CN111415914B - 一种固晶材料及其封装结构 - Google Patents

一种固晶材料及其封装结构 Download PDF

Info

Publication number
CN111415914B
CN111415914B CN202010104081.5A CN202010104081A CN111415914B CN 111415914 B CN111415914 B CN 111415914B CN 202010104081 A CN202010104081 A CN 202010104081A CN 111415914 B CN111415914 B CN 111415914B
Authority
CN
China
Prior art keywords
nano metal
graphene
layer
packaging
heat dissipation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010104081.5A
Other languages
English (en)
Other versions
CN111415914A (zh
Inventor
崔成强
杨斌
叶怀宇
张国旗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest University of Science and Technology
Original Assignee
Shenzhen Third Generation Semiconductor Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Third Generation Semiconductor Research Institute filed Critical Shenzhen Third Generation Semiconductor Research Institute
Priority to CN202010104081.5A priority Critical patent/CN111415914B/zh
Publication of CN111415914A publication Critical patent/CN111415914A/zh
Application granted granted Critical
Publication of CN111415914B publication Critical patent/CN111415914B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3733Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon having a heterogeneous or anisotropic structure, e.g. powder or fibres in a matrix, wire mesh, porous structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3736Metallic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Die Bonding (AREA)

Abstract

本发明公开一种固晶材料及封装结构,所述固晶材料包括纳米金属膏薄膜、散热层,所述纳米金属膏薄膜均匀覆盖于散热层的上下两表面的至少一表面;所述散热层为多层石墨烯结构,所述纳米金属膏薄膜包括纳米金属颗粒、抗氧化剂、助焊剂、稳定剂、活性剂;所述纳米金属颗粒含量为50.0wt.%‑95.0wt.%、抗氧化剂含量为5.0wt.%–40.0wt.%wt.%,助焊剂、稳定剂和活性剂总量≤5.0wt.%。本发明具有高散热、厚度均匀的特点,在不影响半导体封装互连模块电气性能前提下,实现低温条件下固晶、互连,且可满足小间距、大功率、高温高压等条件下的使用,可广泛应用于电力电子、IGBT封装、光电子封装、MEMS封装、微电子、大功率LED封装等领域。

Description

一种固晶材料及其封装结构
技术领域
本发明属于第三代半导体封装技术领域,具体涉及一种固晶材料及其封装结构。
背景技术
电子互连材料及互连基板是半导体器件制造和微电子封装、电力电子封装微器件各模块连接组件间的枢纽,作为现代电子工业的代表性固晶、互连基板,传统互连基板多使用的是在板材表面电镀铜而成。然而近年来,微电子系统向高功率、高密度集成、小型化以及多功能化等方向发展,而其制作成本也要求不断降低,这对电子封装互连用基板在性能和热管理等方面提出了更高的要求,如实现耐高温互连(大于200℃)或者多级封装需要前级互连兼具低温连接以及耐高温特性等,高的互连温度对微电子产品的可靠性具有极大的负面影响,由于固体铜的熔点在1000℃以上,大部分元器件材料在此条件下都会造成热失效,如何在不影响其他材料性能条件下实现固晶和互连互通,是推进相关研究的主要思路和方向。
发明内容
针对当前固晶材料存在的不足,本发明提出一种高散热固晶材料,包括纳米金属膏薄膜、散热层,所述纳米金属膏薄膜均匀覆盖于散热层的上下两表面的至少一表面;所述散热层为石墨烯结构,所述纳米金属膏薄膜包括M@Cu核壳纳米金属颗粒、抗氧化剂、助焊剂、稳定剂、活性剂;所述M@Cu核壳纳米金属颗粒含量为50.0wt-95.0wt.%、抗氧化剂含量为5.0wt–40wt.%,助焊剂、稳定剂和活性剂总量≤5.0wt.%。
优选的,所述石墨烯结构选自单层石墨烯、多层石墨烯或单层石墨烯和多层石墨烯混合形成的石墨烯膏。
优选的,所述石墨烯结构由多层石墨烯组成。
优选的,所述多层石墨烯由单层石墨烯水平叠置组成。
优选的,所述多层石墨烯由多个单层的多孔三维石墨烯片组成。
优选的,所述多层石墨烯厚度为20μm-50μm。
优选的,所述三维石墨烯片厚度为0.1μm-10μm。
优选的,所述纳米金属膏包括M@Cu核壳纳米金属膏;所述M@Cu核壳纳米金属膏为以金属铜为核层、金属M为壳层所结合而成的核壳成分;所述金属M包括Au、Ag、Ni。
优选的,所述纳米金属膏薄膜厚度为100μm-500μm。
优选的,所述抗氧化剂为聚乙烯吡咯烷酮、油酸、油胺、乙醇胺、三乙醇胺、聚丙烯酸、聚丙烯酰胺、苯并咪唑的一种或几种。
优选的,所述助焊剂为乳酸及其衍生物、柠檬酸及其衍生物、非活性化松香及其衍生物或活性化松香及其衍生物的一种或几种。
优选的,所述稳定剂为咪唑类化合物及其衍生物、聚乙烯吡咯烷酮(PVP)、有机烯类聚合物、有机烯与有机醇、有机酮、有机酸、铵类合成的聚合物、十六烷基溴化铵CTAB、十二烷基苯磺酸钠SDBS、十二烷基硫酸钠SDS、聚乙二醇及含羟基、羧基类有机聚合物中的一种或几种。
基于同样的发明构思,本发明还提供一种由包含上述固晶材料的封装结构,由下至上依次包括封装载板、固晶材料、第三代半导体芯片;所述封装结构的互连形式采用球栅阵列或压焊。
封装载板靠近两端位置设有引线板,通过所述引线板将引线连接至芯片实现电通路或热通路。
石墨烯结构导热性高于普通金属材料、柔性板材等柔性板材的散热薄板,石棉网状材料等。
本发明结合多层石墨烯结构和纳米金属作为散热材料,用于固定芯片,增大了热传导面积、提高了热传导面积的均匀性,便于控制固晶层的平整度,多孔结构提高了散热效率,在不影响半导体封装互连模块电气性能前提下,实现低温条件下互连,且可满足小间距、大功率、高温高压等条件下的使用,可广泛应用于电力电子应用、IGBT封装、光电子封装、MEMS封装、微电子、大功率LED封装等领域使用。
附图说明
图1为纳米金属膏体压制薄膜
图2为散热层
图3为双面压合过程示意图
图4为多层二维石墨烯固晶互连材料示意图
图5为固晶互连基板的应用举例
纳米金属膏体薄膜1,散热层2
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明了,下面通过附图及实施例,对本发明进行进一步详细说明。但是应该理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限制本发明的范围。
实施例1本实施例提供一种石墨烯固晶材料
如图4所示,为石墨烯固晶材料示意图,包括厚度为200μm的Ag@Cu核壳结构纳米金属膏薄膜和厚度为40μm的散热层,其中Ag@Cu核壳结构Ag颗粒尺寸为100nm,Cu颗粒尺寸为50nm,核壳结构纳米金属颗粒占金属膏薄膜结构的55.5wt.%;纳米金属膏薄膜均匀覆盖于散热层的上下两表面;散热层由多层石墨烯组成;纳米金属膏薄膜还包括20.0wt.%的油酸氧化剂,和3.0wt.%的柠檬酸助焊剂、聚乙烯吡咯烷酮稳定剂、活性剂混合物。
在优选的实施例中,Ag@Cu核壳结构Ag颗粒尺寸为50nm,Cu颗粒尺寸为10nm,核壳结构纳米金属颗粒占金属膏薄膜结构的65wt.%,抗氧化剂10.0wt.%,1.0wt.%的柠檬酸助焊剂、聚乙烯吡咯烷酮稳定剂、活性剂混合物。
在更优选的实施例中,纳米金属膏薄膜厚度为350μm,散热层厚度为25μm。
实施例2本实施例提供一种石墨烯膏固晶材料
墨烯膏固晶材料包括厚度为400μm的Ag@Cu核壳结构纳米金属膏薄膜和厚度为30μm的散热层,其中Ag@Cu核壳结构Ag颗粒尺寸为400nm,Cu颗粒尺寸为100nm,核壳结构纳米金属颗粒占金属膏薄膜结构的85.5wt.%;纳米金属膏薄膜均匀覆盖于散热层的上下两表面;散热层由混合石墨烯膏组成,纳米金属膏薄膜还包括10.0wt.%的乙醇胺氧化剂,和3.0wt.%的乳酸助焊剂、聚乙烯吡咯烷酮稳定剂、活性剂混合物。
在优选的实施例中,Ag@Cu核壳结构Ag颗粒尺寸为50nm,Cu颗粒尺寸为10nm,核壳结构纳米金属颗粒占金属膏薄膜结构的65wt.%,抗氧化剂10.0wt.%,1.0wt.%的柠檬酸助焊剂、十二烷基苯磺酸钠稳定剂、活性剂混合物。
在更优选的实施例中,纳米金属膏薄膜厚度为450μm,散热层厚度为40μm。
如图5所示,为本实施例固晶的封装结构,由下至上依次包括封装载板、固晶材料、第三代半导体芯片,顶部DPC基板;其中第三代半导体芯片为IGBT器件和SiC器件,器件两侧各有一焊球与载板相连,焊球侧面各有一垫片,用于支撑顶部DPC基板。
本实施例固晶材料主要由掺杂石墨烯高散热材料的中间板层、以及上下表面特殊配方的纳米铜膏组成,中间板层可利用石墨烯的材料特性起到横向和纵向快速导热、散热作用,而纳米铜膏起到低温下烧结快速固晶的作用。同时,纳米铜具有“低温条件烧结、极端环境服役”的特性,在第三代半导体器件高温、高压、高散热等极端环境要求下,具有非常高的应用前景。
在优选的实施例中,石墨烯结构由单层石墨烯水平叠置组成。
在更优选的实施例中,石墨烯结构由多个单层的多孔三维石墨烯片组成,三维石墨烯片厚度为0.1μm-10μm。三维多孔石墨烯片具有更高的散热性能。
除非另有定义,本文所使用的所有的技术术语和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同,本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换或改进等,均应包含在本发明的保护范围之内。

Claims (8)

1. 一种固晶材料,其特征在于:所述固晶材料包括纳米金属膏薄膜和散热层,所述纳米金属膏薄膜均匀覆盖于散热层的上下两表面的至少一表面;所述散热层为石墨烯结构,所述纳米金属膏薄膜包括M@Cu核壳纳米金属颗粒、抗氧化剂、助焊剂、稳定剂和活性剂;所述M@Cu核壳纳米金属颗粒含量为50.0wt -95.0wt.%、抗氧化剂含量为5.0wt–40wt.%,助焊剂、稳定剂和活性剂总量≤5.0wt.%;
所述M@Cu核壳纳米金属颗粒为以金属铜为核层、金属M为壳层所结合而成的核壳成分;所述金属M包括Au、Ag和Ni。
2.根据权利要求1所述的固晶材料,其特征在于:所述石墨烯结构选自单层石墨烯、多层石墨烯或单层石墨烯和多层石墨烯混合形成的石墨烯膏。
3.根权利要求1所述的固晶材料,其特征在于:所述石墨烯结构厚度为20μm-50μm。
4.根据权利要求1所述的固晶材料,其特征在于:所述纳米金属膏薄膜厚度为100μm-500μm。
5.根据权利要求1所述的固晶材料,其特征在于:所述抗氧化剂为聚乙烯吡咯烷酮、油酸、油胺、乙醇胺、三乙醇胺、聚丙烯酸、聚丙烯酰胺、苯并咪唑的一种或几种。
6.根据权利要求1所述的固晶材料,其特征在于:所述助焊剂为乳酸及其衍生物、柠檬酸及其衍生物、非活性化松香及其衍生物或活性化松香及其衍生物的一种或几种。
7.根据权利要求1所述的固晶材料,其特征在于:所述稳定剂为咪唑类化合物及其衍生物、聚乙烯吡咯烷酮、有机烯类聚合物、有机烯与有机醇、有机酮、有机酸、铵类合成的聚合物、十六烷基溴化铵、十二烷基苯磺酸钠、十二烷基硫酸钠、聚乙二醇及含羟基、羧基类有机聚合物中的一种或几种。
8.如权利要求1-7任一所述的固晶材料的封装结构,其特征在于:所述封装结构依次包括封装载板、固晶材料和第三代半导体芯片;所述封装结构的互连形式采用球栅阵列或压焊。
CN202010104081.5A 2020-02-20 2020-02-20 一种固晶材料及其封装结构 Active CN111415914B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010104081.5A CN111415914B (zh) 2020-02-20 2020-02-20 一种固晶材料及其封装结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010104081.5A CN111415914B (zh) 2020-02-20 2020-02-20 一种固晶材料及其封装结构

Publications (2)

Publication Number Publication Date
CN111415914A CN111415914A (zh) 2020-07-14
CN111415914B true CN111415914B (zh) 2022-01-07

Family

ID=71490821

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010104081.5A Active CN111415914B (zh) 2020-02-20 2020-02-20 一种固晶材料及其封装结构

Country Status (1)

Country Link
CN (1) CN111415914B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112864125A (zh) * 2021-01-13 2021-05-28 深圳第三代半导体研究院 高散热芯片封装互连材料

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103325752A (zh) * 2012-03-21 2013-09-25 英飞凌科技股份有限公司 电路封装、电子电路封装和用于包封电子电路的方法
US20140287239A1 (en) * 2013-03-20 2014-09-25 Stmicroelectronics S.R.L. Graphene based filler material of superior thermal conductivity for chip attachment in microstructure devices
CN104910828A (zh) * 2015-06-01 2015-09-16 深圳新宙邦科技股份有限公司 一种led用固晶胶、固晶胶制备方法以及led灯
CN204680660U (zh) * 2015-06-29 2015-09-30 林尊琪 一种电子元器件散热安装结构
CN205900541U (zh) * 2016-08-08 2017-01-18 深圳市泓亚智慧科技股份有限公司 一种双色多芯大功率led光源
CN107785477A (zh) * 2017-09-18 2018-03-09 苏州汉瑞森光电科技股份有限公司 一种高导热led封装结构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103325752A (zh) * 2012-03-21 2013-09-25 英飞凌科技股份有限公司 电路封装、电子电路封装和用于包封电子电路的方法
US20140287239A1 (en) * 2013-03-20 2014-09-25 Stmicroelectronics S.R.L. Graphene based filler material of superior thermal conductivity for chip attachment in microstructure devices
CN104910828A (zh) * 2015-06-01 2015-09-16 深圳新宙邦科技股份有限公司 一种led用固晶胶、固晶胶制备方法以及led灯
CN204680660U (zh) * 2015-06-29 2015-09-30 林尊琪 一种电子元器件散热安装结构
CN205900541U (zh) * 2016-08-08 2017-01-18 深圳市泓亚智慧科技股份有限公司 一种双色多芯大功率led光源
CN107785477A (zh) * 2017-09-18 2018-03-09 苏州汉瑞森光电科技股份有限公司 一种高导热led封装结构

Also Published As

Publication number Publication date
CN111415914A (zh) 2020-07-14

Similar Documents

Publication Publication Date Title
Suganuma et al. Low-temperature low-pressure die attach with hybrid silver particle paste
US9520377B2 (en) Semiconductor device package including bonding layer having Ag3Sn
JP5305148B2 (ja) 電子部品、それを用いた電子部品装置およびその製造方法
CN108847395B (zh) 一种用于低温快速连接的预烧结纳米网络银膜制备及封装方法
US20100277872A1 (en) Insulating sheet and method for producing it, and power module comprising the insulating sheet
JP2014078558A (ja) 半導体装置、セラミックス回路基板及び半導体装置の製造方法
KR20150092150A (ko) 파워 모듈용 기판, 히트 싱크가 부착된 파워 모듈용 기판, 파워 모듈, 파워 모듈용 기판의 제조 방법, 동판 접합용 페이스트, 및 접합체의 제조 방법
WO2020215739A1 (zh) 一种纳米金属膜模块制备方法及其基板制备方法
JP2012178513A (ja) パワーモジュールユニット及びパワーモジュールユニットの製造方法
CN113795091A (zh) 一种低温烧结制备陶瓷电路板方法
CN111415914B (zh) 一种固晶材料及其封装结构
Zhang et al. Effects of sintering pressure on the densification and mechanical properties of nanosilver double-side sintered power module
Zhao et al. Evaluation of Ag sintering die attach for high temperature power module applications
CN110814569A (zh) 一种用于功率器件封装的多尺度Cu@Ag微纳米复合钎料及制备方法
JP2012038790A (ja) 電子部材ならびに電子部品とその製造方法
JP6170045B2 (ja) 接合基板及びその製造方法ならびに接合基板を用いた半導体モジュール及びその製造方法
US9941235B2 (en) Power module substrate with Ag underlayer and power module
Chen et al. Advanced SiC power module packaging technology direct on DBA substrate for high temperature applications: Ag sinter joining and encapsulation resin adhesion
CN212587507U (zh) 采用多芯片堆叠结构的功率分立器件
JP2021529258A (ja) 焼結ダイアタッチ及び類似した用途のためのナノ銅ペースト及びフィルム
Hu et al. Rapid formation of Cu–Cu joints with high shear strength using multiple-flocculated Ag nanoparticle paste
JP2015149349A (ja) 下地層付き金属部材、絶縁回路基板、半導体装置、ヒートシンク付き絶縁回路基板、及び、下地層付き金属部材の製造方法
Chen et al. Low temperature Cu sinter joining on different metallization substrates and its reliability evaluation with a high current density
Suganuma et al. Silver sinter joining and stress migration bonding for WBG die-attach
CN111916344B (zh) 一种基于石墨烯/锡改性的铜纳米颗粒的铜-铜低温键合方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230412

Address after: No. 1088, Xueyuan Avenue, Taoyuan Street, Nanshan District, Shenzhen City, Guangdong Province

Patentee after: SOUTH University OF SCIENCE AND TECHNOLOGY OF CHINA

Address before: Taizhou building, No. 1088, Xueyuan Avenue, Xili University Town, Nanshan District, Shenzhen City, Guangdong Province

Patentee before: SHENZHEN THIRD GENERATION SEMICONDUCTOR Research Institute

TR01 Transfer of patent right