CN111403666B - 一种耐高温的锂电池隔膜的组成及其制备、交联方法 - Google Patents

一种耐高温的锂电池隔膜的组成及其制备、交联方法 Download PDF

Info

Publication number
CN111403666B
CN111403666B CN202010272899.8A CN202010272899A CN111403666B CN 111403666 B CN111403666 B CN 111403666B CN 202010272899 A CN202010272899 A CN 202010272899A CN 111403666 B CN111403666 B CN 111403666B
Authority
CN
China
Prior art keywords
film
mmol
temperature
hours
lithium battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010272899.8A
Other languages
English (en)
Other versions
CN111403666A (zh
Inventor
不公告发明人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jizi Technology Co ltd
Original Assignee
Shanghai Jizi Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jizi Technology Co ltd filed Critical Shanghai Jizi Technology Co ltd
Priority to CN202010272899.8A priority Critical patent/CN111403666B/zh
Publication of CN111403666A publication Critical patent/CN111403666A/zh
Application granted granted Critical
Publication of CN111403666B publication Critical patent/CN111403666B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

本发明针对现有锂电池隔膜耐热等级有限、锂电池设备有隔膜受热损坏导致短路的安全隐患问题,设计和制备了耐热等级更高的交联聚酰亚胺薄膜。本发明制备的锂电池用聚酰亚胺薄膜含有一定比例的“烷氧基”结构的柔性链段,大大提高了薄膜对电解液的浸润性能,同时采用脂肪族直链交联剂交联,在制备微孔的同时,具有微观分相的结构,保证锂离子的传导从而保持电池的效率,薄膜兼具聚酰亚胺材料的耐高温性能。可以提升锂电池设备的安全性。

Description

一种耐高温的锂电池隔膜的组成及其制备、交联方法
技术领域
本发明属于锂电池材料领域,尤其是一种耐高温电池隔膜的组成及制备方法,达到提升锂电池安全稳定性的目的。
背景技术
随着科技和经济的飞速发展,人类也付出了惨重的代价,目前严峻面临着的就是石油的危机和能源的紧缺。为了解决全球的能源问题,各国的科学家们纷纷投入了这场战斗,经过多年的努力,取得了一定的成效。锂离子电池因其具有较高的能量密度、较长的循环寿命、污染小、无记忆效应和可快速充放电等优点,已被广泛应用于移动通信、笔记本电脑、小型摄像机等电器设备上,近几年在电动汽车、航天航空、储能以及军事等领域也显示出了良好的应用前景和经济效益。然而,频频发生的锂电池着火事件的发生引起人们对锂电池安全性的广泛关注。
在锂电池的各个组成部件中,隔膜是其核心关键材料之一,其主要作用是吸收电解液以传导锂离子,同时使电池的正、负极分隔开来,防止两极接触而短路。隔膜的性能决定着电池的界面结构和内阻,防止电阻过大而发热,导致失效,进而影响电池的放电容量、循环性能、倍率性能和安全性能等,性能优异的隔膜对提高电池的综合性能具有重要作用。目前,市场上的锂电池隔膜主要是涂覆了陶瓷的聚烯烃类微孔膜,这类隔膜有着成本上的巨大优势,另外,还有高温闭孔的优点,但是这类隔膜对电解液的浸润性差;耐高温性能较差,PE的熔点低于120℃;PP的熔点低于160℃,电池生热高温状态下极其容易短路,所以提高隔膜的电解液浸润性、耐温性和尺寸稳定性,对提高锂电池的安全性及电化学性能有着重要贡献。
聚酰亚胺具有高耐热性、高强度、优异的绝缘性、高温下高尺寸稳定性,采用聚酰亚胺为主材的微孔膜替代现有的多孔聚乙烯PE和聚丙烯PP电池隔膜也越来越多的被锂电池行业关注,其核心技术为聚酰亚胺薄膜的造孔技术。诸多文献报道的聚酰亚胺静态纺丝技术,生产效率低,需要的周期太长,难以量产;又如:专利CN201410339770.9和专利CN201720442163.4所述的造孔技术步骤也相当繁琐,而且单纯的聚酰亚胺材料表面能较低,对电解液的浸润性能也有一定限制。
本发明针对聚烯烃隔膜的不足之处,制备了具有交联结构的聚酰亚胺薄膜,并且薄膜内具有微相分离结构,经过溶剂相的翻转得到微孔薄膜。这种微孔薄膜中的“烷氧基”结构聚酰亚胺链段与电解液有良好的浸润性能,在浸渍电解液后,氧原子可以与锂离子发生络合,从而确保锂离子可以在薄膜内部传导,保证锂电池优异的电化学性能。同时也保留了聚酰亚胺的耐高温性能和高温下的尺寸稳定性。
发明内容
本发明涉及一种锂电池用耐高温隔膜,特征在于其结构由三部分组成:全芳香族聚酰亚胺链段、含有烷氧基结构的聚酰亚胺链段和脂肪族直链交联链段,此结构固化成膜后可以形成良好的分相结构,这种结构的薄膜与锂离子电池电解液有良好的浸润性能,薄膜成型后,经溶剂翻转得到微孔结构,可以作为耐高温的锂离子电池隔膜使用。
本发明所述的全芳香族聚酰亚胺链段结构式为:
Figure 77402DEST_PATH_IMAGE001
其中Ar1可以是:
Figure 284392DEST_PATH_IMAGE002
Figure 866683DEST_PATH_IMAGE003
,
Figure 713286DEST_PATH_IMAGE004
,
Figure 406435DEST_PATH_IMAGE005
Figure 202353DEST_PATH_IMAGE006
其中R1可以是:
Figure 955545DEST_PATH_IMAGE007
Figure 368072DEST_PATH_IMAGE008
Figure 818907DEST_PATH_IMAGE009
Figure 469331DEST_PATH_IMAGE010
Figure 393425DEST_PATH_IMAGE011
Figure 214619DEST_PATH_IMAGE012
,
Figure 249571DEST_PATH_IMAGE013
其中R1为:
Figure 285660DEST_PATH_IMAGE014
Figure 646235DEST_PATH_IMAGE015
Figure 249998DEST_PATH_IMAGE016
其中x数值为0.50-1.0之间小数,L数值为5-50之间整数。
本发明所述的半脂肪族聚酰亚胺链段的结构式为:
Figure 291903DEST_PATH_IMAGE017
其中Ar2可以是:
Figure 651340DEST_PATH_IMAGE018
Figure 432083DEST_PATH_IMAGE019
,
Figure 40919DEST_PATH_IMAGE020
,
Figure 886516DEST_PATH_IMAGE021
Figure 366039DEST_PATH_IMAGE022
其中R2可以是:
Figure 819148DEST_PATH_IMAGE023
Figure 915280DEST_PATH_IMAGE024
Figure 95725DEST_PATH_IMAGE025
Figure 633017DEST_PATH_IMAGE026
Figure 489983DEST_PATH_IMAGE027
;n,m,k,l,f和h的值分别为1-16的整数。
其中R2与R1可以相同也可以不相同,可以为:
Figure 807832DEST_PATH_IMAGE014
Figure 57548DEST_PATH_IMAGE028
Figure 511663DEST_PATH_IMAGE029
其中y数值为0-0.98之间小数,Z数值为5-50之间整数。
本发明中所述的聚酰亚胺链段可以为共聚在一条分子链上的形式存在,也可以是共混的形式存在。
本发明所述的交联链段的结构式为:
Figure 241328DEST_PATH_IMAGE030
其中K为0~12的整数,R3为氢原子或甲基。
其中含有Ar1和Ar2结构的二酐可以相同,也可以不同,分别为:均苯二酐(PMDA)、联苯二酐(PMDA)、3,3’,4,4’-二苯醚四甲酸二酐(ODPA)、3,3’,4,4’-二苯酮四酸二酐(BTDA)和 4,4'-(六氟异丙烯)二酞酸酐(6FDA)。
含有R1结构的二胺有:4,4’-二氨基二苯醚(ODA)、4,4’-双(4-氨基苯氧基)联苯(BAPB)、2,2’-二甲基-4,4’-联苯胺(THFB)、1,3-双(4-氨基苯氧基)苯、2,2-双[4-(4-氨基苯氧基)苯基]丙烷、2,2-双[4-(4-氨基苯氧基)苯基]六氟丙烷、2,2-双(4-氨基苯基)丙烷。
含有R2结构的二胺有:
Figure 46473DEST_PATH_IMAGE031
Figure 568722DEST_PATH_IMAGE032
Figure 329873DEST_PATH_IMAGE033
Figure 810533DEST_PATH_IMAGE034
Figure 571816DEST_PATH_IMAGE035
;n,m,k,l,f和h的值分别为1-16的整数。
交联剂主要是含有烷氧基链段的丙烯酸双环戊二烯酯或甲基丙烯酸双环戊二烯酯。具有如下结构:
Figure 163334DEST_PATH_IMAGE036
其中K为0~12的整数,R3为氢原子或甲基。
本发明涉及的全芳香族聚酰亚胺链段和半脂肪族聚酰亚胺链段的聚合反应的实验过程如下:
1、全芳香族聚酰亚胺链段:在氮气的保护下,向干燥的三颈瓶中依次加入以R1为中间结构的二胺单体、摩尔数少于二胺单体的中间结构为Ar1的二酐单体和有机溶剂,室温下搅拌2-12小时,然后,向反应瓶中持续缓慢滴加甲苯,并升温至160℃,保持160℃下继续反应4-8小时,使甲苯和水共沸脱除。反应结束,冷却至室温后,再加入R1为中间结构的二胺单体、摩尔数多于二胺单体的中间结构为Ar1的二酐单体以及一定量的丙烯酸羟乙酯或甲基丙烯酸羟乙酯或2-甲基-4-羟基丁烯等接枝单体,继续室温搅拌5-8小时。第二次加料之后,反应瓶中氨基和羟基基团的摩尔总数与酸酐基团的摩尔总数需要达到等比。最后得到的高度粘稠的聚合物溶液。
2、含有烷氧基的聚酰亚胺链段:在氮气的保护下,向干燥的三颈瓶中依次加入以R2为中间结构的二胺单体、摩尔数少于二胺单体的中间结构为Ar2的二酐单体和有机溶剂,室温下搅拌2-12小时,然后,向反应瓶中持续缓慢滴加甲苯,并升温至160℃,保持160℃下继续反应4-8小时,使甲苯和水共沸脱除。反应结束,冷却至室温后,再加入R2为中间结构的二胺单体、摩尔数多于二胺单体的中间结构为Ar2的二酐单体以及一定量的丙烯酸羟乙酯或甲基丙烯酸羟乙酯或2-甲基-4-羟基丁烯等接枝单体,继续室温搅拌5-8小时。第二次加料之后,反应瓶中氨基和羟基基团的摩尔总数与酸酐基团的摩尔总数需要达到等比。最后得到的高度粘稠的聚合物溶液。
3、全芳香族聚酰亚胺链段和含烷氧基的聚酰亚胺链段共聚:在氮气的保护下,向干燥的三颈瓶中依次加入以R1或R2或R1和R2两种为中间结构的二胺单体、摩尔数少于二胺单体的中间结构为Ar1或Ar2的二酐单体和有机溶剂,室温下搅拌2-12小时,然后,向反应瓶中持续缓慢滴加甲苯,并升温至160℃,保持160℃下继续反应4-8小时,使甲苯和水共沸脱除。反应结束,冷却至室温后,再加入一定量的R1或R2或R1和R2两种为中间结构的二胺单体、摩尔数多于二胺单体的中间结构为Ar1或Ar2的二酐单体以及一定量的丙烯酸羟乙酯或甲基丙烯酸羟乙酯或2-甲基-4-羟基丁烯等接枝单体,继续室温搅拌5-8小时。第二次加料之后,反应瓶中氨基和羟基基团的摩尔总数与酸酐基团的摩尔总数需要达到等比。最后得到的高度粘稠的聚合物溶液。
将上述制备好的全芳香族聚酰亚胺链段和半脂肪族聚酰亚胺链段以溶液的
形式混合或全芳香族聚酰亚胺链段和半脂肪族聚酰亚胺链段的共聚物溶液,在溶液中加入聚酰亚胺链段重量的2~50wt%的交联剂,交联剂的结构如下:
Figure 326462DEST_PATH_IMAGE036
其中K为0~12的整数,R3为氢原子或甲基。
再在溶液中加入聚合物总质量的0.5-3wt%的热交联引发剂,热引发剂可以是传统的过氧化物类化合物或者偶氮类化合物,如:偶氮二异丁氰(AIBN)、过氧化二苯甲酰(BPO)、偶氮二异庚腈(ABVN)和过氧化苯甲酸叔丁酯(BPB)等等,也可以是它们的混合物,混合使用。
将以上得到的混合溶液采用混合液浇筑的方式、或流延的方式、或旋涂的方式成膜,在一定程序温度下(80-175℃之间)去除25%-75%的溶剂烘烤成膜并引发热交联后,将薄膜冷却至室温,将薄膜从基材上取下,浸入到甲醇/乙醇与水的三者混合溶剂中2-5小时,醇与水的配比为5:5-9:1,这时得到多孔并分相的薄膜,薄膜用四框夹具夹好,60度真空烘箱内烘干。薄膜厚度控制在10-200微米。
以下将结合附图对本发明的构思、具体结构及产生的技术效果作进一步说明,以充分地了解本发明的目的、特征和效果。各实施例测试结果对比见表一 。
附图说明
图1是锂离子与交联剂链段中的氧原子络合原理图;
图2是本发明较佳实施例中一种锂电池隔膜的红外谱图;
图3是本发明较佳实施例中一种隔膜的电性能图;
图4是本发明较佳实施例中一种隔膜的电性能图;
图5是本发明较佳实施例一种锂电池隔膜的分相SEM照片。
测试方法
红外光谱(FT-IR):Perkin-ElmerParagon 1000傅立叶变换红外分光光度计,以KBr压片法制样或薄膜法。
5%热分解温度的测定:薄膜样品热稳定性能由梅特勒-托利多 TGA1 热重分析仪,氮气保护,升温速率为20℃/ min条件下进行测定。
玻璃化转变(Tg)的测定:薄膜样品热稳定性能由梅特勒-托利多 DSC 1 差示扫描量热仪测定,静态空气,升温速率为10℃/ min条件下进行测定。
机械性能的测定:将薄膜裁成10mm宽、80mm长的样条,用Instron-4465型拉力机在室温(23℃),相对湿度60%条件下测定薄膜的拉伸强度,拉伸速率为5mm / min。
热膨胀系数CTE的测试:梅特勒-托利多TMA1,测试范围20℃-180℃,升温速率为10℃/ min条件下进行测定。
相形态观察:薄膜断面喷金,采用荷兰Phillips公司SIRION-100场发射扫描电子显微镜观察样品的形貌。
电解液吸附性能:根据薄膜在电解液(LiCF3SO3的碳酸二乙酯溶液)中浸泡后质量的变化,根据增重百分比来表征。
电池测试系统:Arbin公司电池测试系统,以恒流-恒压充电/恒流放电的模
式,在2.0-4.2V之间进行循环性能和倍率性能测试。
具体实施方式
以下参考说明书附图介绍本发明的多个优选实施例,使其技术内容更加清楚和便于理解。本发明可以通过许多不同形式的实施例来得以体现,本发明的保护范围并非仅限于文中提到的实施例。
实施例一:
在氮气的保护下,向干燥的三颈瓶中依次加入2.12g(10mmol)的2,2’-二甲基-4,4’-联苯胺、3.552g(8mmol)的4,4'-(六氟异丙烯)二酞酸酐以及12ml的溶剂GBL,室温下搅拌8小时,然后,向反应瓶中持续缓慢滴加甲苯,并升温至160℃,保持160℃下继续反应4小时,使甲苯和水共沸脱除。反应结束,冷却至室温后,再加入2g(10mmol)的二氨基二苯醚、6.66g(15mmol)的4,4'-(六氟异丙烯)二酞酸酐、10ml的溶剂GBL以及0.78g(6mmol)的甲基丙烯酸羟乙酯,继续室温搅拌5小时。第二次加料之后,反应瓶中氨基和羟基基团的摩尔总数与酸酐基团的摩尔总数需要达到等比。最后得到的高度粘稠的聚合物溶液。
在氮气的保护下,向干燥的三颈瓶中依次加入0.89g(5mmol)的重复单元为3的PEO二胺、 1.776g(4mmol)的4,4'-(六氟异丙烯)二酞酸酐以及15ml的溶剂GBL,室温下搅拌6小时,然后,向反应瓶中持续缓慢滴加甲苯,并升温至160℃,保持160℃下继续反应4-8小时,使甲苯和水共沸脱除。反应结束,冷却至室温后,重复1.78g(10mmol)的重复单元为3的PEO二胺、4.116g(14mmol)的联苯二酐、24ml的溶剂GBL以及0.78g(6mmol)的甲基丙烯酸羟乙酯,继续室温搅拌5小时。第二次加料之后,反应瓶中氨基和羟基基团的摩尔总数与酸酐基团的摩尔总数需要达到等比。最后得到的高度粘稠的聚合物溶液。
将上述制备的两种聚酰亚胺溶液混合,再在上述溶液中加入甲基丙烯酸双环戊二烯酯作为交联剂4g,以及热引发剂AIBN0.4g,充分溶解混合,浇注在干净的玻璃板上成膜,在温度为90℃的鼓风烘箱中烘干30min,取出,小心剥离薄膜称重。将薄膜完全浸入到乙醇和水(质量比为7:3)的混合溶剂中,浸泡2-3小时后,夹具夹好薄膜,在真空烘箱中60℃烘干10小时,取出快速称重。此薄膜为样品一,备用。
实施例二:
在氮气的保护下,向干燥的三颈瓶中依次加入2.052g(5mmol)的2,2-双[4-(4-氨基苯氧基)苯基]六氟丙烷、1.776g(4mmol)的4,4'-(六氟异丙烯)二酞酸酐以及20ml的溶剂NMP,室温下搅拌12小时,然后,向反应瓶中持续缓慢滴加甲苯,并升温至160℃,保持160℃下继续反应4-8小时,使甲苯和水共沸脱除。反应结束,冷却至室温后,再加入3.22g(10mmol)的重复单元为3的PEO二苯胺、4.116g(14mmol)的联苯二酐、32ml的溶剂NMP以及0.78g(6mmol)的甲基丙烯酸羟乙酯,继续室温搅拌8小时。第二次加料之后,反应瓶中氨基和羟基基团的摩尔总数与酸酐基团的摩尔总数需要达到等比。最后得到的高度粘稠的聚合物溶液。
再在上述溶液中加入甲基丙烯酸双环戊二烯酯作为交联剂5g,以及热引发剂AIBN0.2g,充分溶解混合,浇注在干净的玻璃板上成膜,在温度为85℃的鼓风烘箱中烘干20min,取出,小心剥离薄膜称重。将薄膜完全浸入到乙醇和水(质量比为7:3)的混合溶剂中,浸泡2-3小时后,夹具夹好薄膜,在真空烘箱中60℃烘干10小时,取出快速称重。此薄膜为样品二,备用。
实施例三:
在氮气的保护下,向干燥的三颈瓶中依次加入3.39g(15mmol)的2,2-双(4-氨基苯基)丙烷、3.052g(14mmol)的均苯二酐以及26ml的溶剂DMAc,室温下搅拌2-12小时,然后,向反应瓶中持续缓慢滴加甲苯,并升温至160℃,保持160℃下继续反应8小时,使甲苯和水共沸脱除。反应结束,冷却至室温后,再加入1.62g(10mmol)的PPO重复单元为2的二胺、7.548g(17mmol)的4,4'-(六氟异丙烯)二酞酸酐、35ml的溶剂GBL以及1.42g(12mmol)的丙烯酸羟乙酯,继续室温搅拌8小时。第二次加料之后,反应瓶中氨基和羟基基团的摩尔总数与酸酐基团的摩尔总数需要达到等比。最后得到的高度粘稠的聚合物溶液。
再在上述溶液中加入2-(三环[5,2,1,02,6]十碳-3-烯-8或9-氧)乙基丙烯酸酯作为交联剂6g,以及热引发剂AIBN0.3g,充分溶解混合,浇注在干净的玻璃板上成膜,在温度为90℃的鼓风烘箱中烘干20min,取出,小心剥离薄膜称重。将薄膜完全浸入到乙醇和水(质量比为9:1)的混合溶剂中,浸泡2-3小时后,夹具夹好薄膜,在真空烘箱中60℃烘干10小时,取出快速称重。此薄膜为样品三,备用。
实施例四:
在氮气的保护下,向干燥的三颈瓶中依次加入3.18g(15mmol)的2,2’-二甲基-4,4’-联苯胺、4.186g(13mmol)的3,3’,4,4’-二苯酮四酸二酐以及29ml的溶剂GBL,室温下搅拌10小时,然后,向反应瓶中持续缓慢滴加甲苯,并升温至160℃,保持160℃下继续反应8小时,使甲苯和水共沸脱除。反应结束,冷却至室温后,再次加入3.84g(20mmol)的重复单元为2的聚丁二醇二胺、5.668g(26mmol)的均苯四酐、20ml的溶剂GBL以及1.04g(8mmol)的甲基丙烯酸羟乙酯,继续室温搅拌8小时。第二次加料之后,反应瓶中氨基和羟基基团的摩尔总数与酸酐基团的摩尔总数需要达到等比。最后得到的高度粘稠的聚合物溶液。
再在上述溶液中加入乙氧基重复单元为6的甲基丙烯酸双环戊二烯酯作为交联剂8g,以及热引发剂AIBN0.3g,充分溶解混合,浇注在干净的玻璃板上成膜,在温度为90℃的鼓风烘箱中烘干15min,取出,小心剥离薄膜称重。将薄膜完全浸入到乙醇和水(质量比为8:2)的混合溶剂中,浸泡2-3小时后,夹具夹好薄膜,在真空烘箱中60℃烘干10小时,取出快速称重。此薄膜为样品四,备用。
实施例五:
在氮气的保护下,向干燥的三颈瓶中依次加入3.68g(10mmol)的4,4’-双(4-氨基苯氧基)联苯、2.79g(9mmol)的3,3’,4,4’-二苯醚四酸二酐以及26ml的溶剂NMP,室温下搅拌6小时,然后,向反应瓶中持续缓慢滴加甲苯,并升温至160℃,保持160℃下继续反应4小时,使甲苯和水共沸脱除。反应结束,冷却至室温后,加入4.65g(15mmol)的重复单元为6的PEG二胺、8.88g(20mmol)的4,4'-(六氟异丙烯)二酞酸酐、50ml的溶剂NMP以及1.04g(8mmol)的甲基丙烯酸羟乙酯,继续室温搅拌8小时。第二次加料之后,反应瓶中氨基和羟基基团的摩尔总数与酸酐基团的摩尔总数需要达到等比。最后得到的高度粘稠的聚合物溶液。
再在上述溶液中加入乙氧基重复单元为4的甲基丙烯酸双环戊二烯酯作为交联剂6g,以及热引发剂AIBN0.2g,充分溶解混合,浇注在干净的玻璃板上成膜,在温度为90℃的鼓风烘箱中烘干15min,取出,小心剥离薄膜称重。将薄膜完全浸入到乙醇和水(质量比为8:2)的混合溶剂中,浸泡2-3小时后,夹具夹好薄膜,在真空烘箱中60℃烘干10小时,取出快速称重。此薄膜为样品五,备用。
实施例六:
在氮气的保护下,向干燥的三颈瓶中依次加入3.39g(15mmol)的2,2-双(4-氨基苯基)丙烷、3.052g(14mmol)的均苯四酐以及25ml的溶剂GBL,室温下搅拌12小时,然后,向反应瓶中持续缓慢滴加甲苯,并升温至160℃,保持160℃下继续反应4小时,使甲苯和水共沸脱除。反应结束,冷却至室温后,再加入2g(10mmol)的二氨基二苯醚、5.772g(13mmol)的4,4'-(六氟异丙烯)二酞酸酐、10ml的溶剂GBL以及0.52g(4mmol)的甲基丙烯酸羟乙酯,继续室温搅拌8小时。第二次加料之后,反应瓶中氨基和羟基基团的摩尔总数与酸酐基团的摩尔总数需要达到等比。最后得到的高度粘稠的聚合物溶液。
在氮气的保护下,向干燥的三颈瓶中依次加入0.89g(5mmol)的重复单元为3的PEO二胺、1.776g(4mmol)的4,4'-(六氟异丙烯)二酞酸酐以及15ml的溶剂GBL,室温下搅拌12小时,然后,向反应瓶中持续缓慢滴加甲苯,并升温至160℃,保持160℃下继续反应4-8小时,使甲苯和水共沸脱除。反应结束,冷却至室温后,再次加入1.78g(10mmol)的重复单元为3的PEO二胺、4.116g(14mmol)的联苯二酐、31ml的溶剂GBL以及0.696g(6mmol)的丙烯酸羟乙酯,继续室温搅拌8小时。第二次加料之后,反应瓶中氨基和羟基基团的摩尔总数与酸酐基团的摩尔总数需要达到等比。最后得到的高度粘稠的聚合物溶液。
将上述制备的两种聚酰亚胺溶液混合,再在上述溶液中加入甲基丙烯酸双环戊二烯酯6g作为交联剂,以及热引发剂AIBN0.4g,充分溶解混合,浇注在干净的玻璃板上成膜,在温度为90℃的鼓风烘箱中烘干20min,取出,小心剥离薄膜称重。将薄膜完全浸入到乙醇和水(质量比为9:1)的混合溶剂中,浸泡2-3小时后,夹具夹好薄膜,在真空烘箱中60℃烘干10小时,取出快速称重。此薄膜为样品六,备用。
实施例七:
在氮气的保护下,向干燥的三颈瓶中依次加入2.12g(10mmol)的2,2’-二甲基-4,4’-联苯胺、1.48g(10mmol)的PEO/PPO重复单元各为1的二胺、6.66g(15mmol)的4,4'-(六氟异丙烯)二酞酸酐以及40ml的溶剂GBL,室温下搅拌2-12小时,然后,向反应瓶中持续缓慢滴加甲苯,并升温至160℃,保持160℃下继续反应8小时,使甲苯和水共沸脱除。反应结束,冷却至室温后,再加入3.39g(15mmol)的2,2-双(4-氨基苯基)丙烷、2.22g(15mmol)的PEO/PPO重复单元各为1的二胺和16.872g(38mmol)的4,4'-(六氟异丙烯)二酞酸酐、70ml的溶剂GBL以及0.7g(6mmol)的丙烯酸羟乙酯,继续室温搅拌8小时。第二次加料之后,反应瓶中氨基和羟基基团的摩尔总数与酸酐基团的摩尔总数需要达到等比。最后得到的高度粘稠的聚合物溶液。
再在上述溶液中加入2-(三环[5,2,1,02,6]十碳-3-烯-8或9-氧)乙基丙烯酸酯作为交联剂8g,以及热引发剂AIBN0.4g,充分溶解混合,浇注在干净的玻璃板上成膜,在温度为90℃的鼓风烘箱中烘干10min,取出,小心剥离薄膜称重。将薄膜完全浸入到乙醇和水(质量比为7:3)的混合溶剂中,浸泡2-3小时后,夹具夹好薄膜,在真空烘箱中60℃烘干10小时,取出快速称重。此薄膜为样品七,备用。
实施例八:
在氮气的保护下,向干燥的三颈瓶中依次加入2 g(10mmol)的二氨基二苯醚、2.5g(10mmol)的PEO/PPO重复单元各为2的二胺、6.66g(15mmol)的4,4'-(六氟异丙烯)二酞酸酐以及45ml的溶剂NMP,室温下搅拌10小时,然后,向反应瓶中持续缓慢滴加甲苯,并升温至160℃,保持160℃下继续反应4-8小时,使甲苯和水共沸脱除。反应结束,冷却至室温后,再加入3.39g(15mmol)的2,2-双(4-氨基苯基)丙烷、3.75g(15mmol)的PEO/PPO重复单元各为2的二胺和8.284g(38mmol)的均苯二酐、75ml的溶剂NMP以及0.7g(6mmol)的丙烯酸羟乙酯,继续室温搅拌8小时。第二次加料之后,反应瓶中氨基和羟基基团的摩尔总数与酸酐基团的摩尔总数需要达到等比。最后得到的高度粘稠的聚合物溶液。
再在上述溶液中加入乙氧基重复单元为8的甲基丙烯酸双环戊二烯酯交联剂8g,以及热引发剂AIBN0.4g,充分溶解混合,浇注在干净的玻璃板上成膜,在温度为90℃的鼓风烘箱中烘干10min,取出,小心剥离薄膜称重。将薄膜完全浸入到乙醇和水(质量比为8:2)的混合溶剂中,浸泡2-3小时后,夹具夹好薄膜,在真空烘箱中60℃烘干10小时,取出快速称重。此薄膜为样品八,备用。
表一 实施例1-8薄膜性能对比
Figure DEST_PATH_IMAGE038

Claims (1)

1.一种制备锂电池用耐高温隔膜的方法,其特征在于,其制备步骤如下:
(1)在氮气的保护下,向干燥的三颈瓶中依次加入2g(10mmol)的二氨基二苯醚、2.5g(10mmol)的PEO/PPO重复单元各为2的二胺、6.66g(15mmol)的4,4'-(六氟异丙烯)二酞酸酐以及45ml的溶剂NMP,室温下搅拌10小时,然后,向反应瓶中持续缓慢滴加甲苯,并升温至160℃,保持160℃下继续反应4-8小时,使甲苯和水共沸脱除;反应结束,冷却至室温后,再加入3.39g(15mmol)的2,2-双(4-氨基苯基)丙烷、3.75g(15mmol)的PEO/PPO重复单元各为2的二胺和8.284g(38mmol)的均苯二酐、75ml的溶剂NMP以及0.7g(6mmol)的丙烯酸羟乙酯,继续室温搅拌8小时,以得到高度粘稠的聚合物溶液;
(2)再在上述高度粘稠的聚合物溶液中加入乙氧基重复单元为8的甲基丙烯酸双环戊二烯酯交联剂8g,以及热引发剂AIBN 0.4g,充分溶解混合,浇注在干净的玻璃板上成膜,在温度为90℃的鼓风烘箱中烘干10min,取出,小心剥离薄膜称重;
(3)将上述薄膜完全浸入到质量比为8:2的乙醇和水的混合溶剂中,浸泡2-3小时后,夹具夹好薄膜,在真空烘箱中60℃烘干10小时,取出快速称重,即得所述锂电池用耐高温隔膜。
CN202010272899.8A 2020-04-13 2020-04-13 一种耐高温的锂电池隔膜的组成及其制备、交联方法 Active CN111403666B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010272899.8A CN111403666B (zh) 2020-04-13 2020-04-13 一种耐高温的锂电池隔膜的组成及其制备、交联方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010272899.8A CN111403666B (zh) 2020-04-13 2020-04-13 一种耐高温的锂电池隔膜的组成及其制备、交联方法

Publications (2)

Publication Number Publication Date
CN111403666A CN111403666A (zh) 2020-07-10
CN111403666B true CN111403666B (zh) 2022-12-20

Family

ID=71433134

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010272899.8A Active CN111403666B (zh) 2020-04-13 2020-04-13 一种耐高温的锂电池隔膜的组成及其制备、交联方法

Country Status (1)

Country Link
CN (1) CN111403666B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010028664A (ko) * 1999-09-22 2001-04-06 신현준 접착성이 우수한 개질 폴리에틸렌의 제조방법
CN109119572A (zh) * 2018-08-01 2019-01-01 乳源东阳光氟树脂有限公司 聚酰亚胺锂电池隔膜及其制备方法以及包含该隔膜的锂电池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI236486B (en) * 2001-10-10 2005-07-21 Mitsui Chemicals Inc Crosslinkable aromatic resin having protonic acid group, and ion conductive polymer membrane, binder and fuel cell using the resin
EP2084716B1 (en) * 2006-11-13 2012-04-04 Canon Kabushiki Kaisha Polymer electrolyte membrane and method for producing polymer electrolyte membrane
WO2013008437A1 (ja) * 2011-07-08 2013-01-17 三井化学株式会社 ポリイミド樹脂組成物およびそれを含む積層体
CN106328862A (zh) * 2016-08-25 2017-01-11 郑少华 一种交联聚酰亚胺凝胶聚合物电解质隔膜的制备方法
US20190058178A1 (en) * 2017-08-17 2019-02-21 Ohio Aerospace Institute Polyimide-network and polyimide-urea-network battery separator compositions

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010028664A (ko) * 1999-09-22 2001-04-06 신현준 접착성이 우수한 개질 폴리에틸렌의 제조방법
CN109119572A (zh) * 2018-08-01 2019-01-01 乳源东阳光氟树脂有限公司 聚酰亚胺锂电池隔膜及其制备方法以及包含该隔膜的锂电池

Also Published As

Publication number Publication date
CN111403666A (zh) 2020-07-10

Similar Documents

Publication Publication Date Title
WO2024066422A1 (zh) Bab型嵌段共聚物、制备方法、粘结剂、正极极片、二次电池及用电装置
KR102395841B1 (ko) 리튬이차전지 양극용 가용성 폴리이미드 바인더 및 그 제조 방법과, 이를 포함하는 리튬이차전지
CN113150277A (zh) 自愈型聚酰亚胺导电粘结剂及制备方法、电极片和锂电池
CN110071328B (zh) 交联型改性聚乙烯亚胺固态电解质及其应用
CN110938228A (zh) 一种沸石/聚酰亚胺复合膜的制备方法及应用
CN111403666B (zh) 一种耐高温的锂电池隔膜的组成及其制备、交联方法
CN111900335B (zh) 一种具有自修复性质的硅基负极及其制备方法和应用
Guo et al. Synthesis and properties of novel multiblock copolyimides consisting of benzimidazole-groups-containing sulfonated polyimide hydrophilic blocks and non-sulfonated polyimide hydrophobic blocks as proton exchange membranes
CN111403667B (zh) 一种耐高温的锂电池隔膜的组成及其制备方法
WO2023232162A1 (zh) 一种粘结剂及其制备方法、电极极片和二次电池
CN111341983B (zh) 一种耐高温的锂电池隔膜、组成及其制备方法
JP7246182B2 (ja) 二次電池、及び二次電池用多孔質セパレータ
TWI797220B (zh) 多孔質聚醯亞胺薄膜原布卷(original fabric)、其製造方法及組成物
WO2013154238A1 (ko) 신규한 황산화 컨쥬게이션 테트라페닐에틸렌 폴리이미드 및 이를 이용한 연료전지용 양성자 교환막
CN113555552B (zh) 一种聚酰亚胺粘结剂和负极片
CN115693021A (zh) 一种聚酰亚胺纤维/气凝胶复合膜及其制备方法
CN113571704B (zh) 锂离子电池用聚酰胺酰亚胺粘结剂及电极极片
CN109776797B (zh) 一种聚酰亚胺、硅负极极片及其制备方法和应用
CN113555553A (zh) 一种锂离子电池用聚酰亚胺粘结剂及其制备方法、硅碳负极片
CN114335526A (zh) 硅基负极、包括该硅基负极的锂离子电池及其制备方法
CN113422060A (zh) 一种锂离子电池用耐高温一体化电极及其制备方法
CN112018391A (zh) 一种交联网状硅碳负极粘结剂和硅碳负极片
WO2023168626A1 (zh) 隔膜以及制备隔膜的方法
CN113555554B (zh) 一种粘结剂、硅碳负极片及其制备方法
CN112635919B (zh) 一种柔性锂电池隔膜

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant