CN111312592B - 一种三维自换行生长堆叠纳米线沟道及弹簧结构的制备方法 - Google Patents

一种三维自换行生长堆叠纳米线沟道及弹簧结构的制备方法 Download PDF

Info

Publication number
CN111312592B
CN111312592B CN202010119441.9A CN202010119441A CN111312592B CN 111312592 B CN111312592 B CN 111312592B CN 202010119441 A CN202010119441 A CN 202010119441A CN 111312592 B CN111312592 B CN 111312592B
Authority
CN
China
Prior art keywords
nanowire
growth
etching
method comprises
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010119441.9A
Other languages
English (en)
Other versions
CN111312592A (zh
Inventor
余林蔚
马海光
王军转
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN202010119441.9A priority Critical patent/CN111312592B/zh
Publication of CN111312592A publication Critical patent/CN111312592A/zh
Application granted granted Critical
Publication of CN111312592B publication Critical patent/CN111312592B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66666Vertical transistors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0009Forming specific nanostructures
    • B82B3/0014Array or network of similar nanostructural elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0061Methods for manipulating nanostructures
    • B82B3/0066Orienting nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0676Nanowires or nanotubes oriented perpendicular or at an angle to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1037Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure and non-planar channel

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Materials Engineering (AREA)
  • Recrystallisation Techniques (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明公开一种三维自换行生长堆叠纳米线沟道及弹簧结构的制备方法,包括以下几个步骤:第一步,在目标衬底上定义掩模阵列;第二步,沿掩模阵列侧壁的轴向平行刻蚀一组预设间距的平行凹槽阵列的柱阵列;第三步,定义催化颗粒沉积区域,并在所述沉积区域沉积一层催化金属层;第四步,利用IP‑SLS纳米线生长模式,借助所述催化金属层的催化金属液滴在所述平行凹槽阵列的结构柱上自回避换行生长,制备得到3D纳米线结构。本发明实现了三维高密度堆叠纳米线和三维纳米弹簧结构的制备,并可控制其形貌和结构取向。

Description

一种三维自换行生长堆叠纳米线沟道及弹簧结构的制备方法
技术领域
本发明具体涉及一种三维“自换行”生长堆叠纳米线沟道及弹簧结构的制备方法,属于微纳器件技术领域。
背景技术
随着大规模集成电路技术的高速发展,单个芯片上集成的晶体管数量急剧增加,晶体管的特征尺寸不断减小。为进一步提到芯片集成度,提高晶体管性能,需要进一步发展三维纳米器件,比如鳍式场效应晶体管。在鳍式场效应晶体管基础上,为了获得更好的栅控特性和较小的亚阈值摆幅,发展出了环栅结构晶体管(GAA)。纳米线结构在制备GAA结构方面具有独特的优势,实现三维堆叠纳米线结构将可用于制备高性能三维环栅纳米线晶体管。
随着智能终端、无人驾驶汽车、人工智能等产业的快速发展,对高性能传感器和执行器的需求急剧增加。三维纳米弹簧由于其独特的力学和电学和特性,可用于制备优良的传感器和执行器。目前已经发展出了许多方法用于制备这类结构,比如倾角沉积法(glancing angle deposition, GLAD),聚焦离子束化学气相沉积法(FIBCVD),模板法等。但是目前的方法还很难对弹簧结构的长度,螺纹间距,形状等几何参数以及弹簧取向进行精确调控。大大限制了三维纳米线弹簧结构的实际应用。因此需要发展一种更为高效的方法来实现三维纳米线弹簧结构的制备和形貌调控。
由于螺旋结构很难利用微纳加工技术直接实现,因此要利用这类结构引导纳米线生长也是极为困难的,IPSLS纳米生长模式,在纳米线形貌设计方面具有独特的优势,并且已实现纳米线在三维侧壁生长。通过三维引导沟道的设计,IPSLS纳米线生长模式将可用于三维纳米线结构的可控制备,这也是我们目前要研究解决的技术问题。
发明内容
发明目的:本发明为克服三维纳米线结构形貌设计的困难,利用IPSLS纳米线生长模式,借助催化液滴自换行效应,实现了三维堆叠纳米线沟道及弹簧结构的制备。
技术方案:一种三维自换行生长堆叠纳米线沟道及弹簧结构的制备方法,其特征在于,至少包括以下几个步骤:
第一步,在目标衬底上定义掩模阵列;
第二步,沿掩模阵列侧壁的轴向平行刻蚀一组预设间距的平行凹槽阵列的柱阵列;
第三步,定义催化颗粒沉积区域,并在所述沉积区域沉积一层催化金属层;
第四步,利用IP-SLS纳米线生长模式,借助所述催化金属层的催化金属液滴在所述平行凹槽阵列的结构柱上自回避换行生长,制备得到3D纳米线结构。
本技术方案进一步限定的技术方案为:在所述第一步中,在目标平面衬底上通过光刻或掩模技术定义生长区域,利用刻蚀技术把掩模结构刻入衬底的深度方向形成平台。
进一步的,在所述第二步中,利用Bosch深硅刻蚀工艺,在交替淀积多层膜的衬底上利用垂直刻蚀或选择性刻蚀,形成周期性的平行凹槽结构。
进一步的,在所述第三步中,所述催化颗粒沉积区域为所述柱阵列的台面顶端或者底部附近区域。
进一步的,在所述第四步中,依次经过纳米颗粒形成、非晶前驱体层覆盖、热退火生长和残余非晶层刻蚀系列平面纳米线即IPSLS模式生长工艺,使得纳米线从台面顶端,或者底部进入侧壁凹槽沟道并在完成封闭的一圈生长之后,自发切换进入邻近的上或下一行继续生长,最终生成连续自换行生长的纳米线三维结构。
进一步的,还包括第五步,采用选择性刻蚀工艺去除所述连续自换行生长的纳米线三维结构的引导台面,释放成为自支撑的三维纳米线弹簧结构。
进一步的,所述在第四步中,所述IP-SLS纳米线生长模式为面内-固-液-固纳米线生长模式。
进一步的,所述催化金属至少为镓、铟、锡、铋中的一种。
进一步的,所述第二步包括,
步骤S21,利用Bosch工艺刻蚀出侧壁具有波纹结构的硅柱阵列;
步骤S22,在退火炉中利用1000 ℃高温对刻蚀出的硅柱阵列进行热氧化,时间为300 min,得到表面具有170 nm氧化层的硅柱阵列。
步骤S23,在具有氧化硅层的样品上用两步旋涂法,500 rpm,9 s;4000 rmp, 30 s旋涂AZ5214光刻胶,并用RIE氧等离子体刻蚀减薄光刻胶层,使柱子顶端刚好露出光刻胶层。
进一步的,所述第四步包括,
1),在200℃温度条件下,调整射频功率为10 W/0 W,腔室压强为140 Pa,利用氢等离子体处理5 min,还原铟颗粒表面氧化层,形成催化金属液滴;
2),在100℃条件下,调整射频功率到2 W/0 W,腔室压强为20 Pa,沉积8 min非晶硅,然后利用分子泵抽高真空,并把温度调整到350℃,进行1 h退火生长纳米线;
3),把射频电源功率调整为20 W/ 0 W,腔室压强为140 Pa,温度为100 ℃,利用氢等离子体刻蚀10 min,清除残余非晶硅,最终得到盘绕在柱子侧壁上的晶硅弹簧。
有益效果:与现有技术相比,本发明实现了三维高密度堆叠纳米线和三维纳米弹簧结构的制备,并可控制其形貌和结构取向。本发明方法可用于大批量、大规模、低成本且高效地制备高密度排列的三维纳米线沟道,以及制备传统光刻技术无法实现的三维连续弹簧结构,为实现高性能GAA纳米线沟道晶体管,以及三维NEMS器件提供了理想而可靠的制备新工艺途径。
附图说明
图1为本发明实施例中形貌可控的三维纳米线结构制备流程图。
图2为本发明实施例中利用博施工艺制备的直径分别为3 μm和450 nm的的硅柱阵列SEM表征图。
图3为本发明实施例中催化液滴在凹槽沟道中的状态及更换引导沟道细节。
图4为本发明实施例中制备不同直径和长度晶硅弹簧纳米线SEM表征图。
图5为本发明实施例中中心具有纳米柱的晶硅弹簧结构的SEM表征图。
图6为本发明实施例中完全释放的的晶硅弹簧结构的SEM表征图。
具体实施方式
下面结合附图和具体实施例,进一步阐明本发明。
实施例1
本实施例中设计了一种三维自换行生长堆叠纳米线沟道及弹簧结构的制备方法,如图1所示,至少包括以下几个步骤:
第一步、在目标衬底上定义掩模阵列。如图1中的(a)图所示:在洁净硅片衬底1上制备的AZ5214光刻胶圆台掩模阵列2,其直径为3μm或者450nm。
第二步、在掩模阵列上制备侧壁具有平行凹槽结构的柱阵列,所述柱阵列的制备方法包括如下几个步骤:
步骤S21,利用Bosch工艺刻蚀出侧壁具有波纹结构的硅柱阵列3;如图1中的(b)图所示;
步骤S22,在纳米柱表面利用高温热氧化或PECVD沉积一层氧化硅4。如图1中的(c)图所示,在退火炉中利用1000 ℃高温对刻蚀出的硅柱阵列进行热氧化,时间为300 min,得到表面具有170 nm氧化层的硅柱阵列4。
步骤S23,在具有氧化硅层的样品上用两步旋涂法(500 rpm,9 s;4000 rmp, 30s)旋涂AZ5214光刻胶5,并用RIE氧等离子体刻蚀减薄光刻胶层,使柱子顶端刚好露出光刻胶层,如图1中的(d)图所示;这样做的目的是使下一步中的铟催化颗粒6只在柱子顶端沉积,防止侧壁上有铟颗粒沉积,影响纳米线生长。这里光刻胶还具有保护侧壁的作用。
第三步、在柱阵列顶部定义催化颗粒区域;
首先,在旋涂完光刻胶后的样品上利用热蒸发在样品顶端制备催化金属颗粒6,如图1中的(e)图所示;然后清除光刻胶,使催化金属颗粒只存在于纳米柱的顶端,如图1中的(f)图所示;
第四步、在PECVD中,利用IP-SLS纳米线生长模式,借助催化液滴在具有周期凹槽结构柱上自回避换行生长,制备得到3D纳米线结构。图3为本发明实施例中催化液滴在凹槽沟道中的状态及更换引导沟道细节图;其具体过程包括:
1),在200℃温度条件下,调整射频功率为10 W/0 W,腔室压强为140 Pa,利用氢等离子体处理5 min,还原铟颗粒表面氧化层,形成催化金属液滴;
2),在100℃条件下,调整射频功率到2 W/0 W,腔室压强为20 Pa,沉积8 min非晶硅,然后利用分子泵抽高真空,并把温度调整到350℃左右,进行1 h退火生长纳米线;
3),把射频电源功率调整为20 W/ 0 W,腔室压强为140 Pa,温度为100 ℃,利用氢等离子体刻蚀10 min,清除残余非晶硅,最终得到如图1中的(g)图所示的盘绕在柱子侧壁上的晶硅弹簧7。
作为优选,所述步骤(4)中的IP-SLS纳米线生长模式为面内-固-液-固纳米线生长模式。
作为优选,所述催化金属为镓、铟、锡或铋中的至少一种。
作为优选,三维纳米线结构的形貌可通过刻蚀技术来调控。如图2、图4-6所示,其中:图2为本发明实施例中利用博施工艺制备的直径分别为3 μm和450 nm的的硅柱阵列SEM表征图。图4中的(a)图和(b)图的直径为3 μm,纳米线匝数分别为5和8;图4中的(c)图弹簧略呈锥状,纳米线匝数为7,(d)图弹簧直接约为100 nm,纳米线匝数为5。图5和图6两张SEM表征图的分别是中心带有柱子的弹簧和完全释放的弹簧。
本实施例制备方法的特点之一就是利用催化液滴在具有非晶硅的平行凹槽阵列结构上可以自换行的现象,实现纳米弹簧结构的制备。本发明所利用的IP-SLS纳米线生长模式,其驱动催化液滴移动的主要动力是非晶硅自由能比晶硅大,此处平行凹槽引导沟道阵列的作用是控制纳米线生长取向,当催化液滴在同一凹槽中走过一圈时,非晶硅会驱使催化液滴移向另一凹槽。且在凹槽宽度与催化液滴的直径相当时,能得到较好的纳米线弹簧,因此仅有一颗催化液滴能够被凹槽俘获并完成纳米线生长。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以作出若干改进,这些改进也应视为本发明的保护范围。

Claims (10)

1.一种三维自换行生长堆叠纳米线沟道及弹簧结构的制备方法,其特征在于,至少包括以下几个步骤:
第一步,在目标衬底上定义掩模阵列;
第二步,沿掩模阵列侧壁的轴向平行刻蚀一组预设间距的平行凹槽阵列的柱阵列;
第三步,定义催化颗粒沉积区域,并在所述沉积区域沉积一层催化金属层;
第四步,利用IP-SLS纳米线生长模式,借助所述催化金属层的催化金属液滴在沉积有非晶硅的所述平行凹槽阵列的结构柱上自回避换行生长,制备得到3D纳米线结构。
2.根据权利要求1所述的三维自换行生长堆叠纳米线沟道及弹簧结构的制备方法,其特征在于:在所述第一步中,在目标平面衬底上通过光刻或掩模技术定义生长区域,利用刻蚀技术把掩模结构刻入衬底的深度方向形成平台。
3.根据权利要求2所述的三维自换行生长堆叠纳米线沟道及弹簧结构的制备方法,其特征在于:在所述第二步中,利用Bosch深硅刻蚀工艺,在交替淀积多层膜的衬底上利用垂直刻蚀或选择性刻蚀,形成周期性的平行凹槽结构。
4.根据权利要求3所述的三维自换行生长堆叠纳米线沟道及弹簧结构的制备方法,其特征在于:在所述第三步中,所述催化颗粒沉积区域为所述柱阵列的台面顶端或者底部附近区域。
5.根据权利要求4所述的三维自换行生长堆叠纳米线沟道及弹簧结构的制备方法,其特征在于:在所述第四步中,依次经过纳米颗粒形成、非晶前驱体层覆盖、热退火生长和残余非晶层刻蚀系列平面纳米线即IP-SLS模式生长工艺,使得纳米线从台面顶端,或者底部进入侧壁凹槽沟道并在完成封闭的一圈生长之后,自发切换进入邻近的上或下一行继续生长,最终生成连续自换行生长的纳米线三维结构。
6.根据权利要求5所述的三维自换行生长堆叠纳米线沟道及弹簧结构的制备方法,其特征在于:还包括第五步,采用选择性刻蚀工艺去除所述连续自换行生长的纳米线三维结构的引导台面,释放成为自支撑的三维纳米线弹簧结构。
7.根据权利要求6所述的三维自换行生长堆叠纳米线沟道及弹簧结构的制备方法,其特征在于:在所述第四步中,所述IP-SLS纳米线生长模式为面内-固-液-固纳米线生长模式。
8.根据权利要求7所述的三维自换行生长堆叠纳米线沟道及弹簧结构的制备方法,其特征在于:所述催化金属至少为镓、铟、锡、铋中的一种。
9.根据权利要求8所述的三维自换行生长堆叠纳米线沟道及弹簧结构的制备方法,其特征在于:所述第二步包括,
步骤S21,利用Bosch工艺刻蚀出侧壁具有平行凹槽阵列的硅柱阵列;
步骤S22,在退火炉中利用1000 ℃高温对刻蚀出的硅柱阵列进行热氧化,时间为300min,得到表面具有170 nm氧化层的硅柱阵列;
步骤S23,在具有氧化硅层的样品上用两步旋涂法,500 rpm,9 s;4000 rmp, 30 s旋涂AZ5214光刻胶,并用RIE氧等离子体刻蚀减薄光刻胶层,使柱子顶端刚好露出光刻胶层。
10.根据权利要求9所述的三维自换行生长堆叠纳米线沟道及弹簧结构的制备方法,其特征在于:所述第四步包括,
1)在200℃温度条件下,调整射频功率为10 W/0 W,腔室压强为140 Pa,利用氢等离子体处理5 min,还原铟颗粒表面氧化层,形成催化金属液滴;
2)在100℃条件下,调整射频功率到2 W/0 W,腔室压强为20 Pa,沉积8 min非晶硅,然后利用分子泵抽高真空,并把温度调整到350℃,进行1 h退火生长纳米线;
3)把射频电源功率调整为20 W/ 0 W,腔室压强为140 Pa,温度为100 ℃,利用氢等离子体刻蚀10 min,清除残余非晶硅,最终得到盘绕在柱子侧壁上的晶硅弹簧。
CN202010119441.9A 2020-02-25 2020-02-25 一种三维自换行生长堆叠纳米线沟道及弹簧结构的制备方法 Active CN111312592B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010119441.9A CN111312592B (zh) 2020-02-25 2020-02-25 一种三维自换行生长堆叠纳米线沟道及弹簧结构的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010119441.9A CN111312592B (zh) 2020-02-25 2020-02-25 一种三维自换行生长堆叠纳米线沟道及弹簧结构的制备方法

Publications (2)

Publication Number Publication Date
CN111312592A CN111312592A (zh) 2020-06-19
CN111312592B true CN111312592B (zh) 2021-06-18

Family

ID=71147777

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010119441.9A Active CN111312592B (zh) 2020-02-25 2020-02-25 一种三维自换行生长堆叠纳米线沟道及弹簧结构的制备方法

Country Status (1)

Country Link
CN (1) CN111312592B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111693444B (zh) * 2020-06-24 2021-09-28 南京大学 一种用于细胞力学检测的弹簧纳米线探测器及其检测方法
CN113247860B (zh) * 2020-06-24 2022-06-21 南京大学 一种嵌入式跨表面生长三维纳米线螺旋结构的制备方法
CN112251541A (zh) * 2020-10-21 2021-01-22 南京大学 一种基于硅纳米螺旋结构的精准病毒俘获及提取方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102633230A (zh) * 2012-04-26 2012-08-15 厦门大学 一种基于纳米球刻蚀技术制备硅纳米柱阵列的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109311671A (zh) * 2015-11-25 2019-02-05 威廉马歇莱思大学 通过组合催化材料和前体材料形成三维材料
CN107309439B (zh) * 2017-07-19 2019-07-26 清华大学深圳研究生院 一种三维金属纳米线及其制备方法
CN109950393B (zh) * 2019-03-14 2021-09-10 南京大学 一种可堆叠大面积制备的纳米线交叉点阵列阻变存储器件结构的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102633230A (zh) * 2012-04-26 2012-08-15 厦门大学 一种基于纳米球刻蚀技术制备硅纳米柱阵列的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Facile 3D integration of Si nanowires on Bosch-etched sidewalls for stacked channel transistors;Ruijin Hu et al.;《Nanoscale》;20200128;第12卷(第4期);2787-2792 *

Also Published As

Publication number Publication date
CN111312592A (zh) 2020-06-19

Similar Documents

Publication Publication Date Title
CN111312592B (zh) 一种三维自换行生长堆叠纳米线沟道及弹簧结构的制备方法
CN108557758B (zh) 一种循环交替刻蚀同质多级坡面台阶引导生长纳米线阵列的方法
JP5824156B2 (ja) 平坦な表面を有する三次元窒化ガリウム構造の製造方法
CN109950393B (zh) 一种可堆叠大面积制备的纳米线交叉点阵列阻变存储器件结构的制备方法
CN107460542A (zh) 一种基于平面纳米线线形设计和引导的可拉伸晶体半导体纳米线的制备方法
CN109941962B (zh) 一种电学连接高密度坡面台阶纳米线的方法
CN108217591A (zh) 一种异质交替叠层台阶引导生长三维坡面纳米线阵列的方法
CN102530846A (zh) 带有尖端的金属纳米带阵列的制备方法
KR101310145B1 (ko) 반도체 나노선의 제조방법 및 이로써 제조된 반도체 나노선을 구비한 열전소자
CN101870453A (zh) 半导体纳米柱阵列结构的制作方法
CN105555705A (zh) 硅纳米线阵列的制备方法
CN106935501B (zh) 一种聚苯乙烯微球模板组装金颗粒制备单电子晶体管的方法
CN112599418B (zh) 一种三维折线纳米线阵列垂直场效应晶体管的制备方法
KR101027315B1 (ko) 나노 와이어의 제조방법
CN101823684B (zh) 一种仿蝴蝶磷翅分级多层非对称微纳结构的制备方法
US10147789B2 (en) Process for fabricating vertically-aligned gallium arsenide semiconductor nanowire array of large area
CN104254925B (zh) 氧化锌凹凸结构的形成方法及利用其的太阳能电池的制造方法
CN109713099B (zh) 一种图形化蓝宝石衬底结构及其制作工艺
CN105529242B (zh) 一种制备珠串形单晶硅纳米线的方法
CN206244402U (zh) 一种石墨烯基纳米线复合结构
CN109911847A (zh) 一种通过转移释放获取高密度纳米线阵列的方法
CN111916338B (zh) 一种硅基纳米线、其制备方法及薄膜晶体管
CN103500761A (zh) 一种沟道宽度可控的石墨烯纳米带Fin-FET器件及其制备方法
CN202127020U (zh) 双栅沟道导电类型可调单壁碳纳米管场效应晶体管
KR20090069911A (ko) 성장방향으로 적층된 이종구조 및 이종 도핑 구조의 나노선제조 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Yu Linwei

Inventor after: Ma Haiguang

Inventor after: Wang Junzhuan

Inventor before: Yu Linwei

CB03 Change of inventor or designer information
GR01 Patent grant
GR01 Patent grant