CN111332286A - 车辆行驶控制方法及利用该方法的自动驾驶车辆 - Google Patents

车辆行驶控制方法及利用该方法的自动驾驶车辆 Download PDF

Info

Publication number
CN111332286A
CN111332286A CN201910836233.8A CN201910836233A CN111332286A CN 111332286 A CN111332286 A CN 111332286A CN 201910836233 A CN201910836233 A CN 201910836233A CN 111332286 A CN111332286 A CN 111332286A
Authority
CN
China
Prior art keywords
vehicle
adjacent
lane
path
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910836233.8A
Other languages
English (en)
Inventor
张在焕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hyundai Motor Co
Kia Corp
Original Assignee
Hyundai Motor Co
Kia Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyundai Motor Co, Kia Motors Corp filed Critical Hyundai Motor Co
Publication of CN111332286A publication Critical patent/CN111332286A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/10Path keeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • B60W30/0953Predicting travel path or likelihood of collision the prediction being responsive to vehicle dynamic parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18154Approaching an intersection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/105Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/107Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0015Planning or execution of driving tasks specially adapted for safety
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0088Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots characterized by the autonomous decision making process, e.g. artificial intelligence, predefined behaviours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/12Lateral speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4042Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4043Lateral speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/803Relative lateral speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/804Relative longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • B60W2720/106Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/12Lateral speed

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Human Computer Interaction (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Game Theory and Decision Science (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Business, Economics & Management (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

本发明涉及车辆行驶控制方法及利用该方法的自动驾驶车辆,所述车辆行驶控制方法包括:通过控制器计算在与自动驾驶车辆行驶的行驶车道相邻的车道中行驶的相邻车辆在道路宽度方向上的横向速度,以及相邻车辆在相邻车道延伸的方向上的纵向速度;基于所述纵向速度,通过控制器指定预定的道路区间,并且在所述道路区间内、基于相邻车辆在相邻车道中在道路宽度方向上保持偏移距离的假设、通过控制器来计算第一路径;通过控制器将横向速度应用于第一路径,以计算对应于相邻车辆的预测行驶路径的第二路径。

Description

车辆行驶控制方法及利用该方法的自动驾驶车辆
相关申请的交叉引用
本申请要求2018年12月18日提交的韩国专利申请No.10-2018-0164599的优先权和权益,该申请的全部内容以引用的方式并入本文。
技术领域
本发明涉及一种车辆行驶控制方法及利用该方法的自动驾驶车辆。
背景技术
本部分中的陈述仅提供与本发明相关的背景信息,并不会构成现有技术。
一般的车道变换技术仅配置为当驾驶员显示出驾驶员的变换车道的意图时(例如,当驾驶员开启转向信号灯时),确定是否能够在预定时间内变换车道,并且在确定了能够变换车道时执行车道变换。
另外,在大多数关于自动驾驶的研究中,仅在能够变换车道时(例如,当生成能够避免碰撞的路线时)执行车道变换。此外,与2级自动驾驶(ADAS系统)不同,必须设计出4级自动驾驶,使得在受限的设计运行区域(ODD)条件下无需驾驶员干预就能够从当前位置行驶到目的地。因此,一般的车道变换技术难以满足4级自动驾驶的要求。
我们已经发现,一般的自动驾驶车辆基于相邻车辆的相对速度(该相对速度通过距离传感器测量)来预测相邻车辆的行驶路径,而不考虑关于行驶车道和边界线的信息。因此,无法在各种道路情况下(例如,交叉路口和弯道)确定是否会发生车道变换,或者无法准确地预测车道变换将会发生的时间和车道变换将会发生的位置。因此,仅能够通过突然减速来被动地响应这些情况,而不是灵活地响应这些情况。
发明内容
本发明提供一种自动驾驶控制方法,其能够基于参考行驶车道或道路形状而计算的相邻车辆(即,与主车相邻行驶的车辆)的纵向速度和横向速度来估算行驶路径,从而可以更准确地预测相邻车辆的行驶车道是否会变换,并且提供一种利用该方法的车辆。
本发明设计用于解决问题的目的不限于上述目的,并且基于以下对本发明的详细描述,本领域技术人员将清楚地理解其它未提及的目的。
在本发明的一个实施方案中,一种车辆行驶控制方法包括:通过控制器计算在与自动驾驶车辆行驶的行驶车道相邻的车道中行驶的相邻车辆在道路宽度方向上的横向速度,以及相邻车辆在相邻车道延伸的方向上的纵向速度;基于所述纵向速度,通过控制器指定预定的道路区间,并且在预定的道路区间内、基于相邻车辆在相邻车道中在道路宽度方向上保持偏移距离的假设、通过控制器来计算第一路径;通过控制器将横向速度应用于第一路径,以计算对应于相邻车辆的预测行驶路径的第二路径。
可以基于地图信息来计算第一路径,所述地图信息包括表示行驶车道和相邻车道中的每一个的边界线以及所述边界线之间的中心线的多个点。
车辆行驶控制方法可以进一步包括:跟踪第二路径,以确定第二路径是否与行驶车道和相邻车道之间的边界线交叉,并且基于第二路径与边界线之间的交叉点来预测相邻车辆的驶入点。
车辆行驶控制方法可以进一步包括:基于自动驾驶车辆和相邻车辆中的每一个到达预测的驶入点所需的时间来控制自动驾驶车辆的行驶。
控制自动驾驶车辆的行驶的步骤可以包括:当相邻车辆的第一到达时间大于自动驾驶车辆的第二到达时间时,使自动驾驶车辆加速;当相邻车辆的第一到达时间等于或小于自动驾驶车辆的第二到达时间时,确定出所述相邻车辆是具有驶入的潜在可能性的车辆(下文中,简称为“潜在的驶入车辆”)并使自动驾驶车辆减速。
通过本文提供的说明,其它应用领域将变得明显。应当理解,本说明书和具体示例仅是旨在用于说明的目的,而并不旨在限制本发明的范围。
附图说明
为了可以很好地理解本发明,现在将参考所附附图来描述以示例的方式给出的本发明的各种实施方案,在这些附图中:
图1为示出根据本发明的一个实施方案的自动驾驶车辆的示意性框图;
图2为示出在本发明的一个实施方案中控制器基于车道来计算相邻车辆的横向速度和纵向速度的方法的示意图;
图3为示出在本发明的一个实施方案中控制器基于相邻车辆的纵向速度来计算第一路径的方法的示意图;
图4为示出在本发明的一个实施方案中控制器考虑到图3中计算出的第一路径以及相邻车辆的横向速度来计算第二路径的方法的示意图;
图5为示出在本发明的另一个实施方案中控制器基于图4中计算出的第二路径来预测相邻车辆的驶入点的方法的示意图;
图6为示出在本发明的一个实施方案中的自动驾驶车辆的应用示例的示意图;
图7为示出在自动驾驶车辆位于交叉路口的情况下,本发明的一个实施方案中的自动驾驶车辆的应用示例的示意图;以及
图8为示出本发明的一个实施方案中的车辆行驶控制方法的流程图。
本文描述的附图仅用于说明的目的,而并不旨在以任何方式限制本发明的范围。
具体实施方式
下面的描述在本质上仅仅是示例性的,并非旨在限制本发明、应用或用途。应当理解,贯穿多幅附图,相应的附图标记表示相同或相应的部件和特征。
由于本发明的示例性实施方案可以进行各种修改并且可以具有各种实施方案,应当理解,本发明包括落入本发明的构思和技术范围内的所有变更、等同和替代形式。
应当理解,尽管本文可以利用术语“第一”、“第二”等来描述各种元件,但是相应的元件不应该被理解为受这些术语的限制,这些术语仅用于将一个元件与另一个元件区分开。另外,提供考虑到实施方案的构造和操作而具体定义的术语是为了解释示例性实施方案而不是限制本发明的范围。
提供本说明书中使用的术语仅是为了解释具体实施方案,而非旨在限制本发明。单数形式可以包括复数形式,除非其在上下文中表示明显不同的含义。还将理解的是,当在本说明书中使用术语“包括”、“具有”等等时,指明存在所述特征、数值、步骤、操作、元件、组件或它们的组合,但是不排除存在或添加一种或多种其它的特征、数值、步骤、操作、元件、组件和/或它们的组合。
除非另外定义,否则本说明书中使用的包括技术和科学术语的所有术语具有与本发明所属领域的普通技术人员通常理解的含义相同的含义。应当进一步理解,例如在常用词典中定义的那些术语应理解为具有与其在相关领域和本发明的上下文中的含义一致的含义,并且不理解为理想化或过于正式的意义,除非在本文中明确如此定义。
图1为示出根据本发明的一个实施方案的自动驾驶车辆的示意性框图。
如图1所示,由附图标记10表示的自动驾驶车辆可以包括全球定位系统(GPS)接收单元100、传感器单元200、地图存储单元300、控制器400以及驱动单元500。
这里,例如“单元”、“控制器”或“模块”等的术语应当被理解为处理至少一个功能或操作,并且可以以硬件方式(例如,处理器)、软件方式、或硬件方式和软件方式的组合实现的单元。
GPS接收单元100可以利用从GPS卫星发送的信号来测量自动驾驶车辆10的当前位置。GPS接收单元100利用卫星发送信号的时间与GPS接收单元100接收该信号的时间差来计算卫星与GPS接收单元100之间的距离。GPS接收单元100利用计算出的卫星与GPS接收单元100之间的距离以及发送的信号中包括的关于卫星位置的信息来计算自动驾驶车辆10的当前位置。此时,GPS接收单元100可以利用三角测量法来计算自动驾驶车辆10的当前位置。
传感器单元200可以获取关于自动驾驶车辆10的行驶状态的信息以及关于在与自动驾驶车辆10的行驶车道相邻的车道中行驶的至少一个相邻车辆20的行驶状态的信息。为了获取自动驾驶车辆10和相邻车辆20的行驶状态信息,传感器单元200可以包括车外信息传感器210和车内信息传感器230。
车外信息传感器210可以包括摄像机传感器211和距离传感器213;所述摄像机传感器211用于获取关于所拍摄的自动驾驶车辆10周围的图像的信息;所述距离传感器213用于获取关于自动驾驶车辆10与位于自动驾驶车辆10附近的物体之间的距离的信息。距离传感器213可以实现为LIDAR传感器或RADAR传感器。车外信息传感器210(下文中,为了便于描述而称为“第一传感器”)可以收集车外信息,例如,位于预定检测范围FR内的相邻车辆20的相对位置、相对速度和方向信息。
摄像机传感器211可以通过图像传感器来获取关于自动驾驶车辆10的周围的图像的信息,并且可以对于所获取的图像执行图像处理(例如,去噪声)。
距离传感器213可以测量朝向相邻车辆20发射的激光脉冲或电磁波的到达时间,以计算自动驾驶车辆10与相邻车辆20之间的距离。
车内信息传感器230(下文中,为了便于描述而称为“第二传感器”)可以包括速度传感器231、加速度传感器233、横摆率传感器235以及转向角传感器237,并且车内信息传感器230可以测量车辆内信息,例如,自动驾驶车辆10的绝对速度、加速度、横摆率和转向角。
地图存储单元300可以以数据库(DB)的形式存储关于高清晰度地图(从该高清晰度地图中能够区分出车道)的信息。高清晰度地图可以通过无线通信自动且周期性地更新,或者可以由用户手动更新。
地图存储单元300可以以坐标序列(coordinate train)提供表示包括道路位置的道路的特定区间的形状的道路形状数据。这里,为了表示道路的形状,道路形状数据将道路的两侧的边界线Q和边界线S以及边界线Q与边界线S之间的中心线R显示为一组点,并且将每个点的纵向数据和横向数据显示为坐标值。另外,道路形状数据可以提供关于每个点的截距方向(intercept orientation)的信息,即关于在每个点处与道路的曲线相切的直线的方向的信息。这里,假设正北方向的绝对方向为0°,截距方向信息以顺时针方向在0°至360°的范围内显示。
控制器400可以基于从GPS接收单元100接收的自动驾驶车辆10的当前位置以及从传感器单元200接收的自动驾驶车辆10的外部信息和内部信息来识别相邻车辆20的绝对位置。这里,相邻车辆20是在与自动驾驶车辆10的行驶车道相邻的车道中行驶的车辆。
控制器400可以参考道路形状数据将自动驾驶车辆10的当前位置和相邻车辆20绝对位置匹配到高清晰度地图上,并且可以计算相邻车辆20在道路宽度方向Y'上的横向速度以及相邻车辆20在相邻车道延伸的方向X'上的纵向速度。
控制器400可以基于相邻车辆20的纵向速度来指定道路区间L(该道路区间显示为一组点),并且可以通过假设相邻车辆20在相邻车道中在道路宽度方向Y'上保持偏移来计算第一路径。这里,指定的道路区间L(其为用户预设的距离)表示在车道延伸方向(即,纵向方向X')上的距离。
控制器400可以将相邻车辆20的横向速度应用于第一路径,以计算对应于相邻车辆20的预测行驶路径的第二路径,并且可以基于第二路径来预测相邻车辆20试图进入行驶车道与相邻车道之间的边界线S的中断点(在下文中,为了方便起见而将其称为“驶入”点)。
控制器400可以计算自动驾驶车辆10和相邻车辆20中的每一个到达预测的驶入点所需的时间TTC(穿越时间),并且可以将用于控制自动驾驶车辆10的驱动的信号发送到驱动单元500。这里,由控制器400发送的控制信号可以包括这样的信号:其用于控制自动驾驶车辆10的速度,使得执行减速、加速或速度保持中的至少一个。
驱动单元500配置为响应于控制器400所发送的控制信号来驱动自动驾驶车辆10,并且驱动单元500可以包括用于实际驱动车辆的组件,例如制动器、加速器、变速器和转向装置。例如,在来自控制器400的控制信号是表示减速的信号的情况下,驱动单元500的制动器可以执行减速操作。
在下文中,将参考图2描述计算相邻车辆20在道路宽度方向Y'上的横向速度以及相邻车辆20在相邻车道延伸的方向X'上的纵向速度的方法。
图2为示出在本发明的一个实施方案中,控制器基于车道计算相邻车辆的横向速度和纵向速度的方法的示意图。
参考图2,控制器400可以参考道路形状数据将自动驾驶车辆10的当前位置和相邻车辆20的绝对位置匹配到高清晰度地图上,并且可以利用从传感器单元200收集的自动驾驶车辆10的外部信息和内部信息来计算在相邻车道中行驶的相邻车辆20的绝对速度、绝对位置或方向信息。
例如,控制器400可以考虑到通过第一传感器210收集的相邻车辆的相对速度和相对距离以及通过第二传感器230测量的自动驾驶车辆10的绝对速度或转向角来计算相邻车辆20的绝对速度、绝对位置或方向信息。这里,方向信息表示相邻车辆20前进的方向上的绝对方向,绝对方向表示基于北方以顺时针方向移动的相邻车辆20的航向角θβ
控制器400可以提取在高清晰度地图上匹配的与相邻车辆20相邻的边界线S,并且可以利用三角测量法计算相邻车辆20在道路宽度方向Y'上的横向速度
Figure BDA0002192245390000071
以及相邻车辆20在相邻车道延伸的方向X'上的纵向速度
Figure BDA0002192245390000072
如图2所示,控制器400可以基于相邻车辆20的重心(下文中,称为“第一节点N1”)从相邻边界线S的一组点中提取位于距第一节点N1最短距离处的第二节点N2。另外,控制器400可以计算从第一节点N1起在相邻车辆20前进的方向上延伸的假想直线与在第二节点N2处与相邻边界线S相切的直线相互交叉的点(在下文中,将其称为“第三节点N3”)。第一节点至第三节点N1、N2和N3可以显示为包括纵向数据和横向数据的坐标值。
此时,第一节点N1与第二节点N2之间的方向矢量表示相邻车辆20在道路宽度方向Y'上的相对移动方向,并且第二节点N2与第三节点N3之间的方向矢量表示相邻车辆20在相邻车道延伸的方向上的相对移动方向。另外,相邻车辆20的横向速度
Figure BDA0002192245390000081
(其将在随后描述)可以限定为相邻车辆20在道路宽度方向Y'上的行驶速度,并且相邻车辆20的纵向速度
Figure BDA0002192245390000082
可以限定为相邻车辆20在相邻车道延伸的方向X'上的行驶速度。
控制器400可以基于相邻车辆20的绝对速度以及第一节点至第三节点N1、N2和N3之间的线性距离来计算相邻车辆20的横向速度
Figure BDA0002192245390000083
和纵向速度
Figure BDA0002192245390000084
在一个示例中,可以利用等式1。
[等式1]
Figure BDA0002192245390000085
这里,Lv是第一节点与第三节点之间的线性距离,Ly是第一节点与第二节点之间的线性距离,Lx是第二节点与第三节点之间的线性距离,并且
Figure BDA0002192245390000086
是相邻车辆的绝对速度。
另外,控制器400可以基于相邻车辆20的绝对速度和预定的方向信息来计算相邻车辆20的横向速度
Figure BDA0002192245390000087
和纵向速度
Figure BDA0002192245390000088
在另一个示例中,可以利用等式2。这里,预定的方向信息包括关于第二节点N2的截距方向θα的信息以及关于相邻车辆20的航向角θβ的信息。
[等式2]
Figure BDA0002192245390000089
Figure BDA00021922453900000810
这里,
Figure BDA00021922453900000811
是相邻车辆的绝对速度,θα是第二节点的截距方向,以及θβ是相邻车辆的航向角。
在下文中,将参考图3描述控制器计算对应于相邻车辆20的纵向行驶路径的第一路径的方法。
图3为示出在本发明的一个实施方案中,控制器基于相邻车辆的纵向速度来计算第一路径的方法的示意图。
参考图3,控制器400可以通过假设在与自动驾驶车辆10的行驶车道相邻的相邻车道中行驶的相邻车辆20在相邻车道中在道路宽度方向Y'上保持偏移、参考高清晰度地图信息来计算第一路径
Figure BDA00021922453900000812
控制器400可以从地图存储单元300接收地图形状数据,所述地图形状数据将行驶车道和相邻车道中的每一个的边界线Q和边界线S以及边界线Q与边界线S之间的中心线R显示为一组点。
控制器400可以将在高清晰度图上匹配的对应于相邻车辆20的绝对位置的点近似为相邻车辆20的参考节点O0,并且可以基于相邻车道的中心线来计算参考节点O0的偏移距离droad
这里,偏移距离droad是相邻车辆20的参考节点O0在与相邻车道的延伸方向垂直的方向(下文中,为了方便起见将其称为“道路宽度方向”)上从相邻车道的中心线向右或向左移动的距离,并且可以满足0≤droad≤LQS/2(其中,LQS是相邻车道的边界线之间的距离)。
另外,控制器400可以从中心线R的一组点中提取位于距相邻车辆20的参考节点O0最短距离处的中心线R的参考节点R0,并且,可以考虑到相邻车辆20的纵向速度
Figure BDA0002192245390000091
和预定时间段t来计算关于中心线R的节点序列矢量信息
Figure BDA0002192245390000092
此时,可以通过等式3来限定中心线R的各个节点R0,R1,...和Rk之间的纵向移动距离
Figure BDA0002192245390000097
[等式3]
Figure BDA0002192245390000093
这里,
Figure BDA0002192245390000098
是节点Ri-1与节点Ri之间的纵向移动距离(其中i是1或更大的整数),
Figure BDA0002192245390000094
是相邻车辆20的纵向速度,Δti是从节点Ri-1移动到节点Ri所需的时间。此时,Δti可以是由用户预设为预定时间段的时间,并且关于中心线R的节点序列矢量信息
Figure BDA0002192245390000095
可以提供等间距的道路形状数据。
同时,控制器400可以以预定的道路区间L为单位来预测相邻车辆20的驶入点。其原因在于,期望在控制器400的有限数据处理能力范围内有效地预测相邻车辆20的驶入点。这里,预定的道路区间L是用户预设的在相邻车道延伸的方向X'上的纵向距离。
控制器400可以基于关于中心线R的节点序列矢量信息
Figure BDA0002192245390000096
来指定预定的道路区间L。此时,控制器400可以计算满足等式4的k以及位于节点Rk-1与节点Rk之间的道路区间L的终点处的节点Rn,并且可以提取关于道路区间L内的中心线R的节点序列矢量信息
Figure BDA0002192245390000101
[等式4]
Figure BDA0002192245390000102
这里,k是1或更大的整数,n满足k-1<n<k,并且
Figure BDA00021922453900001014
是节点Rn与节点Rk-1之间的纵向距离。
另外,控制器400可以通过假设相邻车辆20在相邻车道中在道路宽度方向Y'上保持偏移距离droad的状态下行驶、考虑到提取出的关于中心线R的节点序列矢量信息
Figure BDA0002192245390000103
利用等式5来计算第一路径
Figure BDA0002192245390000104
[等式5]
Figure BDA0002192245390000105
这里,droad是相对于中心线R的偏移距离,
Figure BDA0002192245390000106
是偏移方向矢量,
Figure BDA0002192245390000107
是关于中心线R的每个节点序列矢量的信息,并且偏移方向矢量
Figure BDA0002192245390000108
是在道路宽度方向Y'上、在中心线R的节点R0,R1,...,Rk-1和Rn的每一个节点处的单位矢量。
第一路径
Figure BDA0002192245390000109
包括预定的道路区间L内关于相邻车辆20的纵向行驶路径的节点序列矢量信息
Figure BDA00021922453900001010
并且第一路径
Figure BDA00021922453900001011
中的每个节点O0,O1,...,Ok-1和On可以与中心线R的节点R0,R1,...,Rk-1和Rn中相对应的一个节点在道路宽度方向上间隔偏移距离droad。然而,在偏移距离droad为0的情况下,第一路径
Figure BDA00021922453900001012
可以对应于关于中心线R的节点序列矢量信息
Figure BDA00021922453900001013
在下文中,将参考图4描述控制器计算对应于相邻车辆20的预测行驶路径的第二路径的方法。
图4为示出在本发明的一个实施方案中,控制器考虑到图3中计算出的第一路径和相邻车辆的横向速度来计算第二路径的方法的示意图。
参考图4,控制器400可以参考高清晰度地图信息将相邻车辆20的横向速度
Figure BDA0002192245390000111
应用于第一路径
Figure BDA0002192245390000112
(所述第一路径对应于相邻车辆20的纵向行驶路径)以计算第二路径
Figure BDA0002192245390000113
(所述第二路径对应于相邻车辆20的预测行驶路径)。
控制器400可以计算相邻车辆20在道路宽度方向Y'上在第一路径
Figure BDA0002192245390000114
的每个节点O0,O1,...,Ok-1和On处的横向移动距离dpath_i,并且可以考虑到关于相邻车辆20的纵向行驶路径的节点序列矢量信息
Figure BDA0002192245390000115
相邻车辆20的横向移动距离dpath_i以及相邻车辆20的前进方向矢量
Figure BDA0002192245390000116
来计算包括关于相邻车辆20的预测行驶路径的节点序列矢量信息
Figure BDA0002192245390000117
的第二路径
Figure BDA0002192245390000118
这里,第一路径
Figure BDA0002192245390000119
的节点O0和第二路径
Figure BDA00021922453900001110
的节点P0包括与坐标值相同的纵向数据和横向数据。
可以通过将相邻车辆20的横向速度
Figure BDA00021922453900001111
应用于相邻车辆20从节点Oi移动到节点Pi所需的时间ti来计算横向移动距离dpath_i,并且可以通过等式6限定横向移动距离dpath_i
[等式6]
Figure BDA00021922453900001112
这里,相邻车辆20在横向方向上从节点Oi移动到节点Pi所需的时间ti与相邻车辆20在纵向方向上从节点O0移动到节点Oi所需的时间ti相同,并且可以利用等式7计算时间ti
[等式7]
Figure BDA00021922453900001113
这里,tx是相邻车辆20在横向方向上从节点Ox移动到节点Px所需的时间,tn是相邻车辆20在横向方向上从位于道路区间L的终点的节点On移动到节点Pn所需的时间,Δti是相邻车辆20从Oi-1(或节点Ri-1)移动到节点Oi(或节点Ri)所需的时间,并且
Figure BDA00021922453900001114
是相邻车辆20的纵向速度。
相邻车辆20的前进方向矢量
Figure BDA00021922453900001115
是相邻车辆20在道路宽度方向上关于相邻车辆20前进的方向的单位矢量。此时,相邻车辆20的前进方向矢量
Figure BDA0002192245390000121
可以具有与上述偏移方向矢量
Figure BDA0002192245390000122
相同的标量,并且两个矢量的方向可能相同或相反。例如,相邻车辆20的前进方向矢量
Figure BDA0002192245390000123
和偏移方向矢量
Figure BDA0002192245390000124
可以满足相关性
Figure BDA0002192245390000125
其中,“+”表示相同方向,“-”表示相反方向。
控制器400可以考虑到通过假设相邻车辆20在相邻车道中在道路宽度方向Y'上保持偏移而计算出的第一路径
Figure BDA0002192245390000126
相邻车辆20的横向移动距离dpath_i以及相邻车辆20的前进方向矢量
Figure BDA0002192245390000127
来计算对应于相邻车辆20的预测行驶路径的第二路径
Figure BDA0002192245390000128
可以通过等式8来限定第二路径
Figure BDA0002192245390000129
[等式8]
Figure BDA00021922453900001210
这里,
Figure BDA00021922453900001211
是第一路径,其包括关于相邻车辆20的纵向行驶路径的节点序列矢量信息,dpath_i是从节点Oi到节点Pi的横向移动距离,
Figure BDA00021922453900001212
是相邻车辆20的前进方向矢量,droad是相对于中心线R的偏移距离,以及
Figure BDA00021922453900001213
是关于中心线R的每个节点序列矢量的信息。可以参考上面的等式5和相关性
Figure BDA00021922453900001214
来导出等式8。
在下文中,将参考图5描述这样一种方法:该方法基于第二路径来预测相邻车辆20试图进入行驶车道与相邻车道之间的边界线的驶入点,并且计算自动驾驶车辆10和相邻车辆20中的每一个到达预测的驶入点所需的时间。
图5为示出在本发明的另一个实施方案中,控制器基于图4中计算出的第二路径
Figure BDA00021922453900001215
来预测相邻车辆的驶入点的方法的示意图。
参考图5,控制器400可以基于第二路径
Figure BDA00021922453900001216
来预测相邻车辆试图进入行驶车道与相邻车道之间的边界线S的驶入点。
控制器400可以考虑到由第一传感器210获取的车外信息(例如,关于相邻车辆20的整体宽度和整体长度的信息)来提取相邻车辆20的特征点P0'的坐标,并且可以将相邻车辆20的参考节点O0转换为特征点坐标P0'。另外,控制器400可以基于经转换的特征点P0'的坐标来使第二路径
Figure BDA0002192245390000131
平行移动。这里,特征点P0'可以包括相邻车辆20的角部区域1、2、3和4,自动驾驶车辆10与这些角部区域碰撞的可能性很高。
控制器400可以参考高清晰度地图信息来计算已平行移动的至少一个第二路径
Figure BDA0002192245390000132
与自动驾驶车辆的行驶车道和相邻车道之间的边界线S之间的至少一个交叉点Pcut-in,并且可以将该交叉点Pcut-in预测为相邻车辆20的驶入点Pcut-in
控制器400可以从已平行移动的至少一个第二路径
Figure BDA0002192245390000133
的节点P0',P1',...,和Pn'中提取在与边界线S相邻的状态下位于相邻车道中的节点Pi'以及在与边界线S相邻的状态下位于行驶车道中的节点Pi+1'。
控制器400可以基于与边界线S相邻的节点Pi'和节点Pi+1'以及驶入点Pcut-in来计算相邻车辆20到达预测的驶入点Pcut-in所需的第一时间tcut-in。可以通过等式9来限定第一时间tcut-in
[等式9]
Figure BDA0002192245390000134
这里,
Figure BDA0002192245390000135
是节点Pi与交叉点Pcut-in之间的距离,
Figure BDA0002192245390000136
是节点Pi与节点Pi+1之间的距离,ti是相邻车辆20移动到节点Pi所需的时间,并且ti+1是相邻车辆20移动到节点Pi+1所需的时间。此时,ti(或ti+1)可以等于相邻车辆20在横向方向上从节点Oi(或节点Oi+1)移动到节点Pi(或节点Pi+1)所需的时间(其通过上面的等式7来计算)。
控制器400可以基于通过第二传感器230获取的自动驾驶车辆10的绝对速度Vego来计算自动驾驶车辆10到达预测的驶入点Pcut-in所需的第二时间tego。可以通过等式10限定第二时间tego
[等式10]
Figure BDA0002192245390000137
这里,
Figure BDA0002192245390000138
是自动驾驶车辆10的当前位置Pego与交叉点Pcut-in之间的距离,并且Vego是自动驾驶车辆10的绝对速度Vego
控制器400可以将计算出的第一时间tcut-in与计算出的第二时间tego进行相互比较,以预测自动驾驶车辆10与相邻车辆20之间是否会发生碰撞,并且可以将用于驱动自动驾驶车辆10的信号发送到驱动单元500。
在第一时间tcut-in等于或大于第二时间tego的情况下,控制器400可以执行控制使得自动驾驶车辆10的速度增大或保持,以避免与相邻车辆20发生碰撞。
在第一时间tcut-in小于第二时间tego的情况下,控制器400可以确定相邻车辆20是潜在的驶入车辆,并且可以执行控制以使自动驾驶车辆10减速。
如前所述,根据本发明的示例性实施方案的自动驾驶车辆10能够基于高清晰度地图信息来准确地预测相邻车辆20的行驶路径,并且基于预测出的行驶路径预先建立自动驾驶车辆的行驶策略,从而可以提高自动驾驶车辆的行驶稳定性。
另外,根据本发明的实施方案的自动驾驶车辆10能够基于参考行驶车道或相邻车道上的道路形状数据而计算出的相邻车辆20的纵向速度和横向速度来预测相邻车辆20的行驶路径,从而能够准确地确定相邻车辆20试图在直行道路和/或弯曲道路上驶入的意图,并且预先计算相邻车辆20的驶入点,因此,可以执行稳定的减速或加速控制。
同时,根据本发明的先前实施方案的自动驾驶车辆10可以应用于图6和图7中所示的各种行驶状况。这将在下文中参考图6和图7进行描述。
图6为示出根据本发明的实施方案的自动驾驶车辆的应用示例的示意图。
图6中的(a)为示出在弯曲道路上,相邻车辆20同时试图驶入自动驾驶车辆试图进入的车道的行驶状况的示意图。
参考图6中的(a),在弯曲道路上相邻车辆20试图驶入自动驾驶车辆10试图进入的车道的情况下,自动驾驶车辆10可以预测相邻车辆20的驶入点,并且可以建立用于避免与相邻车辆20发生碰撞的策略。
图6中的(b)为示出反向车道中的相邻车辆20试图掉头进入自动驾驶车辆的行驶车道的行驶状况的示意图。
参考图6中的(b),在直行道路上反向车道中的相邻车辆20试图掉头进入自动驾驶车辆的行驶车道的情况下,自动驾驶车辆10可以预测相邻车辆20的驶入点,并且可以建立用于避免与相邻车辆20发生碰撞的策略。
在通过第一传感器210感测到反向车道中的相邻车辆20时,控制器400可以基于相邻车道中相邻车辆20的横向速度和纵向速度来预测相邻车辆20的行驶路径或者相邻车辆20是否将会驶入,并且可以根据相邻车辆20的行驶状况建立灵活的行驶策略。例如,控制器400可以计算自动驾驶车辆10和相邻车辆20中的每一个到达预测的驶入点所需的时间TTC,并且可以预设用于使自动驾驶车辆10减速或加速的特定控制信号。
图6中的(c)为示出在行驶车道中自动驾驶车辆的前方存在在前车辆和另一个在前车辆的行驶状况的示意图。
参考图6中的(c),在行驶车道中自动驾驶车辆10的前方存在在前车辆20和另一个在前车辆30的情况下,根据本发明的实施方案的自动驾驶车辆10可以预测在前车辆20的驶出点,并且可以建立用于避免与另一个在前车辆30发生碰撞的策略。
在通过第一传感器210感测到行驶车道中位于自动驾驶车辆10前方的在前车辆20时,控制器400可以计算行驶车道中的在前车辆20在道路宽度方向上的横向速度以及在前车辆20在行驶车道延伸的方向上的纵向速度,并且可以以与参考图3至图5所描述的方法相同的方法来预测在前车辆20的驶出点。这里,除了根据在前车辆20是位于自动驾驶车辆的行驶车道还是位于相邻车道来预测驶出点或驶入点之外,预测驶出点的方法与预测驶入点的方法基本相同,因此,将省略其重复描述。
控制器可以基于行驶车道中的在前车辆20的横向速度和纵向速度来预测在前车辆20的行驶路径或在前车辆20是否将驶出,并且可以根据通过第一传感器210获取的另一个在前车辆30的行驶状况来建立灵活的行驶策略。例如,控制器400可以基于另一个在前车辆30的相对速度来预设用于使自动驾驶车辆10减速或加速的特定控制信号。
图7为示出在自动驾驶车辆位于交叉路口的情况下,本发明的一个实施方案中的自动驾驶车辆的应用示例的示意图。
图7中的(a)和(b)为示出相邻车辆20在向右转弯时试图驶入进入交叉路口(向前直行或向左转弯)的自动驾驶车辆10的行驶车道的情况的示意图。
如前所述,在通过第一传感器210感测到在交叉路口向右转弯的相邻车辆20时,控制器400可以基于相邻车道中的相邻车辆20的横向速度和纵向速度来预测相邻车辆20的行驶路径或者相邻车辆20是否将会驶入,并且可以根据相邻车辆20的行驶状况建立灵活的行驶策略。例如,控制器400可以计算自动驾驶车辆10和相邻车辆20中的每一个到达预测的驶入点所需的时间TTC,并且可以预设用于使自动驾驶车辆10减速或加速的特定控制信号,或者用于在避免与相邻车辆20发生碰撞的方向上(例如,在向左方向上)施加扭矩的特定控制信号。
图7中的(c)和(d)为示出进入交叉路口(向前直行或向左转弯)的相邻车辆试图驶入在交叉路口向右转弯的自动驾驶车辆的行驶车道的情况的示意图。
如前所述,在通过第一传感器210感测到进入交叉路口(向前直行或向左转弯)的相邻车辆20时,控制器400可以基于相邻车道中相邻车辆20的横向速度和纵向速度来预测相邻车辆20的行驶路径或者相邻车辆20是否将会驶入,并且可以根据相邻车辆20的行驶状况建立灵活的行驶策略。例如,控制器400可以计算自动驾驶车辆10和相邻车辆20中的每一个到达预测的驶入点所需的时间TTC,并且可以预设用于使自动驾驶车辆10减速或加速的特定控制信号。
图8为示出本发明的一个实施方案中的车辆行驶控制方法的流程图。
参考图8,控制器400可以通过GPS接收单元100、传感器单元200和地图存储单元300获取关于自动驾驶车辆和相邻车辆的行驶状态的信息(S801)。
在步骤S801,控制器400可以基于从车外信息传感器210接收的图像信息或距离信息中的至少一个来计算相邻车辆的相对位置、相对速度和相对加速度。另外,控制器400可以进一步考虑到从GPS接收单元100和车内信息传感器230接收的自动驾驶车辆的位置信息或车辆信息中的至少一个来计算相邻车辆的绝对位置、绝对速度和绝对加速度。
随后,控制器400可以参考通过地图存储单元300获取的道路形状数据,将自动驾驶车辆的当前位置和相邻车辆的绝对位置匹配到高清晰度地图上,并且可以确定相邻车辆行驶的相邻车道,以计算相邻车辆20在道路宽度方向上的横向速度
Figure BDA0002192245390000171
以及相邻车辆20在相邻车道延伸的方向上的纵向速度
Figure BDA0002192245390000172
(S802)。
控制器400可以基于相邻车辆的纵向速度
Figure BDA0002192245390000173
来指定道路区间L(其显示为一组点),并且可以通过假设相邻车辆在相邻车道中在道路宽度方向上保持偏移来计算第一路径
Figure BDA0002192245390000174
(S803)。这里,要指定的道路区间L(其是用户预设的距离)表示车道延伸方向上的纵向距离。
控制器400可以考虑到第一路径
Figure BDA0002192245390000175
相邻车辆的横向移动距离dpath_i和相邻车辆的前进方向矢量
Figure BDA0002192245390000176
来计算对应于相邻车辆的预测行驶路径的第二路径
Figure BDA0002192245390000177
(S804)。这里,可以通过将相邻车辆的横向速度
Figure BDA0002192245390000178
应用到相邻车辆从第一路径
Figure BDA0002192245390000179
移动到第二路径
Figure BDA00021922453900001710
所需的时间来计算横向移动距离dpath_i,并且,相邻车辆的前进方向矢量
Figure BDA00021922453900001711
可以限定为相邻车辆在道路宽度方向上关于相邻车辆前进的方向的单位矢量。
控制器400可以参考高清晰度地图信息确定在步骤S804计算出的对应于相邻车辆的预测行驶路径的第二路径
Figure BDA00021922453900001712
是否与行驶车道和相邻车道之间的边界线S交叉(S805)。
当确定出第二路径
Figure BDA00021922453900001713
与边界线S之间不存在交叉点时(S805中的“否”),该过程可以返回到步骤S801。
当确定出第二路径
Figure BDA00021922453900001714
与边界线S之间存在交叉点时(S805中的“是”),控制器400可以将该交叉点预测为相邻车辆的驶入点Pcut-in(S806)。
随后,控制器400可以将自动驾驶车辆10到达预测的驶入点所需的时间TTC与相邻车辆20到达预测的驶入点所需的时间TTC进行相互比较,并且可以将用于控制自动驾驶车辆的驱动的信号发送到驱动单元500(S807)。
在相邻车辆到达预测的驶入点Pcut-in所需的第一时间tcut-in等于或大于自动驾驶车辆到达预测的驶入点Pcut-in所需的第二时间tego的情况下(S807中的“否”),控制器400可以识别为相邻车辆没有正在驶入,并且可以执行控制使得自动驾驶车辆的速度增大或保持,以避免与相邻车辆发生碰撞(S808)。
在第一时间tcut-in比第二时间tego短的情况下(S807中的“是”),控制器400可以确定相邻车辆是潜在的驶入车辆,并且可以执行控制以使自动驾驶车辆减速(S809)。
根据上述本发明的实施方案的车辆行驶控制方法可以实现为能够由计算机执行并存储在计算机可读记录介质中的程序。计算机可读记录介质的示例包括ROM、RAM、CD-ROM、磁带、软盘和光学数据存储装置。
计算机可读记录介质可以分布到通过网络连接的计算机系统,并且其上的计算机可读代码可以以分布式方式存储和执行。用于实现上述方法的功能性程序、代码和代码段可以由至少一种实施方案所属领域的程序员容易地推断出。
尽管上面仅描述了几种实施方案,但是可以提供各种其它实施方案。上述实施方案可以以各种方式组合,除非它们不相兼容,并且可以通过其实现新的实施方案。
从以上描述显而易见的是,根据本发明的至少一个实施方案,可以基于参考行驶车道或道路形状而计算出的相邻车辆的纵向速度和横向速度来估算行驶路径,从而能够更准确地预测相邻车辆的行驶车道是否会变换,进而灵活地响应各种道路情况。
因此,能够避免由于在自动驾驶行驶情况下不加区别的减速而使交通流受到阻碍,并且能够减少相邻车辆中的驾驶员和乘客的不适。
本领域技术人员应当理解的是,通过本发明可实现的效果不限于上文中具体描述的内容,并且通过以上详细描述将更清楚地理解本发明的其它效果。
对于本领域技术人员显而易见的是,在不偏离本发明的精神和范围的情况下,可对本发明进行各种修改和改变。因此,以上详细描述不应被解释为在任何方面限制本发明,而是通过示例的方式考虑。本发明的范围应当通过对所附权利要求的合理解释来确定,并且在不脱离本发明的范围的情况下做出的所有等同修改应当被理解为包括在所附权利要求的范围内。

Claims (9)

1.一种车辆行驶控制方法,其包括:
通过控制器计算在与自动驾驶车辆行驶的行驶车道相邻的车道中行驶的相邻车辆在道路宽度方向上的横向速度,以及相邻车辆在相邻车道延伸的方向上的纵向速度;
基于所述纵向速度,通过控制器指定预定的道路区间,并且在预定的道路区间内、基于相邻车辆在相邻车道中在道路宽度方向上保持偏移距离的假设、通过控制器来计算第一路径;
通过控制器将所述横向速度应用于所述第一路径,以计算对应于相邻车辆的预测行驶路径的第二路径。
2.根据权利要求1所述的车辆行驶控制方法,其中,基于地图信息来计算所述第一路径,所述地图信息包括表示行驶车道和相邻车道中的每一个的边界线以及所述边界线之间的中心线的多个点。
3.根据权利要求1所述的车辆行驶控制方法,其进一步包括:
跟踪所述第二路径,以确定所述第二路径是否与行驶车道和相邻车道之间的边界线交叉;
基于所述第二路径与所述边界线之间的交叉点来预测相邻车辆的驶入点。
4.根据权利要求3所述的车辆行驶控制方法,其进一步包括:
基于自动驾驶车辆和相邻车辆中的每一个到达预测的驶入点所需的时间来控制自动驾驶车辆的行驶。
5.根据权利要求4所述的车辆行驶控制方法,其中,控制自动驾驶车辆的行驶包括:
当相邻车辆的第一到达时间大于自动驾驶车辆的第二到达时间时,使自动驾驶车辆加速;
当相邻车辆的第一到达时间等于或小于自动驾驶车辆的第二到达时间时,确定出所述相邻车辆是潜在的驶入车辆并使自动驾驶车辆减速。
6.一种自动驾驶车辆,其包括:
传感器,其配置为获取自动驾驶车辆的行驶状态信息以及在与自动驾驶车辆行驶的行驶车道相邻的车道中行驶的相邻车辆的行驶状态信息;
地图存储装置,其配置为提供地图信息,所述地图信息包括表示行驶车道和相邻车道中的每一个的边界线以及所述边界线之间的中心线的多个点;以及
控制器,其配置为参考所述行驶状态信息和所述地图信息来计算相邻车辆在道路宽度方向上的横向速度以及相邻车辆在相邻车道延伸的方向上的纵向速度;
其中,所述控制器配置为:
基于所述纵向速度指定预定的道路区间;
在预定的道路区间内、基于相邻车辆在相邻车道中在道路宽度方向上保持偏移距离的假设来计算第一路径;
将所述横向速度应用于所述第一路径;
计算对应于相邻车辆的预测行驶路径的第二路径。
7.根据权利要求6所述的自动驾驶车辆,其中,所述控制器配置为:
跟踪所述第二路径并且确定所述第二路径是否与行驶车道和相邻车道之间的边界线交叉;
基于所述第二路径与所述边界线之间的交叉点来预测相邻车辆的驶入点。
8.根据权利要求7所述的自动驾驶车辆,其中,所述控制器配置为:基于自动驾驶车辆和相邻车辆中的每一个到达预测的驶入点所需的时间来控制自动驾驶车辆的行驶。
9.根据权利要求8所述的自动驾驶车辆,其中,所述控制器配置为:
当相邻车辆的第一到达时间大于自动驾驶车辆的第二到达时间时,执行自动驾驶车辆的加速;
当相邻车辆的第一到达时间等于或小于自动驾驶车辆的第二到达时间时,确定出所述相邻车辆是潜在的驶入车辆,并且执行自动驾驶车辆的减速。
CN201910836233.8A 2018-12-18 2019-09-05 车辆行驶控制方法及利用该方法的自动驾驶车辆 Pending CN111332286A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180164599A KR102668309B1 (ko) 2018-12-18 2018-12-18 자율 주행 차량 및 그를 이용한 차량의 주행 제어 방법
KR10-2018-0164599 2018-12-18

Publications (1)

Publication Number Publication Date
CN111332286A true CN111332286A (zh) 2020-06-26

Family

ID=70859517

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910836233.8A Pending CN111332286A (zh) 2018-12-18 2019-09-05 车辆行驶控制方法及利用该方法的自动驾驶车辆

Country Status (4)

Country Link
US (1) US11597385B2 (zh)
KR (1) KR102668309B1 (zh)
CN (1) CN111332286A (zh)
DE (1) DE102019133861A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113483775A (zh) * 2021-06-30 2021-10-08 上海商汤临港智能科技有限公司 路径预测方法及装置、电子设备及计算机可读存储介质
CN114132325A (zh) * 2021-12-14 2022-03-04 京东鲲鹏(江苏)科技有限公司 车辆的行驶方法和装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11059493B2 (en) * 2019-04-10 2021-07-13 Honda Motor Co., Ltd. Systems and methods for estimating velocity of an autonomous vehicle and state information of a surrounding vehicle
KR20210114689A (ko) * 2020-03-11 2021-09-24 주식회사 만도 차량 및 그 제어 방법
JP7383532B2 (ja) * 2020-03-12 2023-11-20 本田技研工業株式会社 制御装置及び車両
KR102225387B1 (ko) * 2020-07-14 2021-03-09 주식회사 사라다 라이다 데이터 기반의 차량 주행상태 판단이 가능한 영상 관제 장치 및 방법
FR3113393B1 (fr) * 2020-08-12 2023-11-10 Renault Sas Procédé de gestion automatisée de la vitesse longitudinale d’un véhicule.
CN114475602B (zh) * 2020-11-12 2023-05-09 宇通客车股份有限公司 一种车辆、车辆调头方法及装置
US20220379922A1 (en) * 2021-06-01 2022-12-01 Denso International America, Inc. System for maneuvering a vehicle
CN113587950B (zh) * 2021-08-26 2024-04-09 清华大学 自动驾驶汽车静态路径规划方法、装置及存储介质
CN113734198B (zh) * 2021-09-03 2023-04-07 智己汽车科技有限公司 一种目标相对航向获取方法及设备
CN114537432A (zh) * 2021-11-19 2022-05-27 北京小米移动软件有限公司 轨迹预测方法、轨迹预测装置及存储介质
CN114120688B (zh) * 2021-11-24 2022-06-28 哈尔滨工业大学 V2v环境下考虑前方车辆信息的跟驰模型建立方法
FR3129908B1 (fr) * 2021-12-06 2023-10-27 Psa Automobiles Sa Procédé et dispositif de contrôle d’un système de régulation adaptative de vitesse d’un véhicule

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160047268A (ko) * 2014-10-22 2016-05-02 현대자동차주식회사 차로 변경 예측 장치 및 차로 변경 예측 방법
US20160339919A1 (en) * 2015-05-19 2016-11-24 Denso Corporation Lane merging determination apparatus
DE102016106983A1 (de) * 2016-04-15 2017-10-19 Valeo Schalter Und Sensoren Gmbh Verfahren zum Erkennen eines möglichen Spurwechselmanövers eines Zielfahrzeugs, Steuereinrichtung, Fahrerassistenzsystem sowie Kraftfahrzeug
US20180043890A1 (en) * 2016-08-11 2018-02-15 Trw Automotive Gmbh Control system and control method for determining a likelihood of a lane change by a preceding vehicle
KR20180020615A (ko) * 2016-08-19 2018-02-28 한양대학교 산학협력단 기계 학습을 통한 주변 차량의 주행 경로 예측 방법 및 이를 이용하는 차량 제어 방법

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7444241B2 (en) 2005-12-09 2008-10-28 Gm Global Technology Operations, Inc. Method for detecting or predicting vehicle cut-ins
JP5262986B2 (ja) * 2009-03-05 2013-08-14 日産自動車株式会社 走行経路生成装置、走行経路生成方法、及び運転操作支援装置
US9428187B2 (en) * 2014-06-05 2016-08-30 GM Global Technology Operations LLC Lane change path planning algorithm for autonomous driving vehicle
US9412277B2 (en) 2014-10-13 2016-08-09 Ford Global Technologies, Llc Vehicle cut-in strategy
WO2016130719A2 (en) * 2015-02-10 2016-08-18 Amnon Shashua Sparse map for autonomous vehicle navigation
KR102396851B1 (ko) * 2015-07-13 2022-05-11 현대모비스 주식회사 교차로 충돌 회피 제어 장치 및 그 방법
KR101714250B1 (ko) * 2015-10-28 2017-03-08 현대자동차주식회사 주변 차량의 이동 경로의 예측 방법
JP6815856B2 (ja) * 2016-12-14 2021-01-20 日立オートモティブシステムズ株式会社 先行車両の走行軌跡予測装置及びその搭載車両
CN112203918B (zh) * 2018-05-31 2023-11-21 北美日产公司 轨迹规划

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160047268A (ko) * 2014-10-22 2016-05-02 현대자동차주식회사 차로 변경 예측 장치 및 차로 변경 예측 방법
US20160339919A1 (en) * 2015-05-19 2016-11-24 Denso Corporation Lane merging determination apparatus
DE102016106983A1 (de) * 2016-04-15 2017-10-19 Valeo Schalter Und Sensoren Gmbh Verfahren zum Erkennen eines möglichen Spurwechselmanövers eines Zielfahrzeugs, Steuereinrichtung, Fahrerassistenzsystem sowie Kraftfahrzeug
US20180043890A1 (en) * 2016-08-11 2018-02-15 Trw Automotive Gmbh Control system and control method for determining a likelihood of a lane change by a preceding vehicle
KR20180020615A (ko) * 2016-08-19 2018-02-28 한양대학교 산학협력단 기계 학습을 통한 주변 차량의 주행 경로 예측 방법 및 이를 이용하는 차량 제어 방법

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113483775A (zh) * 2021-06-30 2021-10-08 上海商汤临港智能科技有限公司 路径预测方法及装置、电子设备及计算机可读存储介质
CN113483775B (zh) * 2021-06-30 2024-06-14 上海商汤临港智能科技有限公司 路径预测方法及装置、电子设备及计算机可读存储介质
CN114132325A (zh) * 2021-12-14 2022-03-04 京东鲲鹏(江苏)科技有限公司 车辆的行驶方法和装置
CN114132325B (zh) * 2021-12-14 2024-03-01 京东鲲鹏(江苏)科技有限公司 车辆的行驶方法和装置

Also Published As

Publication number Publication date
KR20200081526A (ko) 2020-07-08
US11597385B2 (en) 2023-03-07
DE102019133861A1 (de) 2020-06-18
US20200189592A1 (en) 2020-06-18
KR102668309B1 (ko) 2024-05-29

Similar Documents

Publication Publication Date Title
CN111332286A (zh) 车辆行驶控制方法及利用该方法的自动驾驶车辆
US9884625B2 (en) Vehicle traveling control device
US20180056998A1 (en) System and Method for Multi-Vehicle Path Planning Technical Field
CN111284493A (zh) 用于控制车辆行驶的装置和方法
EP3889722B1 (en) Generation method and generation system for dynamic target line during automatic driving of vehicle, and vehicle
EP3825979A1 (en) Travel assistance method and travel assistance device
JP7293628B2 (ja) 運転支援車両の合流方法及び合流装置
JP7183521B2 (ja) 経路候補設定システム及び経路候補設定方法
JP2020163970A (ja) 車両運転支援システム
CA3064011C (en) Driving assistance method and driving assistance apparatus
JP7312356B2 (ja) 車両運転支援システム
JP7304875B2 (ja) 自動運転制御方法及び自動運転制御システム
JP2020163975A (ja) 車両運転支援システム
JP7214076B2 (ja) 車両運転支援システム
JP7250624B2 (ja) 車両の走行制御方法及び走行制御装置
JP2020163968A (ja) 車両運転支援システム
WO2018003068A1 (ja) 運転支援方法及び運転支援装置
JP7183520B2 (ja) 経路候補設定システム及び経路候補設定方法
JP7374722B2 (ja) 運転支援方法及び運転支援装置
US20240034328A1 (en) Vehicle motion control device and vehicle motion control method
EP4357213A1 (en) A method for determining whether an automatic collision avoidance steering maneuver should be executed or not
JP7205799B2 (ja) 車両運転支援システム
EP4397553A1 (en) Vehicle control method and vehicle control device
JP2023075667A (ja) 運転支援方法及び運転支援装置
JP2024006451A (ja) 走行制御方法及び走行制御装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination