CN111303320A - 一种聚合物/无机纳米粒子复合材料及其制备方法 - Google Patents

一种聚合物/无机纳米粒子复合材料及其制备方法 Download PDF

Info

Publication number
CN111303320A
CN111303320A CN202010177548.9A CN202010177548A CN111303320A CN 111303320 A CN111303320 A CN 111303320A CN 202010177548 A CN202010177548 A CN 202010177548A CN 111303320 A CN111303320 A CN 111303320A
Authority
CN
China
Prior art keywords
inorganic
reaction
polymer
preparation
initiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010177548.9A
Other languages
English (en)
Other versions
CN111303320B (zh
Inventor
洪良智
许安丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN202010177548.9A priority Critical patent/CN111303320B/zh
Publication of CN111303320A publication Critical patent/CN111303320A/zh
Application granted granted Critical
Publication of CN111303320B publication Critical patent/CN111303320B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F112/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F112/02Monomers containing only one unsaturated aliphatic radical
    • C08F112/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F112/06Hydrocarbons
    • C08F112/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F118/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid
    • C08F118/02Esters of monocarboxylic acids
    • C08F118/04Vinyl esters
    • C08F118/08Vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/10Esters
    • C08F120/12Esters of monohydric alcohols or phenols
    • C08F120/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F218/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid
    • C08F218/02Esters of monocarboxylic acids
    • C08F218/04Vinyl esters
    • C08F218/08Vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

本发明公开了一种聚合物/无机纳米粒子复合材料及其制备方法,属于复合材料领域。该制备方法包括如下步骤:(1)将硅溶胶或无机纳米粒子、多巴胺、三(羟甲基)氨基甲烷盐酸盐与水混合均匀反应,得到聚多巴胺修饰的无机纳米粒子水溶液;(2)将单体和水加入所述聚多巴胺修饰的无机纳米粒子水溶液中,混合均匀,再通氮气除去氧气;(3)将引发剂溶液加入步骤(2)所得反应液中,鼓泡除去氧气,在氮气气体保护下进行无皂乳液聚合反应,得聚合物/无机纳米粒子复合材料。本发明聚合时无需外加表面活性剂,节约成本,减少环境污染。并且通过改变引发剂类型,反应液中单体、无机粒子类型,能有效调控聚合物/无机纳米复合粒子的形成及其粒径变化。

Description

一种聚合物/无机纳米粒子复合材料及其制备方法
技术领域
本发明属于复合材料领域,具体涉及一种聚合物/无机纳米复合材料及其制备方法。
背景技术
近年来,由于新一代纳米材料具有高的比表面积及纳米级的反应活性,使得纳米材料的制备,结构分析,反应性和性质在材料科学领域受到广泛研究。其中,具有核壳结构聚合物/无机颗粒纳米复合粒子兼具聚合物与无机颗粒的优良性能,在两者的协同作用下,能提升材料的机械、加工以及热稳定等综合性能,而且通过引入功能无机粒子还能赋予材料优良的催化、电磁和光学等功能。因此,具有核壳结构的聚合物/无机纳米复合粒子在高性能的涂料、生物医药、催化体系、纺织等领域有着广泛的应用前景。聚合物/无机纳米复合粒子通过乳液聚合,无皂乳液聚合,细乳液聚合,分散聚合和悬浮聚合法四种异相聚合方法制备。在异相聚合方法中,通常需要对无机纳米颗粒进行有机官能化,通常采用两种策略:(i)通过化学(主要使用偶联剂)或物理相互作用修饰无机颗粒;(ii)将单体或引发剂的主要成分吸附在无机粒子表面进行聚合。官能化后,可以通过不同的聚合方法获得良好形貌的聚合物/无机纳米复合粒子。2001年,Landfester等人首次报道了4VP(共聚单体)、十六烷、疏水物和二氧化硅纳米粒子的存在下,分别利用苯乙烯、丙烯酸丁酯和甲基丙烯酸甲酯三种常用单体,通过改变反应条件和表面活性剂的类型,利用细乳液聚合得到了“刺猬”和“树莓”结构的混合形态的聚合物/纳米复合材料。研究表明,即使没有添加任何低分子量的表面活性剂,体系中的二氧化硅也可包围乳胶液滴,能够提供稳定性(参见Langmuir,2001, 17(19): 5775-5780)。2004年,Reculusa等人利用带有可聚合基团的偶联剂将二氧化硅种子官能化,表面改性的二氧化硅颗粒存在下实现了苯乙烯的乳液聚合,制备了雏菊状和多面体状的PS/二氧化硅纳米复合材料。研究表明,偶联剂的密度和二氧化硅种子直径对颗粒形态有很大影响,在偶联剂密度约为0.17×10-6mol / m2且二氧化硅种子粒径约为170 nm时,随着聚合时间的增加,PS/SiO2纳米复合粒子的形貌从雏菊状变为多面体状(参见Nano Letters, 2004, 4(9): 1677-1682)。
无机粒子作为模板在许多领域引起了广泛的研究兴趣:(i)固体颗粒降低了聚结的可能性,使乳液具有更高的稳定性;(ii)许多固体颗粒可赋予所制备的材料有用的特性,如导电性,响应性,孔隙率等;(iii)一些食品级固体颗粒具有较低的毒性,体内使用安全性更高。对于无机粒子存在下的无皂乳液聚合来说,由于粒子表面参与并促进聚合进行,聚合物与填料粒子界面结合力强,从而大大提高了材料的性能。实验发现,利用无机纳米粒子来稳定乳液来替代表面活性剂,可以获得具有核壳结构的聚合物/无机纳米复合材料。
发明内容
本发明的目的是公开一种聚合物/无机纳米复合材料及其制备方法。该方法利用无机粒子代替表面活性剂稳定油水界面进行无皂乳液聚合制备聚合物/无机纳米复合材料。聚合时无需外加表面活性剂,节约成本,减少环境污染。并且通过改变引发剂类型,反应液中单体、无机粒子类型,能有效调控聚合物/无机纳米复合粒子的形成及其粒径变化。
本发明的目的至少通过如下技术方案之一实现。
一种聚合物/无机纳米粒子复合材料的制备方法,包括如下步骤:
(1)将硅溶胶或无机纳米粒子、多巴胺(DPA)、三(羟甲基)氨基甲烷盐酸盐(Tris-HCl)与水混合均匀,再将所得混合液搅拌反应,得到聚多巴胺修饰的无机纳米粒子水溶液;
(2)将引发剂溶于水中,混合均匀,得到引发剂溶液;
(3)将单体和水加入步骤(1)所述聚多巴胺修饰的无机纳米粒子水溶液中,混合均匀,得到反应液,然后在搅拌状态下往所述反应液中通氮气除去反应液中的氧气;
(4)将步骤(2)所述引发剂溶液加入步骤(3)所得反应液中,继续鼓泡除去混合液中的氧气,在氮气气体保护下进行无皂乳液聚合反应,反应结束后冷却至室温,得到聚合物/无机纳米粒子复合材料。
优选的,步骤(1)所述无机纳米粒子为二氧化硅粉末、锂藻土Laponite RD、蒙脱土PGV、四氧化三铁Fe3O4或多壁碳纳米管WCNTs。
优选的,步骤(1)中,将硅溶胶或无机纳米粒子、多巴胺、三(羟甲基)氨基甲烷盐酸盐与水混合均匀后调节pH值为8.5~8.8,搅拌反应的时间为1~1.5小时。
优选的,步骤(1)所述多巴胺在混合液中的浓度为0.2~0.5mg/ml;所述三(羟甲基)氨基甲烷盐酸盐在混合液中的浓度为10~12Mm。
优选的,步骤(2)所述引发剂为过硫酸铵(APS)或过硫酸钾(KPS)或偶氮二异丁脒盐酸盐(AIBA)或过硫酸铵/N,N,N',N'-四甲基乙二胺(APS/TMEDA)或过硫酸钾/N,N,N',N'-四甲基乙二胺(KPA/TMEDA)或2,4,6-三甲基苯甲酰基苯基膦酸乙酯(SPTP);若引发剂为过硫酸铵/N,N,N',N'-四甲基乙二胺或过硫酸钾/N,N,N',N'-四甲基乙二胺,则硫酸铵和过硫酸钾在步骤(4)鼓泡除去混合液中的氧气前加入,N,N,N',N'-四甲基乙二胺在步骤(4)鼓泡除去混合液中的氧气后加入。
进一步优选地,所述引发剂过硫酸铵或过硫酸钾与还原剂N,N,N',N'-四甲基乙二胺的摩尔比为1:0.8。
优选的,步骤(3)所述单体为苯乙烯(St)或甲基丙烯酸甲酯(MMA)或者醋酸乙烯酯(Vac)或苯乙烯/丙烯酸丁酯(St/BA)或甲基丙烯酸甲酯/丙烯酸丁酯(MMA/BA)或者醋酸乙烯酯/丙烯酸丁酯(Vac/BA)。
优选的,步骤(3)所述聚多巴胺修饰的无机纳米粒子占单体与无机纳米粒子两者总质量的22%-23%;所述单体在反应液中的浓度为0.78~0.97mol/L;所述聚多巴胺修饰的无机纳米粒子在反应液中的浓度为0.046~0.058g/mL。
优选地,步骤(3)所述在搅拌状态下的搅拌速率为800rpm。
优选的,步骤(4)所述引发剂在反应液中的浓度为0.01~0.012g/mL。
优选的,步骤(4)所述聚合反应的温度为30℃~70℃,聚合反应的时间为18~24小时。
进一步优选地,步骤(3)所述聚合反应的温度为30℃或65℃或60℃或70℃,聚合反应的时间为24小时。
由以上所述的制备方法制得的一种聚合物/无机纳米粒子复合材料。
与现有技术相比,本发明具有如下优点和有益效果:
(1)本发明提供的制备方法,通过聚多巴胺简单修饰无机粒子获得改性的无机纳米粒子,反应简单快速,易于操作,聚多巴胺修饰后的无机纳米粒子表面具有丰富的邻苯二酚活性官能团,可以进行二次反应,实现聚苯合物/无机纳米复合材料表面的进一步官能化;
(2)本发明提供的制备方法,以水为反应体系,无需外加表面活性剂,减少表面活性剂对聚苯合物/无机纳米复合材料性能的影响,方便回收,节约成本且绿色环保;
(3)本发明提供的制备方法,通过改变引发剂类型、反应体系中单体、无机纳米粒子,可以获得聚合物/无机纳米粒子复合材料。
附图说明
图1a-图1 h为实施例1中不同单体不同无机粒子进行无皂乳液聚合所得复合材料的电镜图;其中图1a-图1 h中的单体与无机粒子分别为St, PDA@Laponte RD、St, PDA@PGV、MMA,PDA@Laponte RD、MMA,PDA@PGV、Vac,PDA@Laponte RD、Vac,PDA@PGV、St, PDA@WCNTs、St, PDA@Fe3O4
图2a-图2f为实施例2中不同单体进行无皂乳液聚合所得复合材料的TEM图;其中图2a-图2f中的单体分别为St、St/BA、MMA、MMA/BA、Vac、Vac/BA。
图3a-图3f为实施例3中不同引发剂体系无皂乳液聚合所得复合材料的SEM图;其中图3a-图3f中的引发剂体系分别为AIBA、KPS、APS、APS/TMEDA、KPS/TMEDA、SPTP。
具体实施方式
以下结合实例对本发明的具体实施作进一步说明,但本发明的实施和保护不限于此。需指出的是,以下若有未特别详细说明之过程,均是本领域技术人员可参照现有技术实现或理解的。所用试剂或仪器未注明生产厂商者,视为可以通过市售购买得到的常规产品。
本发明选用透射电子显微镜(TEM)和扫描电子显微镜(SEM)表征有机-无机纳米复合粒子的结构。
TEM测试时仪器型号为JEM-1400plus,SEM测试时仪器型号为(Nova NanoSEM430)。
实施例1
一种聚合物/无机纳米粒子复合材料的制备方法,包括如下步骤:
(1)称取0.1g无机纳米粒子,0.063g三(羟甲基)氨基甲烷盐酸盐(浓度为10mM)和0.005g盐酸多巴胺(浓度为0.5mg/ml),逐一加入到10ml去离子水中,混合均匀,利用盐酸和氢氧化钠溶液将所述混合液的pH调至8.5,搅拌下反应1h,得到聚多巴胺修饰的无机纳米粒子水溶液;
(2)称取0.5g引发剂过硫酸铵溶于4ml去离子水中,混合均匀,保证整个反应体系引发剂过硫酸铵浓度为0.012g/ml;
(3)向容积为250ml的三颈烧瓶中依次加入步骤(1)所述聚多巴胺修饰的无机纳米粒子水溶液、5g单体、去离子水(保证整个体系去离子水为45ml),混合均匀得混合液,通入氮气鼓泡20分钟,同时将油浴锅预热至30℃;
(4)待第一次鼓泡完毕后,向三颈烧瓶中注入上述引发剂过硫酸铵溶液,继续通入氮气鼓泡10分钟,注入26µL N,N,N',N'-四甲基乙二胺后,继续鼓泡10分钟,完成后将三颈烧瓶放入预热至30℃的油浴锅中,在氮气氛围下进行聚合反应,在聚合反应结束后,取出烧瓶并置于冰水浴中,冷却至室温,最终得到聚合物/无机纳米粒子溶液。将制得的聚合物/无机纳米复合粒子稀释一定比例,滴在铜网上,干燥,扫描电子显微镜下观察,不同单体不同无机粒子进行无皂乳液聚合所得复合材料如图1a-图1 h所示。
由图1a-图1 h可知,对于单体St,在无机粒子Laponite RD、PGV 替代表面活性剂稳定油水界面时,所得PS/Laponite RD和PS/PGV为片层状的复合材料,在无机粒子WCNTs、Fe3O4替代表面活性剂稳定油水界面时,所得PS/WCNTs和PS/Fe3O4为表面负载Fe3O4的复合球;对于单体MMA,在无机粒子Laponite RD、PGV 替代表面活性剂稳定油水界面时,所得PMMA/Laponite RD和PMMA/PGV为粒径均匀、表面粗糙的复合球;对于单体Vac,在无机粒子Laponite RD、PGV 替代表面活性剂稳定油水界面时,所得PVAc/Laponite RD和PVAc/PGV为粒径均匀的复合球。
实施例2
一种聚合物/纳米二氧化硅复合材料的制备方法,包括如下步骤:
(1)量取2ml质量百分比浓度为40 wt%的硅溶胶Ludox TM40(二氧化硅固体含量为1.04g),0.063g三(羟甲基)氨基甲烷盐酸盐(浓度为10mM)和0.005g盐酸多巴胺(浓度为0.5mg/ml),逐一加入到10ml去离子水中,混合均匀,利用盐酸和氢氧化钠溶液将所述混合液的pH调至8.5,搅拌下反应1h,得到聚多巴胺修饰的纳米二氧化硅水溶液;
(2)称取0.5g引发剂过硫酸铵溶于4ml去离子水中,混合均匀,保证整个反应体系引发剂过硫酸铵浓度为0.012g/ml;
(3)向容积为250ml的三颈烧瓶中依次加入步骤(1)所述聚多巴胺修饰的纳米二氧化硅溶液、5g单体、去离子水(保证整个体系去离子水为45ml),混合均匀得混合液,通入氮气鼓泡20分钟,同时将油浴锅预热至30℃;
(4)待第一次鼓泡完毕后,向三颈烧瓶中注入上述引发剂过硫酸铵溶液,继续通入氮气鼓泡10分钟,注入26µL N,N,N',N'-四甲基乙二胺后,继续鼓泡10分钟,完成后将三颈烧瓶放入预热至30℃的油浴锅中,在氮气氛围下进行聚合反应,在聚合反应结束后,取出烧瓶并置于冰水浴中,冷却至室温,最终得到所述聚聚合物/二氧化硅纳米复合粒子溶液。将制得的聚合物/二氧化硅纳米复合粒子溶液稀释一定比例,滴在铜网上,干燥,扫描电子显微镜下观察,结果如图2a-图2f所示,不同单体进行无皂乳液聚合所得复合材料如表1所示。
表1
单体类型 单体组成(mol%) 粒径 复合粒子形貌
St 100 266±41.8 PS/SiO<sub>2</sub>纳米粒子
MMA 100 139±42.7 PS/SiO<sub>2</sub>纳米粒子
Vac 100 141±42.9 PS/SiO<sub>2</sub>纳米粒子
St/BA 4/1 278±60.6 PS/SiO<sub>2</sub>纳米粒子
MMA/BA 4/1 206±37.3 PS/SiO<sub>2</sub>纳米粒子
Vac/BA 4/1 191±29.5 PS/SiO<sub>2</sub>纳米粒子
表1的数据结果结合图2a-图2f的TEM 图分析表明,相同反应条件下,APS/TMEDA作为氧化还原引发剂,二氧化硅代替表面活性剂稳定油水界面,单体苯乙烯、甲基丙烯酸甲酯、醋酸乙烯酯或共聚单体苯乙烯/丙烯酸丁酯、甲基丙烯酸甲酯/丙烯酸丁酯、醋酸乙烯酯/丙烯酸丁酯均能通过无皂乳液聚合制备聚合物/二氧化硅纳米粒子,能够得到具有核壳结构的聚合物/二氧化硅纳米复合粒子。其中,对于单体苯乙烯所得聚合物PS/SiO2纳米复合粒子和共聚单体苯乙烯/丙烯酸丁酯所得共聚物P(S-BA)/SiO2纳米复合粒子粒径均匀,形貌良好,其结构以聚合物为核心,无机纳米粒子二氧化硅为壳的复合粒子。
实施例3
一种聚苯乙烯/纳米二氧化硅复合材料的制备方法,包括如下步骤:
(1)量取2ml质量百分比浓度为40 wt%的硅溶胶Ludox TM40(二氧化硅固体含量为1.04g),0.063g三(羟甲基)氨基甲烷盐酸盐(浓度为10mM)和0.005g盐酸多巴胺(浓度为0.5mg/ml),逐一加入到10ml去离子水中,混合均匀,利用盐酸和氢氧化钠溶液将所述混合液的pH调至8.5,搅拌下反应1h,得到聚多巴胺修饰的纳米二氧化硅水溶液;
(2)称取0.5g引发剂溶于4ml去离子水中,混合均匀,保证整个反应体系引发剂浓度为0.012g/ml;
(3)向容积为250ml的三颈烧瓶中依次加入步骤(1)所述聚多巴胺修饰的纳米二氧化硅溶液、5g苯乙烯、去离子水(保证整个体系去离子水为45ml),混合均匀得混合液,通入氮气鼓泡20分钟,同时将油浴锅预热至30℃;
(4)待第一次鼓泡完毕后,向三颈烧瓶中加入上述引发剂溶液(氧化还原引发体系中,26µL N,N,N',N'-四甲基乙二胺后加),继续通入氮气鼓泡10分钟,完成后将三颈烧瓶放入预热至30℃的油浴锅中,在氮气氛围下进行聚合反应,在聚合反应结束后,取出烧瓶并置于冰水浴中,冷却至室温,最终得到所述聚苯乙烯/二氧化硅纳米复合粒子溶液(PS/SiO2纳米复合粒子溶液)。将制得的聚苯乙烯/二氧化硅纳米复合粒子溶液稀释一定比例,滴在铜网上,干燥,扫描电子显微镜下观察,结果如图3a-图3f所示。不同引发剂进行无皂乳液聚合所得复合材料性能比较如表2所示。
表2
Figure DEST_PATH_IMAGE002
表2的数据结果结合图3a-图3f的SEM 图分析表明,相同反应条件下, AIBA、KPS、APS作为热引发剂,苯乙烯转化率达到80%以上,较高温度促进了单体苯乙烯的转化,反应效率比较高,引发剂AIBA制备的复合粒子表明,能够得到有较多的二氧化硅包覆的聚苯乙烯球,而引发剂APS、KPS制备的复合粒子则显示出裸露的聚苯乙烯,二氧化硅未能负载在聚苯乙烯球表面。而氧化还原体系中,APS/TMEDA和KPS/TMEDA均能够得到粒径均匀的聚苯乙烯/二氧化硅纳米复合粒子,而KPS/TMEDA的转化率低,不利于苯乙烯的转化,反应效率低。光引发剂SPTP不能得到二氧化硅包覆的聚苯乙烯球,转化率低,不利于本体系复合材料的制备。由此可知,高温有利于苯乙烯的转化,但是不利于获得二氧化硅包覆的聚苯乙烯球,光引发剂既不能够提高转化率,也不利于形成复合纳米粒子,氧化还原引发剂能够得到粒径均匀的复合纳米粒子,而APS/TMEDA不仅能够得到粒径均匀的PS/SiO2纳米粒子,且苯乙烯的转化率高,能够有效制备PS/SiO2纳米复合材料。
以上实施例仅为本发明较优的实施方式,仅用于解释本发明,而非限制本发明,本领域技术人员在未脱离本发明精神实质下所作的改变、替换、修饰等均应属于本发明的保护范围。

Claims (10)

1.一种聚合物/无机纳米粒子复合材料的制备方法,其特征在于,包括如下步骤:
(1)将硅溶胶或无机纳米粒子、多巴胺、三(羟甲基)氨基甲烷盐酸盐与水混合均匀,再将所得混合液搅拌反应,得到聚多巴胺修饰的无机纳米粒子水溶液;
(2)将引发剂溶于水中,混合均匀,得到引发剂溶液;
(3)将单体和水加入步骤(1)所述聚多巴胺修饰的无机纳米粒子水溶液中,混合均匀,得到反应液,然后在搅拌状态下往所述反应液中通氮气除去反应液中的氧气;
(4)将步骤(2)所述引发剂溶液加入步骤(3)所得反应液中,继续鼓泡除去混合液中的氧气,在氮气气体保护下进行无皂乳液聚合反应,反应结束后冷却至室温,得到聚合物/无机纳米粒子复合材料。
2.根据权利要求1所述的制备方法,其特征在于,步骤(1)所述无机纳米粒子为二氧化硅粉末、锂藻土Laponite RD、蒙脱土PGV、四氧化三铁Fe3O4或多壁碳纳米管WCNTs。
3.根据权利要求1所述的制备方法,其特征在于,步骤(1)中,将硅溶胶或无机纳米粒子、多巴胺、三(羟甲基)氨基甲烷盐酸盐与水混合均匀后调节pH值为8.5~8.8,搅拌反应的时间为1~1.5小时。
4.根据权利要求1所述的制备方法,其特征在于,步骤(1)所述多巴胺在混合液中的浓度为0.5~0.8mg/ml;所述三(羟甲基)氨基甲烷盐酸盐在混合液中的浓度为10~12Mm。
5.根据权利要求1所述的制备方法,其特征在于,步骤(2)所述引发剂为过硫酸铵、过硫酸钾、偶氮二异丁脒盐酸盐、2,4,6-三甲基苯甲酰基苯基膦酸乙酯、过硫酸铵/N,N,N',N'-四甲基乙二胺或过硫酸钾/N,N,N',N'-四甲基乙二胺;若引发剂为过硫酸铵/N,N,N',N'-四甲基乙二胺或过硫酸钾/N,N,N',N'-四甲基乙二胺,则硫酸铵和过硫酸钾在步骤(4)鼓泡除去混合液中的氧气前加入,N,N,N',N'-四甲基乙二胺在步骤(4)鼓泡除去混合液中的氧气后加入。
6.根据权利要求1所述的制备方法,其特征在于,步骤(3)所述单体为苯乙烯、甲基丙烯酸甲酯、醋酸乙烯酯、苯乙烯/丙烯酸丁酯、甲基丙烯酸甲酯/丙烯酸丁酯、醋酸乙烯酯/丙烯酸丁酯中的一种。
7.根据权利要求1所述的制备方法,其特征在于,步骤(3)所述聚多巴胺修饰的无机纳米粒子占单体与无机纳米粒子两者总质量的22%-23%;所述单体在反应液中的浓度为0.78~0.97mol/L;所述聚多巴胺修饰的无机纳米粒子在反应液中的浓度为0.046~0.058g/mL。
8.根据权利要求1所述的制备方法,其特征在于,步骤(4)所述引发剂在反应液中的浓度为0.008~0.01g/mL。
9.根据权利要求1所述的制备方法,其特征在于,步骤(4)所述聚合反应的温度为30℃-70℃,聚合反应的时间为18~24小时。
10.由权利要求1-9任一项所述的制备方法制得的一种聚合物/无机纳米粒子复合材料。
CN202010177548.9A 2020-03-13 2020-03-13 一种聚合物/无机纳米粒子复合材料及其制备方法 Active CN111303320B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010177548.9A CN111303320B (zh) 2020-03-13 2020-03-13 一种聚合物/无机纳米粒子复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010177548.9A CN111303320B (zh) 2020-03-13 2020-03-13 一种聚合物/无机纳米粒子复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN111303320A true CN111303320A (zh) 2020-06-19
CN111303320B CN111303320B (zh) 2022-06-14

Family

ID=71157158

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010177548.9A Active CN111303320B (zh) 2020-03-13 2020-03-13 一种聚合物/无机纳米粒子复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN111303320B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112225894A (zh) * 2020-10-12 2021-01-15 江南大学 一种杂化纳米粒子、制备方法及抗紫外应用
CN112608644A (zh) * 2020-12-02 2021-04-06 浙江万丰摩轮有限公司 一种多色涂层的摩托车轮毂及其制备方法
CN112863621A (zh) * 2021-02-02 2021-05-28 昆明理工大学 一种聚甲基丙烯酸甲酯光致聚合物材料及其制备与应用
CN114456292A (zh) * 2022-03-14 2022-05-10 上海理工大学 一种表面褶皱的聚苯乙烯-SiO2核壳纳米复合粒子及其制备方法
CN114855444A (zh) * 2022-04-18 2022-08-05 南京工业大学 一种超高分子量聚乙烯纤维表面包覆改性方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104672396A (zh) * 2015-03-24 2015-06-03 哈尔滨工业大学 一种光热材料Fe3O4/聚多巴胺/聚异丙基丙烯酰胺的制备方法及其应用
CN105440583A (zh) * 2015-12-04 2016-03-30 武汉理工大学 一种多巴胺类化合物修饰或包裹纳米粒子改性聚合物复合材料及其制备方法
CN106866870A (zh) * 2017-03-02 2017-06-20 郑州轻工业学院 一种基于Laponite RD的pH响应性复合微凝胶及其制备方法
CN107880207A (zh) * 2017-11-21 2018-04-06 四川大学 一种Pickering乳液聚合技术制备的新型水性丙烯酸树酯/锂皂土复合皮革涂饰剂
CN109485768A (zh) * 2018-11-18 2019-03-19 长春工业大学 一种丙烯酸酯类聚合物包覆的碳纳米管及其制备方法
CN110540611A (zh) * 2019-09-30 2019-12-06 华南理工大学 一种聚合物无机纳米复合粒子及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104672396A (zh) * 2015-03-24 2015-06-03 哈尔滨工业大学 一种光热材料Fe3O4/聚多巴胺/聚异丙基丙烯酰胺的制备方法及其应用
CN105440583A (zh) * 2015-12-04 2016-03-30 武汉理工大学 一种多巴胺类化合物修饰或包裹纳米粒子改性聚合物复合材料及其制备方法
CN106866870A (zh) * 2017-03-02 2017-06-20 郑州轻工业学院 一种基于Laponite RD的pH响应性复合微凝胶及其制备方法
CN107880207A (zh) * 2017-11-21 2018-04-06 四川大学 一种Pickering乳液聚合技术制备的新型水性丙烯酸树酯/锂皂土复合皮革涂饰剂
CN109485768A (zh) * 2018-11-18 2019-03-19 长春工业大学 一种丙烯酸酯类聚合物包覆的碳纳米管及其制备方法
CN110540611A (zh) * 2019-09-30 2019-12-06 华南理工大学 一种聚合物无机纳米复合粒子及其制备方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
JAE-HOSHIN ,等: ""Clay-polystyrene nanocomposite from pickering emulsion polymerization stabilized by vinylsilane-functionalized montmorillonite platelets", 《APPLIED CLAY SCIENCE,》 *
NICHOLAS M. BRIGGS,等: "Multiwalled Carbon Nanotubes at the Interface of Pickering Emulsions", 《LANGMUIR》 *
STEFAN A. F. BON,等: "Pickering Miniemulsion Polymerization Using Laponite Clayasa Stabilizer", 《LANGMUIR》 *
张玉红,等: "Pickering乳液聚合制备草莓型PSt/SiO2有机-无机复合微球", 《高分子材料科学与工程》 *
张立苓,等: "多巴胺改性二氧化钛乳化AKD制备Pickering乳液的性能研究", 《中华纸业》 *
李煜: ""Pickering乳液聚合制备核-壳结构聚合物/无机纳米粒子复合微球", 《万方数据库》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112225894A (zh) * 2020-10-12 2021-01-15 江南大学 一种杂化纳米粒子、制备方法及抗紫外应用
CN112225894B (zh) * 2020-10-12 2021-10-15 江南大学 一种杂化纳米粒子、制备方法及抗紫外应用
CN112608644A (zh) * 2020-12-02 2021-04-06 浙江万丰摩轮有限公司 一种多色涂层的摩托车轮毂及其制备方法
CN112863621A (zh) * 2021-02-02 2021-05-28 昆明理工大学 一种聚甲基丙烯酸甲酯光致聚合物材料及其制备与应用
CN114456292A (zh) * 2022-03-14 2022-05-10 上海理工大学 一种表面褶皱的聚苯乙烯-SiO2核壳纳米复合粒子及其制备方法
CN114456292B (zh) * 2022-03-14 2023-11-07 上海理工大学 一种表面褶皱的聚苯乙烯-SiO2核壳纳米复合粒子及其制备方法
CN114855444A (zh) * 2022-04-18 2022-08-05 南京工业大学 一种超高分子量聚乙烯纤维表面包覆改性方法
CN114855444B (zh) * 2022-04-18 2023-09-01 南京工业大学 一种超高分子量聚乙烯纤维表面包覆改性方法

Also Published As

Publication number Publication date
CN111303320B (zh) 2022-06-14

Similar Documents

Publication Publication Date Title
CN111303320B (zh) 一种聚合物/无机纳米粒子复合材料及其制备方法
CN107311144B (zh) 一种氮掺杂纳米多孔中空碳球的制备方法
Ma et al. Hydrophilic dual‐responsive magnetite/PMAA core/shell microspheres with high magnetic susceptibility and ph sensitivity via distillation‐precipitation polymerization
JP2008533288A5 (zh)
JP2002194011A5 (zh)
CN106378093B (zh) 一种磁性空心石墨烯基复合微球材料的制备方法及其应用
CN104845381B (zh) 一种改性多壁碳纳米管材料的制备方法
CN1951979A (zh) 一种导电聚苯胺/淀粉壳核型复合微球及其制备方法
CN108976341A (zh) 一种树莓状无机聚合物杂化微球及其制备方法
CN113213489A (zh) 一种中空二氧化硅微球及其制备方法
Yamamoto et al. Design of polymer particles maintaining dispersion stability for the synthesis of hollow silica particles through sol-gel reaction on polymer surfaces
CN103467678A (zh) 一种石榴状有机-无机纳米复合微球的制备方法
CN111793178B (zh) 一种双亲蒙脱土及其制备方法与应用
CN113817115A (zh) 一种纳米蒙脱土基复合物及制备方法和应用
CN114558471B (zh) 一种松油醇改性氧化石墨烯纳米颗粒在皮克林乳液中的应用
CN110540611B (zh) 一种聚合物无机纳米复合粒子及其制备方法
CN114773515A (zh) 一种亚微米级羧基功能化聚苯乙烯微球的制备方法
JP2023524994A (ja) 単分散超常磁性粒子およびその製造方法
Gao et al. Growth from spherical to rod-like SiO2: Impact on microstructure and performance of nanocomposite
CN112724305A (zh) 单分散量子点编码磁性微球
CN115057963B (zh) 一种热可膨胀微球及其制备方法
JP5751047B2 (ja) スルホン酸ナトリウム基含有コア・シェル型ポリマー微粒子の製造方法
Li et al. Morphology evolution of poly (St-co-BuA)/silica nanocomposite particles synthesized by emulsion polymerization
CN110835383A (zh) 一种具有核壳结构和超顺磁性的阳离子型复合微球及其制备方法
CN117801153B (zh) 一种纳米二氧化硅-氧化锌-蒙脱土改性丙烯酸树脂的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant