第二N-型欧姆接触电极122与所述电阻23之间的电位电连接到所述第二栅极221,以控制所述第二GaN基场效应晶体管22的导通与否。
可选的,所述单片光电集成电路的形成方法还包括如下步骤:
形成AlGaN缓冲层14、以及位于所述AlGaN缓冲层14表面的未掺杂GaN层15于所述衬底10表面;
沉积N-型GaN材料于所述为掺杂的GaN层15表面,形成N-型GaN材料层;
刻蚀所述N-型GaN材料层,同时形成所述第一GaN基多量子阱光电PN结器件11的第一N-型GaN外延层113、所述第二GaN基多量子阱光电PN结器件12的第二N-型GaN外延层123和位于所述外围电路区域2的第三N-型GaN外延层32;
刻蚀所述第三N-型GaN外延层32,形成暴露所述未掺杂GaN层15的第一通孔和第二通孔;
形成覆盖所述第一通孔的内壁以及部分的所述第三N-型GaN外延层32表面的第一栅极介质层31、同时形成覆盖所述第二通孔的内壁以及部分的所述第三N-型GaN外延层32表面的第二栅极介质层。
以下举例说明所述单片光电集成电路的形成方法。可参见图1-图5,所述单片光电集成电路的形成方法,具体包括如下步骤:
1、选择硅基或者蓝宝石基氮化镓外延片作为基片,形成衬底2以及沿垂直于所述衬底10的方向依次叠置于所述衬底10表面的AlGaN缓冲层14、未掺杂GaN层15、N-型GaN材料层、InGaN/GaN多量子阱材料层和P-型GaN材料层;
2、涂覆第一光刻胶层于所述P-型GaN材料层表面并光刻,使得于第一光刻胶层中形成第一刻蚀窗口,所述第一刻蚀窗口与第一GaN基多量子阱光电PN结器件11与第一GaN基多量子阱光电PN结器件之间的间隔区域对应,采用ICP(电感耦合等离子体)干法刻蚀至所述N-型GaN材料层,去除第一光刻胶层;
3、涂覆第二光刻胶层于所述P-型GaN材料层表面并光刻,使得于第二光刻胶层中形成第二刻蚀窗口,沿所述第二刻蚀窗口进行ICP干法刻蚀至所述衬底10表面,形成用于分隔光子集成器件区域1和外围电路区域2的隔离槽,去除第二光刻胶层以及所述外围电路区域2中的所述InGaN/GaN多量子阱材料层和所述P-型GaN材料层;
4、涂覆第三光刻胶层于外围电路区域2的所述N-型GaN材料层表面并光刻,使得于第三光刻胶层中形成第三刻蚀窗口,沿所述第三刻蚀窗口刻蚀所述N-型GaN材料层至所述未掺杂GaN层15表面,形成第一通孔和第二通孔,去除第三光刻胶层;
5、涂覆第四光刻胶层于所述光子集成器件区域1和二所述外围电路区域2,并光刻去除用于形成所述第一GaN基场效应晶体管的第一源极区域、第一漏极区域、用于形成所述第二GaN基场效应晶体管的第二源极区域、第二漏极区域、电阻区域、第一N-型欧姆接触电极区域和第二N-型欧姆接触电极区域上方的所述第四光刻胶层;
6、电子束蒸发N-型欧姆接触金属,并除去所述第四光刻胶层,形成第一源极212、第一漏极213、第二源极222、第二漏极223、电阻23、第一N-型欧姆接触电极112和第二N-型欧姆接触电极122;
7、采用等离子体增强化学气相沉积(PECVD)工艺或者原子层沉积工艺(ALD)生长高质量的第一栅极介质层31于所述第一通孔内壁、以及生长高质量的第二栅极介质层于所述第二通孔内壁;
8、涂覆第五光刻胶层于所述光子集成器件区域1和二所述外围电路区域2,并光刻去除用于形成所述第一GaN基场效应晶体管的第一栅极区域、所述第二GaN基场效应晶体管的第二栅极区域、第一P型欧姆接触电极区域和第二P-型欧姆接触电极区域表面的第五光刻胶层;
9、电子束蒸发P-型欧姆接触金属,并除去所述第五光刻胶层,形成第一栅极211、第二栅极221、第一P-型欧姆接触电极111和第二P-型欧姆接触电极121;
10、去除所述第一GaN基多量子阱光电PN结器件11、所述第二GaN基多量子阱光电PN结器件12以及光波导13下方的部分衬底10、AlGaN缓冲层14和未掺杂GaN层15,形成空腔16。
本具体实施方式提供的单片光电集成电路及其形成方法,一方面,将第一GaN基多量子阱光电PN结器件与第一GaN基场效应晶体管集成在同一片衬底表面,利用GaN材料具有高电子迁移率、高热导率、高耐温、抗腐蚀以及抗辐射等优良特性,使得制备的单片光电集成电路中的第一GaN基多量子阱光电PN结器件与第一GaN基场效应晶体管具有高性能;另一方面,本发明提供的第一GaN基场效应晶体管无需使用复杂的离子注入技术进行制备加工过程中可以无需引入外延材料的生长,同时能够与第一GaN基多量子阱光电PN结器件的制备工艺完全兼容,从而有效降低了单片光电集成电路的加工难度。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种单片光电集成电路,其特征在于,包括:
衬底,包括光子集成器件区域和外围电路区域;
第一GaN基多量子阱光电PN结器件,位于所述衬底表面的所述光子集成器件区域,用作单片光电集成电路中的发光二极管,包括第一P-型欧姆接触电极和第一N-型欧姆接触电极;
第一GaN基场效应晶体管,位于所述衬底表面的外围电路区域,所述第一GaN基场效应晶体管包括位于所述衬底表面且具有第一凹槽的第一栅极介质层、填充于所述第一凹槽中的第一栅极、以及位于所述第一栅极相对两侧的第一源极和第一漏极;
所述第一源极电连接所述第一P-型欧姆接触电极,所述第一漏极用于与第一电位电连接,所述第一N-型欧姆接触电极用于与低于所述第一电位的第二电位电连接,所述第一栅极电连接控制端口,以控制所述发光二极管的亮灭。
2.根据权利要求1所述的单片光电集成电路,其特征在于,还包括:
第二GaN基多量子阱光电PN结器件,位于所述衬底表面的所述光子集成器件区域,用作所述单片光电集成电路中的光电检测器,包括第二P-型欧姆接触电极和第二N-型欧姆接触电极,且所述第二GaN基多量子阱光电PN结器件与所述第一GaN基多量子阱光电PN结器件通过光波导连接;
电阻,位于所述衬底表面的外围电路区域;
第二GaN基场效应晶体管,位于所述衬底表面的外围电路区域,所述第二GaN基场效应晶体管包括位于所述衬底表面且具有第二凹槽的第二栅极介质层、填充于所述第二凹槽中的第二栅极、以及位于所述第二栅极相对两侧的第二源极和第二漏极;
所述电阻的一端电连接所述第二N-型欧姆接触电极、另一端用于与第三电位电连接,所述第二P-型欧姆接触电极用于与低于所述第三电位的第四电位电连接,所述第二N-型欧姆接触电极与所述电阻之间的电位电连接到所述第二栅极,以控制所述第二GaN基场效应晶体管的导通与否。
3.根据权利要求2所述的单片光电集成电路,其特征在于,所述衬底表面还包括AlGaN缓冲层、以及位于所述AlGaN缓冲层表面的未掺杂GaN层;所述单片光电集成电路还包括一自所述衬底贯穿所述AlGaN缓冲层和所述未掺杂GaN层的空腔,所述光波导为悬于所述空腔上方的GaN固支梁结构,所述第一GaN基多量子阱光电PN结器件和所述第二GaN基多量子阱光电PN结器件形成于所述未掺杂GaN层表面、且均悬于所述空腔上方。
4.根据权利要求3所述的单片光电集成电路,其特征在于,所述第一GaN基多量子阱光电PN结器件还包括沿垂直于所述衬底的方向依次叠置的第一N-型GaN外延层、第一InGaN/GaN多量子阱层和第一P-型GaN外延层,所述第二GaN基多量子阱光电PN结器件还包括沿垂直于所述衬底的方向依次叠置的第二N-型GaN外延层、第二InGaN/GaN多量子阱层和第二P-型GaN外延层;
在外围电路区域,还包括设置于所述未掺杂GaN层表面的第三N-型GaN外延层,所述第一源极、所述第一漏极、所述第二源极和所述第二漏极均设置于所述第三N-型GaN外延层表面;
所述第三N-型GaN外延层中具有暴露所述未掺杂GaN层的第一通孔和第二通孔,所述第一栅极介质层覆盖所述第一通孔的内壁以及部分的所述第三N-型GaN外延层表面,所述第二栅极介质层覆盖所述第二通孔的内壁以及部分的所述第三N-型GaN外延层表面。
5.根据权利要求3所述的单片光电集成电路,其特征在于,还包括:
贯穿所述未掺杂GaN层和所述AlGaN缓冲层并暴露所述衬底的隔离槽,所述隔离槽用于隔离所述光子集成器件区域和所述外围电路区域。
6.根据权利要求2所述的单片光电集成电路,其特征在于,在沿平行于所述衬底的方向上,所述第一P-型欧姆接触电极的截面为圆形,所述第一N-型欧姆接触电极的截面呈弧形环绕所述第一P-型欧姆接触电极的外周设置;
在沿平行于所述衬底的方向上,所述第二P-型欧姆接触电极的截面为圆形,所述第二N-型欧姆接触电极的截面呈弧形环绕所述第二P-型欧姆接触电极的外周设置。
7.根据权利要求2所述的单片光电集成电路,其特征在于,所述电阻包括:
两个电阻电极,位于所述衬底表面;
电阻臂,位于所述衬底表面,且所述电阻臂的两端与两个所述电阻电极一一对应电连接。
8.一种如权利要求1-7中任一项所述的单片光电集成电路的形成方法,其特征在于,包括如下步骤:
提供一衬底,并于所述衬底表面定义光子集成器件区域和外围电路区域;
形成第一GaN基多量子阱光电PN结器件于所述衬底表面的所述光子集成器件区域,用作单片光电集成电路中的发光二极管,所述第一GaN基多量子阱光电PN结器件包括第一P-型欧姆接触电极和第一N-型欧姆接触电极;
形成第一GaN基场效应晶体管于所述衬底表面的外围电路区域,所述第一GaN基场效应晶体管包括位于所述衬底表面且具有第一凹槽的第一栅极介质层、填充于所述第一凹槽中的第一栅极、以及位于所述第一栅极相对两侧的第一源极和第一漏极;
电连接所述第一源极与所述第一P-型欧姆接触电极、所述第一漏极与第一电位、所述第一N-型欧姆接触电极与低于所述第一电位的第二电位、所述第一栅极与控制端口,以控制所述发光二极管的亮灭。
9.根据权利要求8所述的单片光电集成电路的形成方法,其特征在于,还包括如下步骤:
形成第二GaN基多量子阱光电PN结器件于所述衬底表面的所述光子集成器件区域,用作所述单片光电集成电路中的光电检测器,所述第二GaN基多量子阱光电PN结器件包括第二P-型欧姆接触电极和第二N-型欧姆接触电极;
通过光波导连接所述第一GaN基多量子阱光电PN结器件与所述第二GaN基多量子阱光电PN结器件;
形成第二GaN基场效应晶体管于所述衬底表面的外围电路区域,所述第二GaN基场效应晶体管包括位于所述衬底表面且具有第二凹槽的第二栅极介质层、填充于所述第二凹槽中的第二栅极、以及位于所述第二栅极相对两侧的第二源极和第二漏极;
形成电阻于所述衬底表面的外围电路区域;
电连接所述电阻的一端电连接所述第二N-型欧姆接触电极、另一端与第三电位、以及所述第二P-型欧姆接触电极与低于所述第三电位的第四电位,同时所述第二N-型欧姆接触电极与所述电阻之间的电位电连接到所述第二栅极,以控制所述第二GaN基场效应晶体管的导通与否。
10.根据权利要求9所述的单片光电集成电路的形成方法,其特征在于,还包括如下步骤:
形成AlGaN缓冲层、以及位于所述AlGaN缓冲层表面的未掺杂GaN层于所述衬底表面;
沉积N-型GaN材料于所述为掺杂的GaN层表面,形成N-型GaN材料层;
刻蚀所述N-型GaN材料层,同时形成所述第一GaN基多量子阱光电PN结器件的第一N-型GaN外延层、所述第二GaN基多量子阱光电PN结器件的第二N-型GaN外延层和位于所述外围电路区域的第三N-型GaN外延层;
刻蚀所述第三N-型GaN外延层,形成暴露所述未掺杂GaN层的第一通孔和第二通孔;
形成覆盖所述第一通孔的内壁以及部分的所述第三N-型GaN外延层表面的第一栅极介质层、同时形成覆盖所述第二通孔的内壁以及部分的所述第三N-型GaN外延层表面的第二栅极介质层。
CN202010115714.2A 2020-02-25 2020-02-25 单片光电集成电路及其形成方法 Active CN111430401B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202010115714.2A CN111430401B (zh) 2020-02-25 2020-02-25 单片光电集成电路及其形成方法
PCT/CN2020/128348 WO2021169411A1 (zh) 2020-02-25 2020-11-12 单片光电集成电路及其形成方法
US17/853,757 US20220334308A1 (en) 2020-02-25 2022-06-29 Monolithic optoelectronic integrated circuit and method for forming same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010115714.2A CN111430401B (zh) 2020-02-25 2020-02-25 单片光电集成电路及其形成方法

Publications (2)

Publication Number Publication Date
CN111430401A true CN111430401A (zh) 2020-07-17
CN111430401B CN111430401B (zh) 2022-09-09

Family

ID=71547153

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010115714.2A Active CN111430401B (zh) 2020-02-25 2020-02-25 单片光电集成电路及其形成方法

Country Status (3)

Country Link
US (1) US20220334308A1 (zh)
CN (1) CN111430401B (zh)
WO (1) WO2021169411A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111732068A (zh) * 2020-08-26 2020-10-02 上海南麟集成电路有限公司 一种双悬臂梁波导耦合光电式mems触觉传感器及其制作方法
WO2021169411A1 (zh) * 2020-02-25 2021-09-02 南京邮电大学 单片光电集成电路及其形成方法
CN114789989A (zh) * 2022-06-21 2022-07-26 上海南麟电子股份有限公司 基于肖特基mosfet的单片集成式光电耦合器及制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101308895A (zh) * 2008-07-14 2008-11-19 华南师范大学 一种金属半导体场效应发光晶体管及其制作方法
CN105789315A (zh) * 2016-05-03 2016-07-20 中山大学 一种高质量MIS结构的AlNGaN基场效应晶体管及其制备方法
CN107706232A (zh) * 2017-11-13 2018-02-16 江苏华功半导体有限公司 一种原位MIS栅结构常关型GaN基晶体管及制备方法
CN107785435A (zh) * 2017-10-24 2018-03-09 江苏华功半导体有限公司 一种低导通电阻MIS凹槽栅GaN基晶体管及制备方法

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69502770T2 (de) * 1994-05-12 1999-02-04 Hitachi Europe Ltd., Maidenhead, Berkshire Integrierte optoelektronische Schaltung
DE69622277T2 (de) * 1995-09-18 2003-03-27 Hitachi, Ltd. Halbleitermaterial, verfahren zur herstellung des halbleitermaterials und eine halbleitervorrichtung
US6936839B2 (en) * 1996-10-16 2005-08-30 The University Of Connecticut Monolithic integrated circuit including a waveguide and quantum well inversion channel devices and a method of fabricating same
US5936266A (en) * 1997-07-22 1999-08-10 The Board Of Trustees Of The University Of Illinois Semiconductor devices and methods with tunnel contact hole sources
JPH11274467A (ja) * 1998-03-26 1999-10-08 Murata Mfg Co Ltd 光電子集積回路素子
JP2000022128A (ja) * 1998-07-06 2000-01-21 Murata Mfg Co Ltd 半導体発光素子、および光電子集積回路素子
US6690845B1 (en) * 1998-10-09 2004-02-10 Fujitsu Limited Three-dimensional opto-electronic modules with electrical and optical interconnections and methods for making
US7106917B2 (en) * 1998-11-13 2006-09-12 Xponent Photonics Inc Resonant optical modulators
JP2001168028A (ja) * 1999-12-03 2001-06-22 Sony Corp 窒化物系iii−v族化合物の結晶製造方法、窒化物系iii−v族化合物結晶基板、窒化物系iii−v族化合物結晶膜およびデバイスの製造方法
US6879615B2 (en) * 2000-01-19 2005-04-12 Joseph Reid Henrichs FCSEL that frequency doubles its output emissions using sum-frequency generation
JP2002075880A (ja) * 2000-09-01 2002-03-15 Sanyo Electric Co Ltd 窒化物系半導体層の形成方法および窒化物系半導体素子の製造方法
WO2002027805A2 (en) * 2000-09-29 2002-04-04 Board Of Regents, The University Of Texas System A theory of the charge multiplication process in avalanche photodiodes
US7010183B2 (en) * 2002-03-20 2006-03-07 The Regents Of The University Of Colorado Surface plasmon devices
US6819845B2 (en) * 2001-08-02 2004-11-16 Ultradots, Inc. Optical devices with engineered nonlinear nanocomposite materials
US7005669B1 (en) * 2001-08-02 2006-02-28 Ultradots, Inc. Quantum dots, nanocomposite materials with quantum dots, devices with quantum dots, and related fabrication methods
CA2473396C (en) * 2002-01-18 2009-06-23 Wisconsin Alumni Research Foundation High coherent power, two-dimensional surface-emitting semiconductor diode array laser
US20040105476A1 (en) * 2002-08-19 2004-06-03 Wasserbauer John G. Planar waveguide surface emitting laser and photonic integrated circuit
WO2004051759A1 (ja) * 2002-12-03 2004-06-17 Nec Corporation 量子井戸構造を有する半導体光素子およびその製造方法
US20050218414A1 (en) * 2004-03-30 2005-10-06 Tetsuzo Ueda 4H-polytype gallium nitride-based semiconductor device on a 4H-polytype substrate
US7376169B2 (en) * 2005-03-07 2008-05-20 Joseph Reid Henrichs Optical phase conjugation laser diode
US7751655B2 (en) * 2007-07-27 2010-07-06 Hewlett-Packard Development Company, L.P. Micro-ring optical detector/modulator
US8455856B1 (en) * 2010-04-09 2013-06-04 Stc.Unm Integration of LED driver circuit with LED
CN103107179B (zh) * 2012-02-21 2017-04-26 晶元光电股份有限公司 一种发光组件及具有此发光组件的发光装置
TWI484626B (zh) * 2012-02-21 2015-05-11 Formosa Epitaxy Inc 半導體發光元件及具有此半導體發光元件的發光裝置
CN108231818A (zh) * 2016-12-09 2018-06-29 清华大学 光子增强的场效应晶体管和集成电路
CN108615754B (zh) * 2016-12-09 2020-05-12 清华大学 光调制的场效应晶体管和集成电路
CN108615755A (zh) * 2016-12-09 2018-10-02 清华大学 光子增强的晶体管和功率电子器件
CN111430401B (zh) * 2020-02-25 2022-09-09 南京邮电大学 单片光电集成电路及其形成方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101308895A (zh) * 2008-07-14 2008-11-19 华南师范大学 一种金属半导体场效应发光晶体管及其制作方法
CN105789315A (zh) * 2016-05-03 2016-07-20 中山大学 一种高质量MIS结构的AlNGaN基场效应晶体管及其制备方法
CN107785435A (zh) * 2017-10-24 2018-03-09 江苏华功半导体有限公司 一种低导通电阻MIS凹槽栅GaN基晶体管及制备方法
CN107706232A (zh) * 2017-11-13 2018-02-16 江苏华功半导体有限公司 一种原位MIS栅结构常关型GaN基晶体管及制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021169411A1 (zh) * 2020-02-25 2021-09-02 南京邮电大学 单片光电集成电路及其形成方法
CN111732068A (zh) * 2020-08-26 2020-10-02 上海南麟集成电路有限公司 一种双悬臂梁波导耦合光电式mems触觉传感器及其制作方法
CN111732068B (zh) * 2020-08-26 2020-11-20 上海南麟集成电路有限公司 一种双悬臂梁波导耦合光电式mems触觉传感器及其制作方法
CN114789989A (zh) * 2022-06-21 2022-07-26 上海南麟电子股份有限公司 基于肖特基mosfet的单片集成式光电耦合器及制备方法

Also Published As

Publication number Publication date
WO2021169411A1 (zh) 2021-09-02
US20220334308A1 (en) 2022-10-20
CN111430401B (zh) 2022-09-09

Similar Documents

Publication Publication Date Title
CN111430401B (zh) 单片光电集成电路及其形成方法
TWI402986B (zh) 嵌壁式半導體裝置
KR100707324B1 (ko) 반도체 장치 및 이의 제조 방법
CN111900203B (zh) 一种GaN基高空穴迁移率晶体管及其制备方法
TW200525783A (en) Light-emitting semiconductor device and method of fabrication
US10608102B2 (en) Semiconductor device having a drain electrode contacting an epi material inside a through-hole and method of manufacturing the same
WO2021017954A1 (zh) 微电子器件及微电子器件制作方法
CN112701200B (zh) 一种hemt与嵌入式电极结构led的单片集成器件及其方法
CN112242443A (zh) 高电子迁移率晶体管及其形成方法
US20180350870A1 (en) Optoelectronic device comprising a light-emitting component and a transistor
CN110942991B (zh) 衬底转移外延生长的hemt与led的单片集成方法及器件
CN110600990B (zh) 一种基于柔性衬底的GaN基激光器与HEMT的器件转移制备方法
CN113594233B (zh) 一种集成肖特基二极管的高压增强型hemt及其制备方法
CN112820648B (zh) 一种氮化镓金属氧化物半导体晶体管及其制备方法
CN111276533A (zh) 一种选择区域凹槽栅GaN电流孔径垂直结构晶体管结构及实现方法
CN110600470B (zh) 一种GaN基激光器和AlGaN/GaN HEMT集成器件制备方法
CN114068757B (zh) 一种基于氮化镓微型发光二极管和光电三极管的单片集成器件及其制备方法
CN116344595A (zh) 氮化镓半导体器件及氮化镓半导体器件的制备方法
CN214848665U (zh) 一种hemt与嵌入式电极结构led的单片集成器件
CN204668309U (zh) 基于GaN的光电集成器件及其外延结构
CN208570603U (zh) 一种单片集成半导体器件
WO2014204209A1 (ko) 수직형 채널을 구비하는 질화물계 트랜지스터 및 이의 제조 방법
CN112838006B (zh) 一种氮化镓pin二极管及其制备方法
CN213660419U (zh) 氮化镓pin二极管
CN213660418U (zh) 高阻断电压的氮化镓pn二极管

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant