CN111318190B - 一种石墨烯复合材料过滤膜 - Google Patents

一种石墨烯复合材料过滤膜 Download PDF

Info

Publication number
CN111318190B
CN111318190B CN201811543006.8A CN201811543006A CN111318190B CN 111318190 B CN111318190 B CN 111318190B CN 201811543006 A CN201811543006 A CN 201811543006A CN 111318190 B CN111318190 B CN 111318190B
Authority
CN
China
Prior art keywords
graphene
oegma
polymer
substrate
meo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811543006.8A
Other languages
English (en)
Other versions
CN111318190A (zh
Inventor
王晓慧
韩卓
修长军
刘璐
吴晓东
孙恩呈
宋春燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Technology Inspection Center of Sinopec Shengli Oilfield Co
Original Assignee
China Petroleum and Chemical Corp
Technology Inspection Center of Sinopec Shengli Oilfield Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Technology Inspection Center of Sinopec Shengli Oilfield Co filed Critical China Petroleum and Chemical Corp
Priority to CN201811543006.8A priority Critical patent/CN111318190B/zh
Publication of CN111318190A publication Critical patent/CN111318190A/zh
Application granted granted Critical
Publication of CN111318190B publication Critical patent/CN111318190B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/78Graft polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/40Devices for separating or removing fatty or oily substances or similar floating material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • C08G81/02Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers at least one of the polymers being obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C08G81/024Block or graft polymers containing sequences of polymers of C08C or C08F and of polymers of C08G
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/24Mechanical properties, e.g. strength

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明公开了一种石墨烯复合材料过滤膜,属于油水分离膜材料技术领域。其技术方案为:包括基底,所述基底上包覆有聚合物P(MeO2MA‑co‑OEGMA‑SH)接枝的聚多巴胺‑石墨烯。本发明的有益效果为:本发明实用性强,可以应用于大多数的基底;本发明利用多巴胺水热还原石墨烯,一方面增加了石墨烯在基底上的附着能力,另一方面得到了多孔的石墨烯凝胶,有利于增加表明粗糙度,提高接触面,提高油水分离效率;本发明将特殊浸润性高分子涂装于机械强度较高的基底上,制备得到的油水分离膜,机械性能好,使用寿命长。

Description

一种石墨烯复合材料过滤膜
技术领域
本发明涉及油水分离膜材料技术领域,尤其涉及一种石墨烯复合材料过滤膜。
背景技术
随着我国工业的快速发展,含油废水排放量也逐年增加,成分日趋复杂。若油田废水未经处理直接排放,不但造成水资源的极大浪费,同时也造成严重的环境污染。随着国家环保要求的提高及节能减排政策的提出,含油废水处理技术成为影响油田可持续发展的重要因素。
膜分离技术是一种新型的油水分离方式,具有能耗低、单级分离效率高、过程灵活简单、环境污染低、通用性强等优点。膜是膜分离技术的核心。随着材料科学的发展,近年来基于特殊润湿性的表面材料研究发展迅猛,主要包括超亲水、超疏水、超亲油、超疏油、超双疏、超双亲表面等。通过设计材料表面的特殊浸润性,得到超疏油或者超疏水的分离材料,无疑是提高其油水分离性能最有效的手段,尤其是具有超亲水和水下超疏油性能的膜,当含油废水接触膜表面时,水可以快速浸润往下渗透,而膜表面始终保持超疏油性,油阻截在过滤膜表面,从而达到动态流体中油水混合物高通量快速分离的效果,应用前景更为广阔。
以三维多孔石墨烯组装体作为膜材料,前期已实现石墨烯纳米材料规模化低成本的制备,以石墨烯纳米材料为原料制备的三维多孔石墨烯组装体,成本低廉、制备工艺简单、机械强度高、化学和热稳定性高,能作为优良的膜材料进一步推广应用。进一步将智能型温敏高分子修饰到石墨烯组装体表面,可制得在常温下具有优良超亲水-水下超疏油性的石墨烯复合过滤膜,分离效率高、分离速度快、绿色环保、抗污性能优良、可循环利用、使用寿命长。
在此基础之上,为了达到石墨烯膜的实际现场应用,一般需要将石墨烯膜固定在死端过滤装置或者错流过滤装置上使用。此过程中,膜体自身要承受来自液柱的巨大压力,这就要求石墨烯膜具有一定的机械强度;因此如何将浸润性高分子材料涂装在不同基底材料上,以提高石墨烯膜的强度,是目前急需解决的一个问题。
发明内容
本发明主要解决的技术问题是提供一种石墨烯复合材料过滤膜的加工涂装工艺,能够将浸润性高分子材料在不同基底材料上的涂装,得到高效率、高强度的油水分离膜。
本发明的原理是:
Figure BDA0001908668120000021
在不同基底上负载聚多巴胺-石墨烯涂层,使三维多孔多巴胺-石墨烯凝胶材料包覆在基底表面。通过原子转移自由基聚合制备具有超亲水性能的聚合物,然后通过聚合物末端巯基与聚多巴胺之间的迈克尔加成反应,将聚合物接枝到涂层表面,得到高强度的,特殊浸润性的油水分离膜材料。
本发明具体的技术方案如下:一种石墨烯复合材料过滤膜,包括基底,所述基底上包覆有聚合物P(MeO2MA-co-OEGMA-SH)接枝的聚多巴胺-石墨烯。
所述基底为金属网状材料、非金属多孔材料或者金属-非金属复合多孔材料。
所述聚多巴胺-石墨烯是以多巴胺为还原剂,与氧化石墨烯在水热条件下自组装成三维多孔网状结构,其中,多巴胺和氧化石墨烯在反应体系中的浓度比在2:1至1:4之间;水热反应的温度55-65℃,加热时间为4-8h。
所述聚合物P的制备方法包括以下步骤:
以2-甲基-2丙烯酸-2(2甲氧基乙氧基)乙酯、寡聚乙二醇甲醚甲基丙烯酸酯为单体,双[2-(2’-溴代异丁酰氧基)乙基]二硫化物为引发剂,溴化亚铜为催化剂,2,2’-联吡啶为配体,通过原子转移自由基聚合反应,合成P(MEO2MA-co-OEGMA-S-S-MEO2MA-co-OEGMA)共聚物;再利用三丁基膦作为还原催化剂,打断聚合物中的二硫键,得到末端带有巯基的聚合物P(MeO2MA-co-OEGMA-SH)。
所述寡聚乙二醇甲醚甲基丙烯酸酯的分子量为475g/mol。
所述单体2-甲基-2丙烯酸-2(2甲氧基乙氧基)乙酯和寡聚乙二醇甲醚甲基丙烯酸酯的投料摩尔比为5:1-20:1,引发剂双[2-(2’-溴代异丁酰氧基)乙基]二硫化物用量为单体2-甲基-2丙烯酸-2(2甲氧基乙氧基)乙酯摩尔量的1/150-1/50,催化剂溴化亚铜用量为单体2-甲基-2丙烯酸-2(2甲氧基乙氧基)乙酯摩尔量的1/50-1/15,配体2,2’-联吡啶用量为催化剂摩尔量的0.5-3倍。
所述聚合物P(MeO2MA-co-OEGMA-SH)在碱性条件下,通过迈克尔加成反应,接枝在聚多巴胺-石墨烯包覆的基底上,形成石墨烯复合材料过滤膜。
所述迈克尔加成反应在pH为8.0-9.0,浓度为0.05-0.15M的Bicine缓冲溶液中进行。
所述迈克尔加成反应的具体步骤为:将聚合物P(MeO2MA-co-OEGMA-SH)溶解于Bicine缓冲溶液混合均匀,然后将聚多巴胺-石墨烯置于溶液中,室温下搅拌18-36h,即可得到石墨烯-高分子修饰石墨烯复合材料过滤膜。
为了更好的实现上述发明目的,本发明还提供了一种石墨烯复合材料过滤膜的加工涂装工艺,由以下步骤组成:
(1)聚多巴胺-石墨烯在不同基底上的涂覆
以多巴胺为还原剂,使氧化石墨烯在水热条件下自组装成三维多孔网状结构,包覆在基底上;
(2)P(MEO2MA-co-OEGMA-SH)共聚物的合成
以2-甲基-2丙烯酸-2(2甲氧基乙氧基)乙酯、寡聚乙二醇甲醚甲基丙烯酸酯为单体,双[2-(2’-溴代异丁酰氧基)乙基]二硫化物为引发剂,溴化亚铜为催化剂,2,2’-联吡啶为配体,通过原子转移自由基聚合反应,合成P(MEO2MA-co-OEGMA-S-S-MEO2MA-co-OEGMA)共聚物;
再利用三丁基膦作为还原催化剂,打断聚合物中的二硫键,得到末端带有巯基的P(MeO2MA-co-OEGMA-SH)聚合物。
(3)聚合物在膜基材上的接枝工艺
在碱性条件下,通过迈克尔加成反应,将末端带有巯基的P(MeO2MA-co-OEGMA-SH)聚合物,接枝在聚多巴胺-石墨烯包覆的基底上,形成超亲水性油水过滤膜。
进一步优选的,所述步骤(1)中,基底包括金属网状材料、非金属多孔材料或者金属-非金属复合多孔材料;再进一步优选的,所述金属网状材料可以为不锈钢网、钛膜以及铁丝网等;所述非金属多孔材料可以为尼龙网、陶瓷膜管等;更进一步优选的,所述不锈钢网的规格优选为500-1800目,所述尼龙网的规格优选为500-1500目。
进一步优选的,所述步骤(1)中,多巴胺和氧化石墨烯在反应体系中的浓度比在2:1至1:4之间。
进一步优选的,所述步骤(1)中,水热反应的温度55-65℃,加热时间为4-8h;进一步优选为,水热反应的温度60℃,加热时间为6h。
进一步优选的,所述步骤(2)中,所述寡聚乙二醇甲醚甲基丙烯酸酯选择分子量475g/mol的单体,其命名为OEGMA475;所述原子转移自由基聚合反应合成的共聚物为P(MEO2MA-co-OEGMA475-S-S-MEO2MA-co-OEGMA475),所述末端带有巯基的共聚物为P(MeO2MA-co-OEGMA475-SH)。
进一步优选的,所述步骤(2)中,投料单体2-甲基-2丙烯酸-2(2甲氧基乙氧基)乙酯和寡聚乙二醇甲醚甲基丙烯酸酯的摩尔比介于5:1至20:1之间,引发剂双[2-(2’-溴代异丁酰氧基)乙基]二硫化物用量为单体2-甲基-2丙烯酸-2(2甲氧基乙氧基)乙酯摩尔量的1/150-1/50,催化剂溴化亚铜用量为单体2-甲基-2丙烯酸-2(2甲氧基乙氧基)乙酯摩尔量的1/50-1/15,配体2,2’-联吡啶用量为催化剂摩尔量的0.5-3倍。
更进一步优选为:引发剂双[2-(2’-溴代异丁酰氧基)乙基]二硫化物用量为单体2-甲基-2丙烯酸-2(2甲氧基乙氧基)乙酯摩尔量的1/100,催化剂溴化亚铜用量为单体2-甲基-2丙烯酸-2(2甲氧基乙氧基)乙酯摩尔量的1/25,配体2,2’-联吡啶用量为催化剂摩尔量的1.5倍。
进一步优选的,所述步骤(2)中,以三丁基膦作为还原催化剂打断二硫键,制得单硫化P(MeO2MA-co-OEGMA475-SH)聚合物;所述三丁基膦的用量为P(MEO2MA-co-OEGMA475-S-S-MEO2MA-co-OEGMA475)质量的1/4-1/2,进一步优选为1/3。
进一步优选的,所述步骤(2)具体为:
将单体2-甲基-2丙烯酸-2(2甲氧基乙氧基)乙酯和寡聚乙二醇甲醚甲基丙烯酸酯溶于无水甲醇中,密封,通入氩气除氧;将引发剂双[2-(2’-溴代异丁酰氧基)乙基]二硫化物、催化剂溴化亚铜和配体2,2-联吡啶依次加入体系中,继续通氩气;然后在45-55℃下反应6-10h,反应结束后,将反应液暴露于空气中终止反应,向其中加入乙醇稀释,并通过60-200目的二氧化硅柱来除去铜催化剂;旋蒸除去大部分甲醇和乙醇,加入己烷,聚合物沉淀出来,过滤分离,得到P(MEO2MA-co-OEGMA475-S-S-MEO2MA-co-OEGMA475)聚合物;将1gP(MEO2MA-co-OEGMA475-S-S-MEO2MA-co-OEGMA475)溶解于溶剂二氯甲烷中,室温下加入300-500μL三丁基膦作为还原催化剂,将混合物快速搅拌20-40分钟,旋蒸除去溶剂,可得单硫化高分子P(MeO2MA-co-OEGMA475-SH)。
所述步骤(2)更进一步优选为:
将单体2-甲基-2丙烯酸-2(2甲氧基乙氧基)乙酯和寡聚乙二醇甲醚甲基丙烯酸酯溶于无水甲醇中,置于Schlenk管中,密封,通入氩气15min除氧;将引发剂双[2-(2’-溴代异丁酰氧基)乙基]二硫化物、催化剂溴化亚铜和配体2,2-联吡啶依次加入体系中,继续通气15min;然后在50℃下反应8h,反应结束后,将反应液暴露于空气中终止反应,向其中加入乙醇稀释,并通过60-200目的二氧化硅柱来除去铜催化剂;旋蒸除去大部分甲醇和乙醇,加入己烷,聚合物沉淀出来,过滤分离,得到P(MEO2MA-co-OEGMA-S-S-MEO2MA-co-OEGMA)聚合物;将1g P(MEO2MA-co-OEGMA-S-S-MEO2MA-co-OEGMA)溶解于15mL二氯甲烷中,室温下加入400μL(0.33g)三丁基膦作为还原催化剂,将混合物快速搅拌30分钟,旋蒸除去溶剂,可得单硫化高分子P(MeO2MA-co-OEGMA-SH)。
进一步的优选,所述步骤(3)中,迈克尔加成反应在pH=8.0-9.0,0.05-0.15M的Bicine缓冲溶液中进行;
所述步骤(3)更进一步优选为,迈克尔加成反应在pH=8.5,0.1M的Bicine缓冲溶液中进行;所述缓冲溶液配制方法如下:将16.317g N,N-二羟乙基甘氨酸溶于1000mL去离子水中,配成0.1M的Bicine溶液;将2.4g NaOH溶于600mL去离子水中,配成0.1M NaOH溶液;将1000mL 0.1M的Bicine溶液与600mL 0.1M的NaOH溶液混合即得到所述Bicine缓冲溶液。
进一步优选的,所述步骤(3)中,将P(MeO2MA-co-OEGMA-SH)聚合物溶解于Bicine缓冲溶液,混合均匀;将聚多巴胺-石墨烯包覆的基底,悬挂于溶液中,室温下搅拌18-36h,即可得到石墨烯-高分子修饰的超亲水性油水过滤膜。
所述步骤(3)更进一步优选为:将P(MeO2MA-co-OEGMA-SH)聚合物溶解于0.1M,pH为8.5的Bicine缓冲溶液,混合均匀;将聚多巴胺-石墨烯包覆的基底,悬挂于溶液中,室温下搅拌24h,即可得到石墨烯-高分子修饰的超亲水性油水过滤膜。
本发明将智能型温敏高分子修饰的石墨烯组装体涂覆到不同的膜基材表面。目前普遍采用的膜基材主要为具有多微孔结构的薄膜类的材料,主要包括不锈钢丝网、有机膜和陶瓷膜基材等。
与现有技术相比,本发明的有益效果为:
1.本发明实用性强,可以应用于大多数的基底;由于聚多巴胺具有超强的附着能力,可以附着于绝大多数无机和有机的表面;
2.本发明利用多巴胺水热还原石墨烯,一方面增加了石墨烯在基底上的附着能力,另一方面,得到了多孔的石墨烯凝胶,有利于增加表明粗糙度,提高接触面,提高油水分离效率;
3.本发明将特殊浸润性高分子涂装于机械强度较高的基底上,制备得到的油水分离膜,机械性能好,使用寿命长;
4.本发明所提出的涂覆工艺,简单易行,成本低,应用范围广,具有广阔的应用前景。
附图说明
图1是本发明的技术方案示意图。
图2是不锈钢网、尼龙网、陶瓷膜基底涂覆前后的SEM对比图,其中图A、C、E分别为不锈钢网,尼龙网,陶瓷膜基底涂覆前的SEM图,B、D、F分别为不锈钢网,尼龙网,陶瓷膜基底涂覆后的SEM图。
图3是循环使用20次后,石墨烯涂覆不锈钢、陶瓷、尼龙网基底的SEM图。
具体实施方式
为能清楚说明本方案的技术特点,下面通过具体实施方式,对本方案进行阐述。
本发明实施例和实验例中的材料准备如下:
(1)试剂药品
主要的实际药品:石墨粉(80目),盐酸多巴胺,2-甲基-2丙烯酸-2(2甲氧基乙氧基)乙酯(MEO2MA),寡聚乙二醇甲醚甲基丙烯酸酯(寡聚乙二醇甲醚甲基丙烯酸酯选择分子量475g/mol的单体,命名为OEGMA475),双[2-(2’-溴代异丁酰氧基)乙基]二硫化物(DTBE),溴化亚铜(CuBr),2,2’-联吡啶(BPy),三丁基膦(TBUP),N,N-二羟乙基甘氨酸,无水乙醇,以上药品均为分析纯,无需纯化,直接使用。
(2)基底材料
不锈钢网(800目),尼龙网(500目),陶瓷膜管,均为市售商品。
将不锈钢网,尼龙网根据需要剪裁成固定尺寸,将陶瓷膜管切断成固定长度。
将不锈钢滤网浸泡在稀盐酸(盐酸:水=1:5)中至大部分表面刚好产生气泡,以除去表面氧化层。然后依次在去离子水、无水乙醇,丙酮超声清洗各10分钟,烘干备用。
尼龙网依次用去离子水、无水乙醇,丙酮超声清洗各10分钟,烘干备用。
陶瓷膜管先用去离子水超声清洗干净,再用无水乙醇或丙酮超声清洗,烘干备用。
氧化石墨烯的制备,以石墨粉(80目)为原料,采用改进的Hummers法合成。
实施例1-3聚多巴胺-石墨烯在基底上的涂覆方法
本发明实施例提供了一种聚多巴胺-石墨烯在基底上的涂覆方法,包括以下步骤:将多巴胺和氧化石墨烯的溶液置于烧杯中,其中多巴胺的浓度为2.0mg/mL,氧化石墨烯的浓度为1.0mg/mL,超声分散均匀,将基底材料浸入多巴胺和氧化石墨烯的溶液,调节pH至7.0左右,用封口胶将烧杯密封,然后将烧杯置于烘箱中,60℃下加热6h,反应结束后,冷却至室温,将基底材料取出,小心洗涤去除表面附着的大块固体,干燥备用。实施例1-3所选用的基底材料依次为不锈钢网、尼龙网和陶瓷膜。
实施例4-6聚多巴胺-石墨烯在基底上的涂覆方法
本发明实施例提供了一种聚多巴胺-石墨烯在基底上的涂覆方法,包括以下步骤:将多巴胺和氧化石墨烯的溶液置于烧杯中,其中多巴胺的浓度为1.0mg/mL,氧化石墨烯的浓度为2.0mg/mL,超声分散均匀,将基底材料浸入多巴胺和氧化石墨烯的溶液,调节pH至7.0左右,用封口胶将烧杯密封,然后将烧杯置于烘箱中,60℃下加热6h,反应结束后,冷却至室温,将基底材料取出,小心洗涤去除表面附着的大块固体,干燥备用。实施例4-6所选用的基底材料依次为不锈钢网、尼龙网和陶瓷膜。
实施例7-9聚多巴胺-石墨烯在基底上的涂覆方法
本发明实施例提供了一种聚多巴胺-石墨烯在基底上的涂覆方法,包括以下步骤:将多巴胺和氧化石墨烯的溶液置于烧杯中,其中多巴胺的浓度为1.0mg/mL,氧化石墨烯的浓度为4.0mg/mL,超声分散均匀,将基底材料浸入多巴胺和氧化石墨烯的溶液,调节pH至7.0左右,用封口胶将烧杯密封,然后将烧杯置于烘箱中,60℃下加热6h,反应结束后,冷却至室温,将基底材料取出,小心洗涤去除表面附着的大块固体,干燥备用。实施例7-9所选用的基底材料依次为不锈钢网、尼龙网和陶瓷膜。
实施例10聚合物P(MeO2MA-co-OEGMA475-SH)的制备方法
本发明实施例提供了一种聚合物P(MeO2MA-co-OEGMA475-SH)的制备方法,包括如下步骤:
将单体MEO2MA(941mg,5mmol)和OEGMA(119mg,0.25mmol)按照摩尔比20:1溶于2.4mL无水甲醇中,置于Schlenk管中,密封,通入高纯氩气15min除氧。将引发剂DTBE(21.6mg,0.05mmol),催化剂溴化亚铜(28.8mg,0.2mmol)和配体2,2-联吡啶(52.0mg,0.30mmol),依次加入体系中,继续通氩气15min。在50℃下反应8h,反应结束后,将反应液暴露于空气中终止反应,向其中加入乙醇稀释,并通过二氧化硅柱(60-200目)来除去铜催化剂。旋蒸除去大部分甲醇和乙醇,加入己烷,聚合物沉淀出来,过滤分离得到P(MEO2MA-co-OEGMA475-S-S-MEO2MA-co-OEGMA475)聚合物。
为了打断二硫键,将1g P(MeO2MA-co-OEGMA475-S-S-MeO2MA-co-OEGMA475)溶解于15mL二氯甲烷中,室温下加入400μL三丁基膦作为还原催化剂,将混合物快速搅拌30分钟,旋蒸除去溶剂,即得单硫化高分子聚合物P(MeO2MA-co-OEGMA475-SH)。
实施例11聚合物P(MeO2MA-co-OEGMA475-SH)的制备方法
本发明实施例提供了一种聚合物P(MeO2MA-co-OEGMA475-SH)的制备方法,包括如下步骤:
将单体MEO2MA(470mg,2.5mmol)和OEGMA(119mg,0.25mmol)按照摩尔比10:1溶于2.4mL无水甲醇中,置于Schlenk管中,密封,通入高纯氩气15min除氧。将引发剂DTBE(10.8mg,0.025mmol),催化剂溴化亚铜(14.4mg,0.1mmol)和配体2,2-联吡啶(26.0mg,0.15mmol),依次加入体系中,继续通氩气15min。在50℃下反应8h,反应结束后,将反应液暴露于空气中终止反应,向其中加入乙醇稀释,并通过二氧化硅柱(60-200目)来除去铜催化剂。旋蒸除去大部分甲醇和乙醇,加入己烷,聚合物沉淀出来,过滤分离得到P(MEO2MA-co-OEGMA475-S-S-MEO2MA-co-OEGMA475)聚合物。
为了打断二硫键,将1g P(MeO2MA-co-OEGMA475-S-S-MeO2MA-co-OEGMA475)溶解于15mL二氯甲烷中,室温下加入400μL三丁基膦作为还原催化剂,将混合物快速搅拌30分钟,旋蒸除去溶剂,可得单硫化高分子聚合物P(MeO2MA-co-OEGMA475-SH)。
实施例12聚合物P(MeO2MA-co-OEGMA475-SH)的制备方法
本发明实施例提供了一种聚合物P(MeO2MA-co-OEGMA475-SH)的制备方法,包括如下步骤:
将单体MEO2MA(235mg,1.25mmol)和OEGMA(119mg,0.25mmol)按照摩尔比5:1溶于2.4mL无水甲醇中,置于Schlenk管中,密封,通入高纯氩气15min除氧。将引发剂DTBE(5.4mg,0.0125mmol),催化剂溴化亚铜(7.2mg,0.05mmol)和配体2,2-联吡啶(13.0mg,0.075mmol),依次加入体系中,继续通氩气15min。在50℃下反应8h,反应结束后,将反应液暴露于空气中终止反应,向其中加入乙醇稀释,并通过二氧化硅柱(60-200目)来除去铜催化剂。旋蒸除去大部分甲醇和乙醇,加入己烷,聚合物沉淀出来,过滤分离得到P(MEO2MA-co-OEGMA475-S-S-MEO2MA-co-OEGMA475)聚合物。
为了打断二硫键,将1g P(MEO2MA-co-OEGMA475-S-S-MEO2MA-co-OEGMA475)溶解于15mL二氯甲烷中,室温下加入400μL三丁基膦作为还原催化剂,将混合物快速搅拌30分钟,旋蒸除去溶剂,可得单硫化高分子聚合物P(MeO2MA-co-OEGMA475-SH)。
实施例13-39石墨烯复合材料过滤膜的加工涂装工艺
本发明实施例提供了一种石墨烯复合材料过滤膜的加工涂装工艺,包括如下步骤:
将实施例10-12的制备方法制得的聚合物P(MEO2MA-co-OEGMA475-SH),取2g溶解于100mL 0.1M,pH为8.5的Bicine缓冲溶液,混合均匀;将实施例1-9的制备方法制得的聚多巴胺-石墨烯包覆的基底,悬挂于溶液中,室温下搅拌24h,即可得到石墨烯-高分子修饰的涂装于基底之上的超亲水性油水石墨烯复合材料过滤膜。具体工艺步骤原理如图1所示,实施例13-39所选用的聚多巴胺-石墨烯基底和聚合物P(MEO2MA-co-OEGMA475-SH)如表1所示。
表1
Figure BDA0001908668120000101
Figure BDA0001908668120000111
实施例40-42石墨烯复合材料过滤膜
本发明实施例提供了一种石墨烯复合材料过滤膜,包括基底,所述基底上包覆有聚合物P(MeO2MA-co-OEGMA-SH)接枝的聚多巴胺-石墨烯。
实施例40-42所选用的基底材料依次为不锈钢网、尼龙网和陶瓷膜。
实验例
本发明实验例通过扫描电镜和油水分离实验进一步验证本发明的技术效果。
(1)将不锈钢网、尼龙网、陶瓷膜基底涂覆前后的样品照摄扫描电镜,其SEM对比图如图2所示。从图2中可以看出,与空白基底相比,涂覆后的不锈钢网、尼龙网、陶瓷膜表面均被石墨烯-高分子材料覆盖,表面空隙被有效填充,在基底表面和内部形成一层致密的多孔复合材料镀层,可以有效防止基底油水分离过程中漏点的出现,且能使含油污水与膜分离材料充分接触,增大油水分离效率。
(2)分别选取使用实施例13、17和21的工艺制得的石墨烯复合材料过滤膜进行油水分离实验,数据如下:
实施例13组:800目不锈钢网作为基底的石墨烯复合材料过滤膜,10次平行实验的油水分离效率平均值为99.3%,具体实验数据如表2所示:
表2
不锈钢800目 原水含油量(mg/L) 过滤后含油量(mg/L) 分离效率(%)
1# 53.5 0.48 99.1
2# 53.5 0.32 99.4
3# 53.5 0.37 99.3
4# 53.5 0.32 99.4
5# 53.5 0.37 99.3
6# 53.5 0.42 99.2
7# 53.5 0.26 99.5
8# 53.5 0.37 99.3
9# 53.5 0.26 99.5
10# 53.5 0.48 99.1
平均 53.5 0.37 99.3
实施例21组:陶瓷膜基底涂装石墨烯纳米材料后,10次平行实验的油水分离效率平均值为99.1%,具体实验数据如表3所示:
表3
Figure BDA0001908668120000121
Figure BDA0001908668120000131
实施例17组:500目尼龙网作为基底的石墨烯复合材料过滤膜,10次平行实验油水分离效率平均值为90.8%,具体实验数据如表4所示:
表4
尼龙网500目 原水含油量(mg/L) 过滤后含油量(mg/L) 分离效率(%)
1# 53.5 4.60 91.4
2# 53.5 4.76 91.1
3# 53.5 4.33 91.9
4# 53.5 5.24 90.2
5# 53.5 5.40 89.9
6# 53.5 4.87 90.9
7# 53.5 5.03 90.6
8# 53.5 5.30 90.0
9# 53.5 4.65 91.3
10# 53.5 4.76 91.1
平均 30.6 4.89 90.8
由以上油水分离实验可见,不同基底涂覆石墨烯纳米材料后,油水分离效率均大大增加,保持在90%以上。另外,循环利用20次后,将试样照摄扫描电镜,SEM图如图3所示,石墨烯在不同基底表面均无明显脱落,证明材料和基底结合牢固。
本发明未经描述的技术特征可以通过或采用现有技术实现,在此不再赘述,当然,上述说明并非是对本发明的限制,本发明也并不仅限于上述举例,本技术领域的普通技术人员在本发明的实质范围内所做出的变化、改型、添加或替换,也应属于本发明的保护范围。

Claims (7)

1.一种石墨烯复合材料过滤膜,其特征在于,包括基底,所述基底上包覆有聚合物P(MeO2MA-co-OEGMA-SH)接枝的聚多巴胺-石墨烯;
所述聚多巴胺-石墨烯是以多巴胺为还原剂,与氧化石墨烯在水热条件下自组装成三维多孔网状结构,其中,多巴胺和氧化石墨烯在反应体系中的浓度比在2:1至1:4之间;水热反应的温度55-65℃,加热时间为4-8h;
所述聚合物P(MeO2MA-co-OEGMA-SH)在碱性条件下,通过迈克尔加成反应,接枝在聚多巴胺-石墨烯包覆的基底上,形成石墨烯复合材料过滤膜。
2.根据权利要求1所述的石墨烯复合材料过滤膜,其特征在于,所述基底为金属网状材料、非金属多孔材料或者金属-非金属复合多孔材料。
3.根据权利要求1所述的石墨烯复合材料过滤膜,其特征在于,所述聚合物P(MeO2MA-co-OEGMA-SH)的制备方法包括以下步骤:
以2-甲基-2丙烯酸-2(2甲氧基乙氧基)乙酯、寡聚乙二醇甲醚甲基丙烯酸酯为单体,双[2-(2’-溴代异丁酰氧基)乙基]二硫化物为引发剂,溴化亚铜为催化剂,2,2’-联吡啶为配体,通过原子转移自由基聚合反应,合成P(MEO2MA-co-OEGMA-S-S-MEO2MA-co-OEGMA)共聚物;再利用三丁基膦作为还原催化剂,打断聚合物中的二硫键,得到末端带有巯基的聚合物P(MeO2MA-co-OEGMA-SH)。
4.根据权利要求3所述的石墨烯复合材料过滤膜,其特征在于,所述寡聚乙二醇甲醚甲基丙烯酸酯的分子量为475 g/mol。
5.根据权利要求3所述的石墨烯复合材料过滤膜,其特征在于,所述单体2-甲基-2丙烯酸-2(2甲氧基乙氧基)乙酯和寡聚乙二醇甲醚甲基丙烯酸酯的投料摩尔比为5:1-20:1,引发剂双[2-(2’-溴代异丁酰氧基)乙基]二硫化物用量为单体2-甲基-2丙烯酸-2(2甲氧基乙氧基)乙酯摩尔量的1/150-1/50,催化剂溴化亚铜用量为单体2-甲基-2丙烯酸-2(2甲氧基乙氧基)乙酯摩尔量的1/50-1/15,配体2,2’-联吡啶用量为催化剂摩尔量的0.5-3倍。
6.根据权利要求1所述的石墨烯复合材料过滤膜,其特征在于,所述迈克尔加成反应在pH为8.0-9.0,浓度为0.05-0.15 M的Bicine缓冲溶液中进行。
7.根据权利要求6所述的石墨烯复合材料过滤膜,其特征在于,所述迈克尔加成反应的具体步骤为:将聚合物P(MeO2MA-co-OEGMA-SH)溶解于Bicine缓冲溶液混合均匀,然后将聚多巴胺-石墨烯包覆的基底置于溶液中,室温下搅拌18-36 h,即可得到石墨烯-高分子修饰石墨烯复合材料过滤膜。
CN201811543006.8A 2018-12-17 2018-12-17 一种石墨烯复合材料过滤膜 Active CN111318190B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811543006.8A CN111318190B (zh) 2018-12-17 2018-12-17 一种石墨烯复合材料过滤膜

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811543006.8A CN111318190B (zh) 2018-12-17 2018-12-17 一种石墨烯复合材料过滤膜

Publications (2)

Publication Number Publication Date
CN111318190A CN111318190A (zh) 2020-06-23
CN111318190B true CN111318190B (zh) 2022-04-05

Family

ID=71171107

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811543006.8A Active CN111318190B (zh) 2018-12-17 2018-12-17 一种石墨烯复合材料过滤膜

Country Status (1)

Country Link
CN (1) CN111318190B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112624096A (zh) * 2020-12-23 2021-04-09 西安交通大学 一种石墨烯表面分散性改性方法
CN113499693B (zh) * 2021-08-05 2023-03-21 四川华造宏材科技有限公司 一种化学刺激响应抗污染反渗透膜及其制备方法
CN115746800A (zh) * 2022-11-14 2023-03-07 北京科技大学 石墨烯/聚多巴胺修饰介孔二氧化硅纳米片复合高导热膜及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103694426A (zh) * 2013-11-25 2014-04-02 同济大学 一种含碱基对的多重响应型聚合物的制备方法
CN106432589A (zh) * 2016-07-28 2017-02-22 东华大学 一种相变温度精确可调离子液凝胶的制备方法
CN106422816A (zh) * 2016-09-22 2017-02-22 华中科技大学 石墨烯泡沫‑聚多巴胺复合膜的制备及其产物与应用
CN106881069A (zh) * 2017-03-09 2017-06-23 吉林师范大学 一种温度响应型铕离子印迹复合膜的制备方法及应用
CN106943896A (zh) * 2017-03-29 2017-07-14 中国石油化工股份有限公司 一种三维多孔石墨烯功能化组装体膜材料的制备及应用方法
CN107441961A (zh) * 2017-09-14 2017-12-08 天津工业大学 一种超亲水pvdf油水乳液分离膜的制备方法及应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9694344B2 (en) * 2016-05-02 2017-07-04 LiSo Plastics, L.L.C. Multilayer polymeric membrane and process

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103694426A (zh) * 2013-11-25 2014-04-02 同济大学 一种含碱基对的多重响应型聚合物的制备方法
CN106432589A (zh) * 2016-07-28 2017-02-22 东华大学 一种相变温度精确可调离子液凝胶的制备方法
CN106422816A (zh) * 2016-09-22 2017-02-22 华中科技大学 石墨烯泡沫‑聚多巴胺复合膜的制备及其产物与应用
CN106881069A (zh) * 2017-03-09 2017-06-23 吉林师范大学 一种温度响应型铕离子印迹复合膜的制备方法及应用
CN106943896A (zh) * 2017-03-29 2017-07-14 中国石油化工股份有限公司 一种三维多孔石墨烯功能化组装体膜材料的制备及应用方法
CN107441961A (zh) * 2017-09-14 2017-12-08 天津工业大学 一种超亲水pvdf油水乳液分离膜的制备方法及应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Biomimetic structure of carbon fiber cloth grafted with poly(N-isopropylacrylamide) for water collection and smart gates;Hung-Tao Chou et al.,;《RSC ADVANCES》;ROYAL SOC CHEMISTRY;20170926;第7卷(第72期);第45799-45806页 *
Synthesis, Self-Assembly, and Multi-Stimuli Responses of a Supramolecular Block Copolymer;Yuan Weizhong et al.,;《MACROMOLECULAR RAPID COMMUNICATIONS》;WILEY-V C H VERLAG GMBH;20141030;第35卷(第20期);第1776-1781页 *
Ultrathin thermoresponsive self-folding 3D graphene;Weinan Xu et al.,;《SCIENCE ADVANCE》;AMER ASSOC ADVANCEMENT SCIENCE;20171006;第3卷(第10期);第1-10页 *
抗污染高分子纳滤膜研究进展;刘兴等;《膜科学与技术》;20181031;第38卷(第5期);第113-121页 *
温敏智能纺织材料的研究进展;吴金丹等;《中国材料进展》;20141231;第33卷(第11期);649-660+689页 *

Also Published As

Publication number Publication date
CN111318190A (zh) 2020-06-23

Similar Documents

Publication Publication Date Title
CN111318190B (zh) 一种石墨烯复合材料过滤膜
CN111589310B (zh) 强抗污染复合梯度超滤膜及其制备方法
CN110652890B (zh) 一种聚丙烯腈分离膜表面亲水化改性方法
CN110479109B (zh) 通量高、抗污染性强的聚偏氟乙烯混合基质膜的制备方法
CN109847602B (zh) 一种原位制备金属有机框架杂化膜的方法及金属有机框架杂化膜的用途
CN103990384A (zh) 一种新型有机-无机杂化微孔分离膜的制备方法
CN107486043A (zh) 一种两亲性三嵌段共聚物改性聚偏氟乙烯膜的制备方法
CN101691466B (zh) 一种球形突起微结构表面防污材料的制备方法
CN106215462B (zh) 基于poss基杂化丙烯酸酯涂层的超疏水/超亲油不锈钢网及其制备方法与应用
CN111318171B (zh) 一种三维多孔石墨烯过滤膜的加工涂装工艺
CN109759021B (zh) 一种用于处理再生水中ppcps的环糊精基-Cu2O共混膜的制备方法
CN111318172B (zh) 一种高分子修饰的石墨烯过滤膜的制备方法
CN111318181B (zh) 一种耐用性水下超疏油复合膜及其制备方法与应用
CN114797796B (zh) 一种气凝胶膜及其制备方法和应用
CN107261863B (zh) 一种抗污染聚氯乙烯膜的制备方法
CN1481928A (zh) 亲水性有机-无机复合渗透蒸发分离膜及其制备方法
CN111318189B (zh) 一种石墨烯复合材料过滤膜的加工涂装工艺
CN111318185B (zh) 一种增强亲水性的石墨烯过滤膜材料的涂装工艺
CN1401687A (zh) 结构可控的无机纳米微粒/聚合物复合超薄膜的制备方法
CN101596411A (zh) 以羧酸根为固定载体的复合膜及其制备方法
CN1673272A (zh) 一种亲水性聚四氟乙烯微孔薄膜及其加工方法
CN115672253A (zh) 一种高稳定性二硫化钼涂层复合吸附剂及其制备方法和应用
CN111363185B (zh) 一种表面功能单体预聚合体系引发的分子印迹复合膜的制备方法及其应用
CN114262410A (zh) 一种基于浓度调节自组装的超疏水薄膜及其制备方法和应用
CN112316738A (zh) 一种后处理制备抗污染正渗透聚酰胺复合膜的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant