CN111278575A - 聚酰亚胺糊料的干燥方法及高光电转化效率太阳能电池的制造方法 - Google Patents

聚酰亚胺糊料的干燥方法及高光电转化效率太阳能电池的制造方法 Download PDF

Info

Publication number
CN111278575A
CN111278575A CN201880069210.2A CN201880069210A CN111278575A CN 111278575 A CN111278575 A CN 111278575A CN 201880069210 A CN201880069210 A CN 201880069210A CN 111278575 A CN111278575 A CN 111278575A
Authority
CN
China
Prior art keywords
polyimide
paste
drying
solvent
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201880069210.2A
Other languages
English (en)
Other versions
CN111278575B (zh
Inventor
渡部武纪
桥上洋
大塚宽之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Publication of CN111278575A publication Critical patent/CN111278575A/zh
Application granted granted Critical
Publication of CN111278575B publication Critical patent/CN111278575B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02118Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/10Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by other chemical means
    • B05D3/105Intermediate treatments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/10Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by other chemical means
    • B05D3/107Post-treatment of applied coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/10Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by other chemical means
    • B05D3/107Post-treatment of applied coatings
    • B05D3/108Curing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • B05D7/26Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials synthetic lacquers or varnishes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photovoltaic Devices (AREA)
  • Organic Insulating Materials (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Formation Of Insulating Films (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

本发明提供一种聚酰亚胺糊料的干燥方法,其为对含有有机溶剂与溶解在该有机溶剂中的聚酰亚胺树脂,并通过干燥及加热进行固化而形成固化聚酰亚胺的聚酰亚胺糊料进行干燥的方法,所述干燥方法的特征在于,其包含以下工序:在基材的表面涂布所述聚酰亚胺糊料的工序;至少对所述基材的涂布了所述聚酰亚胺糊料的部位的表面涂布含有极性物质的溶剂的工序;及在涂布含有所述极性物质的溶剂后,对所述聚酰亚胺糊料及所述含有极性物质的溶剂进行干燥的工序。由此,提供一种能够在维持生产性的同时维持印刷形状的聚酰亚胺糊料的干燥方法。

Description

聚酰亚胺糊料的干燥方法及高光电转化效率太阳能电池的制 造方法
技术领域
本发明涉及一种聚酰亚胺糊料的干燥方法及太阳能电池的制造方法。
背景技术
作为使用了单晶或多晶半导体基板的具有较高的光电转化效率的太阳能电池结构的一种,有一种正负电极均设在非受光面(背面)的背面电极型太阳能电池。该背面电极型太阳能电池的背面的概观如图2所示。在太阳能电池100的背面(太阳能电池用半导体基板110的背面)上,交替排列有发射极层112及基极层113,并沿各自的层上设置电极124、125(发射极电极124、基极电极125)。进一步,设置有用于对由这些电极得到的电流进行集电的母线(bus bar)电极134、135(发射极电极用母线134、基极电极用母线135)。在功能上,母线电极多与集电电极正交。发射极层112的宽度多为数mm~数百μm,基极层113的宽度多为数百μm~数十μm。此外,电极宽度通常为数百~数十μm左右,该电极多被称为指状电极(finger electrode)。
太阳能电池100的截面结构的示意图如图3所示。在基板110的背面的最表层附近形成有发射极层112及基极层113。发射极层112及基极层113的各层厚度通常最多为1μm左右。在各层上设有指状电极124、125(发射极电极124、基极电极125),非电极区域的表面被氮化硅膜或氧化硅膜等介电膜(背面保护膜)142覆盖。以降低反射损失为目的,在受光面侧设有防反射膜141。
为了改善因细栅线(finger)电阻造成的内部电阻损耗,例如专利文献1中公知一种设有多个母线的结构。该太阳能电池的背面的结构为后文详细说明的在图5中的(c)中示意性示出的结构。其经由绝缘膜连接相对的细栅线与母线。作为该结构的制造方法,有在形成细栅线后,将聚酰亚胺糊料等绝缘糊料印刷成图案状并使其干燥、固化,并用低温固化型导电糊料在其之上形成母线的方法,详细内容如后文所述。
除此之外,太阳能电池中的聚酰亚胺糊料的应用在专利文献3~5等中也是公知的,但均需要再现性良好地形成微细的图案。
现有技术文献
专利文献
专利文献1:国际公开第WO2015/190024号
专利文献2:日本特开昭第62-234575号公报
专利文献3:日本特开第2012-69592号公报
专利文献4:日本特表第2010-528487号公报
专利文献5:日本特开第2013-153212号公报
发明内容
本发明要解决的技术问题
聚酰亚胺糊料在进行印刷等涂布后,需要以50~300℃左右的温度进行干燥,但当暴露在高温下时,其表现出流动性,存在印刷物扩展而变得大于所需形状(坍塌)的问题。由于坍塌量并不是一定的,因为并非通过预先缩小图案就能得以解决。
专利文献2中公知一种方法,该方法为了抑制流动性,以低温进行一定时间处理而以一定程度使溶剂挥发后,以高温进行处理。印刷物的坍塌问题虽然通过该方法得到了解决,但同时产生了处理时间变长、处理装置大型化这类生产性的变差。
本发明鉴于上述问题而完成,其目的在于提供一种能够在维持生产性的同时也维持形状的聚酰亚胺糊料的干燥方法。此外,本发明目的在于提供一种太阳能电池的制造方法,其在制造作为太阳能电池的结构的一部分而包含固化聚酰亚胺膜的太阳能电池时,能够在维持生产性的同时维持形状对聚酰亚胺糊料进行干燥。
解决技术问题的技术手段
为了达成上述目的,本发明提供一种聚酰亚胺糊料的干燥方法,其为对含有有机溶剂与溶解在该有机溶剂中的聚酰亚胺树脂,并通过干燥及加热进行固化而形成固化聚酰亚胺的聚酰亚胺糊料进行干燥的方法,所述干燥方法的特征在于,其包含以下工序:在基材的表面上涂布所述聚酰亚胺糊料的工序;至少对所述基材的涂布了所述聚酰亚胺糊料的部位的表面上涂布含有极性物质的溶剂的工序;及在涂布所述含有极性物质的溶剂后,对所述聚酰亚胺糊料及所述含有极性物质的溶剂进行干燥的工序。
若为上述聚酰亚胺糊料的干燥方法,则能够抑制干燥时的糊料坍塌。因此,能够在不增加干燥时间、即能够在维持生产性的同时,再现性良好地得到所需形状的图案。
此时,优选将所述极性物质设为水、乙二醇、乙酸、甲醇、乙醇、1-丙醇、2-丙醇、1-丁醇、甲酸中的至少任意一种。
通过使用上述极性物质,能够进一步有效地抑制干燥时的糊料坍塌。
此外,优选将所述含有极性物质的溶剂设为含有1质量%以上的所述极性物质的溶剂。
通过以上述比例使用极性物质,能够有效地抑制干燥时的糊料坍塌。
此外,本发明提供一种太阳能电池的制造方法,其为制造作为太阳能电池的结构的一部分而包含由固化聚酰亚胺形成的固化聚酰亚胺膜的太阳能电池的方法,其特征在于,在形成所述固化聚酰亚胺膜时,其具有:通过上述任一种聚酰亚胺糊料的干燥方法,对聚酰亚胺糊料进行干燥的工序。
此外,更具体而言,本发明提供一种太阳能电池的制造方法,其为制造作为太阳能电池的结构的一部分而包含由固化聚酰亚胺形成的固化聚酰亚胺膜的太阳能电池的方法,所述制造方法的特征在于,其具有以下工序:在半导体基板内形成接合p型层与n型层的pn结的工序;在所述p型层上形成与其电接触的p型电极的工序;及在所述n型层上形成与其电接触的n型电极的工序,进一步,在形成所述固化聚酰亚胺膜时,所述太阳能电池的制造方法包含以下工序:在包含所述半导体基板的结构体的表面上涂布聚酰亚胺糊料的工序,该聚酰亚胺糊料含有有机溶剂与溶解在该有机溶剂中的聚酰亚胺树脂,并通过干燥及加热进行固化而形成所述固化聚酰亚胺;至少对所述包含半导体基板的结构体的涂布了所述聚酰亚胺糊料的部位的表面,涂布含有水、乙二醇、乙酸、甲醇、乙醇、1-丙醇、2-丙醇、1-丁醇、甲酸中的至少任意一种极性物质的溶剂的工序;在涂布所述含有极性物质的溶剂后,对所述聚酰亚胺糊料及所述含有极性物质的溶剂进行干燥的工序;及对进行了干燥的所述聚酰亚胺糊料进行加热而使其固化,形成所述固化聚酰亚胺膜的工序。
此外,此时,优选将所述含有极性物质的溶剂设为含有1质量%以上的所述极性物质的溶剂。
若为这些太阳能电池的制造方法,则能够不增加聚酰亚胺糊料的干燥时间,因此能够在维持生产性的同时,再现性良好地得到所需形状的固化聚酰亚胺膜的图案。
发明效果
若为本发明的聚酰亚胺糊料的干燥方法,则能够不增加干燥时间,因此能够在维持生产性的同时,再现性良好地得到所需形状的图案。以往,为了以不使聚酰亚胺糊料发生坍塌的方式而进行干燥时,需要一种对温度进行2个阶段升温的干燥方法,但通过使用本发明,能够从最初开始就以高温进行干燥,能够使干燥装置小型化、干燥时间缩短,生产性也得以提升。
本发明的聚酰亚胺糊料的干燥方法能够应用于太阳能电池的制造,提高太阳能电池制造的生产性。
附图说明
图1为表示本发明的聚酰亚胺糊料的干燥方法的工序的流程图。
图2为能够应用本发明的、通常的背面电极型太阳能电池的概观图。
图3为能够应用本发明的、通常的背面电极型太阳能电池的截面示意图。
图4为能够应用本发明的、表示背面电极型太阳能电池的制造方法的一个例子的截面示意图。
图5为能够应用本发明的、表示背面电极型太阳能电池的制造方法的一个例子的示意图。
具体实施方式
以下对于本发明,对实施方式进行说明,但本发明不受这些实施方式的限定。
在以下的详细说明中,为了提供本发明的整体理解、及在特定的具体例中如何实施,对较多特定的细节部分进行了说明。但可理解为本发明能够在没有这些特定细节部分的情况下进行实施。以下,关于公知的方法、顺序及技术,由于不会导致本发明不清楚,因此并没有详细示出。本发明参照特定的附图对特定的具体例进行说明,但本发明不受其限定。其中所包含的记载的附图为示意性附图,不限定本发明的范围。此外,在附图中,出于进行图示目的而对数个要素的大小进行了夸张,因此其并非如缩小比例尺所示。
能够应用于本发明的聚酰亚胺糊料的干燥方法中的聚酰亚胺糊料含有有机溶剂与溶解在该有机溶剂中的聚酰亚胺树脂,并通过干燥及加热进行固化而形成固化聚酰亚胺。即,该聚酰亚胺糊料至少由聚酰亚胺分子与溶剂组成,可根据需要混合触变剂等其他成分。此外,聚酰亚胺糊料通过将粘度设为30~150Pa·s而呈糊状,在描绘任意的形状时,能够维持该形状。因此,当使用印刷法等时,能够在基板上将聚酰亚胺形成为所需的图案状。聚酰亚胺糊料通常通过以50~300℃使溶剂挥发,并以250~400℃进行加热而完全固化,从而得到所需的特性。然而,若在最初就暴露在140℃以上的气氛中,则粘度下降,表现出流动性,无法得到所需图案。针对该问题,本发明在刚涂布聚酰亚胺糊料后的基板的涂布面上涂布含有极性物质的溶剂后,使聚酰亚胺糊料干燥。干燥优选以140℃以上进行。
更具体而言,在本发明中,通过图1所示的工序对聚酰亚胺糊料进行干燥。即,首先,在基材的表面上涂布聚酰亚胺糊料(工序S1)。其中的基材可作为形成固化聚酰亚胺的对象物。
然后,至少对所述基材的涂布了所述聚酰亚胺糊料的部位的表面上涂布含有极性物质的溶剂(工序S2)。该溶剂含有作为极性物质的水、乙二醇、乙酸、甲醇、乙醇、1-丙醇(正丙醇)、2-丙醇、1-丁醇、甲酸中的任意一种。这些溶剂的蒸气压较低,因涂布这些溶剂而造成的干燥时间的增加较轻微。此外,其浓度优选为1质量%以上,也可以为100%。
然后,在涂布了上述含有极性物质的溶剂后,对聚酰亚胺糊料及含有极性物质的溶剂进行干燥(工序S3)。
若使如上所述的极性物质(上述极性物质自身也为具有极性的溶剂)附着在糊料上,则聚酰亚胺分子从糊料中的溶剂中析出并固体化。由于失去了作为糊料的流动性,因此即使以高温进行处理,形状也不会扩展。作为含有极性物质的溶剂的涂布方法,可以为使基材浸渍在溶剂中的方法,也可为印刷法或旋涂法,只需少量喷雾就能够得到充分的效果。由此,本发明中的溶剂的“涂布”包括设为使溶剂与至少涂布了聚酰亚胺糊料的部位的表面接触并覆盖的状态的手法。此外,在涂布聚酰亚胺后、涂布溶剂前,可适当进行流平放置或真空脱泡等。
上述方法可应用于太阳能电池的制造。即,在作为太阳能电池的结构的一部分而包含由固化聚酰亚胺形成的固化聚酰亚胺膜的太阳能电池的制造方法中,在形成固化聚酰亚胺膜时,可应用本发明的聚酰亚胺糊料的干燥方法。
具体而言,在具有在半导体基板内形成接合p型层与n型层的pn结的工序;在所述p型层上形成与其电接触的p型电极的工序;及在n型层上形成与其电接触的n型电极的工序的、制造作为太阳能电池的结构的一部分而包含由固化聚酰亚胺形成的固化聚酰亚胺膜的太阳能电池的方法中,可应用本发明的聚酰亚胺糊料的干燥方法。即,为一种在形成固化聚酰亚胺膜时,包含下述工序的太阳能电池的制造方法:将含有有机溶剂与溶解在该有机溶剂中的聚酰亚胺树脂并通过干燥及加热进行固化而形成固化聚酰亚胺的聚酰亚胺糊料,涂布在包含半导体基板的结构体的表面上的工序;至少对包含半导体基板的结构体的涂布了聚酰亚胺糊料的部位的表面,涂布含有极性物质的溶剂的工序;在涂布含有极性物质的溶剂后,对聚酰亚胺糊料及含有极性物质的溶剂进行干燥的工序;及对干燥的聚酰亚胺糊料加热使其固化,形成固化聚酰亚胺膜的工序。
以下,以应用于专利文献1的太阳能电池中时为例,使用图4对更具体的本发明的太阳能电池的制造方法进行说明。
例如作为用于作为太阳能电池的光电转化部而发挥功能的基板310,准备原切割(as-cut)单晶{100}N型硅基板310,其在高纯度硅中掺杂磷或砷、锑这样的V价元素,且比电阻为0.1~5Ω·cm。单晶硅基板可通过CZ法、FZ法中的任一种方法而制成。基板310并非必须是单晶硅,也可以为多晶硅。
然后,在基板310的两个主表面上形成被称为织构(texture)的微细凹凸(图4中的(a))。织构具有微细的金字塔形结构,其利用根据结晶的晶面取向的不同而导致的蚀刻速度的不同而形成。织构可通过浸渍在经加热的氢氧化钠、氢氧化钾、碳酸钾、碳酸钠、碳酸氢钠等碱性溶液(浓度1~10%,温度60~100℃)中10分钟~30分钟左右而制成。在上述溶液中,也可溶解规定量的2-丙醇,以促进反应。
在形成织构后,在盐酸、硫酸、硝酸、氟酸等或这些酸的混合液的酸性水溶液中进行清洗。也可混合过氧化氢以提高清洁度。
在该基板310的第一主表面(制成太阳能电池时成为非受光面(背面)的主表面)上形成发射极层312(图4中的(b))。发射极层312为与基板310相反的导电型(此时为P型),且厚度为0.05~2μm左右。发射极层312可通过使用有BBr3等的气相扩散而形成。将基板310以2片为一组并重合的状态放置在热处理炉中,导入BBr3与氧气的混合气体,并以950~1050℃进行热处理。作为载气,优选氮气或氩气。此外,也可通过将含有硼源的涂布剂涂布在第一主表面上,并以950~1050℃进行热处理的方法而形成。作为涂布剂,例如可使用含有1~4%的作为硼源的硼酸、0.1~4%的作为增粘剂的聚乙烯醇的水溶液。若使用上述任一种方法形成发射极层312,则可在发射极层312表面同时形成含硼的玻璃层。
在形成发射极层312后,进行下一个在两个主表面上形成用于形成基极层的掩膜(扩散掩膜、屏蔽膜)351、352的工序(图4中的(c))。作为掩膜351、352,可使用氧化硅膜或氮化硅膜等。若使用CVD法,则能够通过适当选择导入的气体种类来形成任意一种膜。当为氧化硅膜时,也可通过对基板310进行热氧化而形成。通过在氧气气氛中以950~1100℃对基板310进行30分钟~4小时的热处理,可形成100~250nm左右的硅热氧化膜。该热处理可接着上述用于形成发射极的热处理而在同一批次内实施。此外,在形成发射极层312后,可如上所述在基板310表面上形成玻璃,特别是当发射极层312为P型时,优选在形成掩膜前不去除玻璃。通过不去除玻璃层,能够抑制工时的增加,防止基板310的少数载体使用寿命的降低。认为玻璃层赋予了吸杂效果。
此外,在使用了硼作为用于发射极层312的掺杂剂时,若通过热氧化形成掩膜,则由于Si中与SiO2中的扩散系数和偏析系数不同,硼的表面浓度下降,表面上的再结合速度下降,故而优选。
然后,如图4中的(d)所示,对成为基极区域的掩膜352的一部分形成开口(掩膜开口部354)。具体而言,以开口宽度为50~200μm、0.6~2.0mm左右的间隔以平行线状形成开口。形成开口时可使用光刻法或蚀刻膏这样的化学方法,也可使用激光或切割机这样的物理方法中的任一种。
在对掩膜352形成开口后,如图4中的(e)所示,可将基板310浸渍在加热至50~90℃的高浓度(10~30%)的KOH、NaOH等水溶液的碱性水溶液中1~30分钟,对开口部不需要的发射极层312进行去除(蚀刻)(掩膜开口部中的凹部361)。上述扩散掩膜351、352在本工序中还作为碱性蚀刻的掩膜而发挥功能。若进行该蚀刻,则如图4中的(e)所示,在基板310的表面形成凹部。凹部的深度取决于发射极层312的深度,通常为0.5~10μm左右。通过去除开口部的P型掺杂剂,变得更易于控制基极层的掺杂剂浓度。此外,由于在受光面侧也形成了掩膜,因此受光面的织构不会被蚀刻。
然后,如图4中的(f)所示,形成基极层313。在形成基极层313时,可使用使用有磷酰氯的气相扩散法。通过以830~950℃在磷酰氯与氮气及氧气的混合气体气氛下对基板310进行热处理,形成成为基极层313的磷扩散层(N+层)。除了气相扩散法以外,也可通过对含有磷的材料进行旋涂或印刷之后进行热处理的方法而形成。在形成基极层313时,由于在受光面侧形成了掩膜351(参照图4中的(e)),因此在热处理时不用在受光面侧自掺杂磷。此外,由于在之后的工序中不需要掩膜351、352,因此无需对基板310进行所需以上的氧化、或进行过度的制膜。即,在用于形成该基极层的热处理结束的时间点,基极层上的氧化硅膜厚可以为95nm以下。另外,在经过了上述蚀刻工序后,如图4中的(f)所示,在凹部361的内表面上形成有基极层。
在形成扩散层后,用氟酸等去除掩膜及表面上所形成的玻璃。由此,如图4中的(f)所示,去除掩膜351、352。
然后,进行第二主表面(与上述第一主表面相反的主表面)的防反射膜341的形成(图4中的(g))。作为防反射膜341,可利用氮化硅膜或氧化硅膜等。在为氮化硅膜时,使用等离子体CVD装置,制膜成约100nm。作为反应气体,多将甲硅烷(SiH4)及氨气(NH3)混合进行使用,也可使用氮气代替NH3,此外,为了调节工艺压力、稀释反应气体、以及在将多晶硅用于基板310时促进基板310的体内钝化(bulk passivation)效果,有时还会在反应气体中混合氢气。当为氧化硅膜时,也可通过CVD法形成,但通过热氧化法得到的膜能够得到更高的特性。为了提高表面的保护效果,可预先在基板310的表面上形成氧化铝膜后形成氮化硅膜或氧化硅膜等。
在第一主表面上,可将氮化硅膜或氧化硅膜(背面保护膜342)用作保护基板表面的膜(背面保护膜)(图4中的(g))。背面保护膜342的膜厚优选设为50~250nm。背面保护膜342的形成与第二主表面(受光面)侧的防反射膜341相同,当为氮化硅膜时,可通过CVD法形成,当为氧化硅膜时,可通过热氧化法或CVD法形成。此外,当如该例所述,基板为N型时,可预先在基板310的表面上形成作为P型层的对钝化有效的氧化铝膜后,形成氮化硅膜、氧化硅膜等。虽然也可在基极(N型)层上形成氧化铝膜,但由于表面(第一主表面)的大半为发射极(P型)层312,因此由其造成的特性下降较轻微。
然后,如下所述,形成基极电极325及发射极电极324(图4中的(h))。例如通过丝网印刷法形成基极电极325。例如,准备具有开口宽度为30~100μm、0.6~2.0mm间隔的平行线图案的板,沿着基极层印刷由Ag粉末和玻璃熔块(glass frit)与有机物粘结剂混合而成的Ag糊料。同样地,印刷作为发射极电极324的Ag糊料。基极电极用Ag糊料与发射极电极用Ag糊料可使用相同的糊料,也可使用不同的糊料。在以上的电极印刷后,通过热处理使Ag粉末贯通(fire through)氮化硅膜,导通电极与硅。烧成通常可通过以700~850℃的温度进行1~5分钟处理来进行。在以往,为了降低接触电阻,需要去除第一主表面上的保护膜(背面保护膜342)。然而,若在形成有织构的部分形成发射极层312,则能够不去除保护膜(背面保护膜342)而实现低接触电阻。另外,基极层用电极325及发射极层用电极324的烧成可分别进行。
使用图5对母线形成工序进行说明。图5中的(a)为上述图4中的(h)的工序后的基板310的上表面的图。分别在发射极区域(发射极层)312上形成发射极电极324,在基极区域(基极层)313上形成基极电极325。首先,在该基板310上将聚酰亚胺糊料涂布成图案状。以使N母线(此时,为与基极电极连接的母线)不与发射极电极324导通,且P母线(此时,为与发射极电极连接的母线)不与基极电极325导通的方式,例如以图5的(b)中的显示绝缘膜371部位的图案涂布聚酰亚胺糊料即可。涂布可使用丝网印刷法或喷墨法等。在使用例如丝网印刷法等涂布聚酰亚胺糊料后,涂布含有极性物质的溶剂。然后,作为干燥工序,例如以140℃以上使其干燥。溶剂优选含有水、乙二醇、乙酸、甲醇、乙醇、1-丙醇(n-丙醇)、2-丙醇、1-丁醇、甲酸中的任一种,浓度优选为1质量%以上。由此,聚酰亚胺失去流动性,即使以高温进行处理,形状也不会扩展。作为溶剂的涂布方法,可以为在溶剂中进行浸的方法,也可以为印刷法或旋涂法,即使少量喷雾也能够得到充分效果。
最后,形成母线。如图5中的(c)所示,N母线(基极电极用母线335)与基极电极325连接,P母线(发射极电极用母线334)与发射极电极324连接,N母线(基极电极用母线335)与发射极电极324、以及P母线(发射极电极用母线334)与基极电极325经由绝缘层371而连接。作为母线材料,可使用低温固化型的导电糊料。具体而言,可使用由含有选自Ag、Cu、Au、Al、Zn、In、Sn、Bi、Pb中的一种以上的导电物质、以及选自环氧树脂、丙烯酸树脂、聚酯树脂、酚树脂、硅酮树脂中的一种以上的树脂的材料形成的导电糊料。在使用例如丝网印刷法或点胶机等将如上所述的材料涂布为图案状后,以100~400℃固化1~60分钟左右。若增加母线,则能够缩短邻接的母线的间距,因此能够使指状电极细线化,削减指状电极的材料费用。母线数可根据因增加母线数而导致的材料费用增加分与由指状电极细线化带来的材料费用的减少的权衡(trade-off)而决定,优选为4~20之间。由此,制造图5中的(c)所示的太阳能电池300。
以上,以基板为N型时为例进行了说明,但本发明也能够应用于基板为P型的情况。即,设置N型层作为发射极层312、设置P型层作为基极层313即可。
本发明还可应用于专利文献3的双面电极型太阳能电池的制造方法。在基板背面上对Al进行制膜并进行热处理而形成BSF层,之后去除Al。对其印刷设有开口部的聚酰亚胺糊料。开口的大小优选为40~300μm左右,若在印刷后立刻对其进行干燥,则存在图案坍塌,开口变小的情况。本发明在印刷后,将溶剂在该印刷面上进行喷雾等,使糊料固体化。由此能够抑制坍塌,稳定地进行制造。
在形成固化聚酰亚胺膜后,蒸镀Al,制成背面电极。
本发明也可应用于专利文献4的背面电极型太阳能电池的制造方法。在基板背面形成发射极层、基极层后,在其之上形成氧化硅膜。在该氧化硅膜上丝网印刷聚酰亚胺糊料。板的开口约为200μm。此时,若在印刷后立刻使其干燥,则存在图案坍塌,图案变大的情况。本发明在印刷后,将溶剂在该印刷面上进行喷雾等,使糊料固体化。由此能够抑制坍塌,稳定地进行制造。
在形成固化聚酰亚胺膜后,对氧化硅膜形成部分开口,形成电极。
本发明也可应用于专利文献5的背面电极型太阳能电池的制造方法。在基板背面形成发射极层、基极层、氧化硅膜。通过丝网印刷或喷墨印刷聚酰亚胺糊料,仅在基极层印刷开口的图案。开口优选为约30~300μm左右。此时,若在印刷后立刻使其干燥,则存在图案坍塌,开口变小的情况。本发明在印刷后,将溶剂在该印刷面上进行喷雾等,使糊料固体化。由此能够抑制坍塌,稳定地进行制造。
在形成固化聚酰亚胺膜后,对接触部形成部分开口,形成电极。
实施例
以下示出本发明的实施例及比较例,对本发明进行更具体的说明,但本发明不受这些实施例的限定。
(实施例1~9、比较例1、2)
对基于溶剂喷雾的聚酰亚胺坍塌的抑制效果进行确认。
具体而言,使用P.I Co.,Ltd.的丝网印刷用聚酰亚胺Q-IP-0997-N,通过丝网印刷法将其印刷在硅基板上。印刷板制成以下图案:设置多个直径为100μm的非开口部(非印刷部),并对除此以外的部分进行整面印刷。在刚印刷后的基板印刷面上喷雾各种溶剂,使用140℃的加热板进行干燥,并使用显微镜观察印刷形状。对各条件的10个部位进行观察,将所得到的开口直径的平均值示于表1。
[表1]
溶剂组成 开口直径的平均值(μm)
实施例1 纯水 98
实施例2 乙醇 95
实施例3 乙酸 101
实施例4 2-丙醇 96
实施例5 乙二醇 102
实施例6 甲醇 98
实施例7 1-丁醇 100
实施例8 50%的水,50%的γ-丁内酯 95
实施例9 1%的水,99%的γ-丁内酯 98
比较例1 55
比较例2 γ-丁内酯 43
未喷雾含有极性物质的溶剂的比较例1发生了坍塌,开口变小,与此相对,通过喷雾实施例1~7的溶剂,开口能够维持在100μm上下。此外,喷雾比较例2的γ-丁内酯时,开口变小,未发现坍塌抑制效果。但如实施例8、9所示,仅在γ-丁内酯中混合1%的水时,抑制了坍塌。
(实施例10)
使用本发明的方法制成太阳能电池。
对于厚度为200μm、比电阻为1Ω·cm的磷掺杂{100}N型原切割硅基板,将其浸渍在72℃的2%氢氧化钾/2-丙醇水溶液中,在两面形成织构,然后在加热至75℃的盐酸/过氧化氢的混合溶液中进行清洗。
然后,将基板以两片为一组并重合的状态放置在热处理炉中,导入BBr3与氧气和氩气的混合气体,以1000℃进行10分钟热处理,然后,在氧气气氛中以1000℃进行3小时热氧化,形成掩膜。然后,通过四探针法进行测定,其结果,薄层电阻为50Ω。
用激光对背面的掩膜形成开口。激光源使用Nd:YVO4的二次高次谐波。开口图案形成为间隔1.2mm的平行线状。将其浸渍在80℃的浓度为24%的KOH中,去除开口部的发射极层。
然后,在磷酰氯气氛下,以870℃,以受光面彼此相互重合的状态进行40分钟热处理,在开口部形成磷扩散层。
然后,通过浸渍在浓度为25%的氟酸中,去除表面玻璃及掩膜。
在进行以上处理后,使用等离子体CVD装置,在两面形成氧化铝膜及氮化硅膜。表面及背面的膜厚分别为10nm、100nm。
然后,不对氧化铝/氮化硅膜形成开口,而使用丝网印刷机,分别在基极层上及发射极层上印刷Ag糊料并进行干燥。在780℃的空气气氛下对其进行烧成。
使用丝网印刷机,在该基板上将聚酰亚胺糊料印刷成图案状。在印刷后,在印刷面上同样地喷雾纯水,在200℃的网带炉中干燥5分钟。
最后,使用丝网印刷机,以与已设置的指状电极相互垂直的方式将低温固化型的Ag糊料印刷为6条直线状,在300℃的网带炉中固化30分钟,制成母线。
(比较例3)
在实施例10中,在印刷聚酰亚胺糊料后,不进行喷雾纯水,而在200℃的网带炉中使其干燥5分钟。之后以与实施例10相同的方法形成母线。
使用显微镜,对通过上述方式得到的两种太阳能电池样本的外观进行观察。在比较例中,随处可见固化聚酰亚胺膜堵塞了本应为母线与细栅线相连接的部位的部位,与此相对,实施例10未确认到这样的部位。
然后,使用Yamashita Denso Corporation制造的日光模拟器,在AM1.5光谱、照射强度100mW/cm2、25℃的条件下,测定电流电压特性,求出光电转化效率。将所得到的结果的平均值示于表2。
[表2]
光电转化效率(%) 短路电流(mA/cm<sup>2</sup>) 开路电压(mV) 形状系数(%)
实施例10 22.4 40.9 684 80.1
比较例3 19.0 40.3 684 68.9
与比较例3相比,实施例10转化效率高。如上所述,比较例3因位置而产生了母线与细栅线无法电连接的部位,因此受到了过多的因细栅线电阻导致的内部电阻损耗,形状系数下降,转化效率下降。实施例由于确实地连接了母线与细栅线,因此表现出高光电转化效率。
另外,本发明不受上述实施方式限定。上述实施方式为例示,具有与本发明的权利要求书中记载的技术构思实质相同的构成、并发挥相同作用效果的技术方案均包含在本发明的技术范围内。

Claims (6)

1.一种聚酰亚胺糊料的干燥方法,其为对含有有机溶剂与溶解在该有机溶剂中的聚酰亚胺树脂,并通过干燥及加热进行固化而形成固化聚酰亚胺的聚酰亚胺糊料进行干燥的方法,所述干燥方法的特征在于,其包含以下工序:
在基材的表面上涂布所述聚酰亚胺糊料的工序;
至少对所述基材的涂布了所述聚酰亚胺糊料的部位的表面涂布含有极性物质的溶剂的工序;及
在涂布所述含有极性物质的溶剂后,对所述聚酰亚胺糊料及所述含有极性物质的溶剂进行干燥的工序。
2.根据权利要求1所述的聚酰亚胺糊料的干燥方法,其特征在于,将所述极性物质设为水、乙二醇、乙酸、甲醇、乙醇、1-丙醇、2-丙醇、1-丁醇、甲酸中的至少任意一种。
3.根据权利要求1或2所述的聚酰亚胺糊料的干燥方法,其特征在于,将所述含有极性物质的溶剂设为含有1质量%以上的所述极性物质的溶剂。
4.一种太阳能电池的制造方法,其为制造作为太阳能电池的结构的一部分而包含由固化聚酰亚胺形成的固化聚酰亚胺膜的太阳能电池的方法,所述制造方法的特征在于,
在形成所述固化聚酰亚胺膜时,具有:通过权利要求1~3中任一项所述的聚酰亚胺糊料的干燥方法,对聚酰亚胺糊料进行干燥的工序。
5.一种太阳能电池的制造方法,其为制造作为太阳能电池的结构的一部分而包含由固化聚酰亚胺形成的固化聚酰亚胺膜的太阳能电池的方法,所述制造方法的特征在于,其具有以下工序:
在半导体基板内形成接合p型层与n型层的pn结的工序;
在所述p型层上形成与其电接触的p型电极的工序;及
在所述n型层上形成与其电接触的n型电极的工序,
进一步,在形成所述固化聚酰亚胺膜时,所述太阳能电池的制造方法包含以下工序:
在包含所述半导体基板的结构体的表面上涂布含有有机溶剂与溶解在该有机溶剂中的聚酰亚胺树脂,并通过干燥及加热进行固化而形成所述固化聚酰亚胺的聚酰亚胺糊料的工序;
至少对包含所述半导体基板的结构体的涂布了所述聚酰亚胺糊料的部位的表面,涂布含有水、乙二醇、乙酸、甲醇、乙醇、1-丙醇、2-丙醇、1-丁醇、甲酸中的至少任意一种极性物质的溶剂的工序;
在涂布所述含有极性物质的溶剂后,对所述聚酰亚胺糊料及所述含有极性物质的溶剂进行干燥的工序;及
对进行了干燥的所述聚酰亚胺糊料进行加热而使其固化,形成所述固化聚酰亚胺膜的工序。
6.根据权利要求5所述的太阳能电池的制造方法,其特征在于,将所述含有极性物质的溶剂设为含有1质量%以上的所述极性物质的溶剂。
CN201880069210.2A 2017-10-26 2018-08-24 聚酰亚胺糊料的干燥方法及高光电转化效率太阳能电池的制造方法 Active CN111278575B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017-207107 2017-10-26
JP2017207107A JP6875252B2 (ja) 2017-10-26 2017-10-26 ポリイミドペーストの乾燥方法及び高光電変換効率太陽電池の製造方法
PCT/JP2018/031330 WO2019082495A1 (ja) 2017-10-26 2018-08-24 ポリイミドペーストの乾燥方法及び高光電変換効率太陽電池の製造方法

Publications (2)

Publication Number Publication Date
CN111278575A true CN111278575A (zh) 2020-06-12
CN111278575B CN111278575B (zh) 2022-08-09

Family

ID=66247303

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880069210.2A Active CN111278575B (zh) 2017-10-26 2018-08-24 聚酰亚胺糊料的干燥方法及高光电转化效率太阳能电池的制造方法

Country Status (8)

Country Link
US (1) US11742439B2 (zh)
EP (1) EP3702048B1 (zh)
JP (1) JP6875252B2 (zh)
KR (1) KR102637680B1 (zh)
CN (1) CN111278575B (zh)
ES (1) ES2950782T3 (zh)
TW (1) TW201922860A (zh)
WO (1) WO2019082495A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6099959A (en) * 1998-07-01 2000-08-08 International Business Machines Corporation Method of controlling the spread of an adhesive on a circuitized organic substrate
JP2011062674A (ja) * 2009-09-18 2011-03-31 Fujifilm Corp ポリマー層の形成方法
CN104107794A (zh) * 2013-04-18 2014-10-22 无锡华润上华半导体有限公司 聚酰亚胺膜固化方法
JP2016072467A (ja) * 2014-09-30 2016-05-09 信越化学工業株式会社 太陽電池及びその製造方法
CN106463549A (zh) * 2014-06-11 2017-02-22 信越化学工业株式会社 太阳能电池及太阳能电池的制造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62234575A (ja) 1986-04-04 1987-10-14 Kyodo Printing Co Ltd 塗布被膜の乾燥方法
JPH0425583A (ja) * 1990-05-22 1992-01-29 Toray Ind Inc 低応力ポリイミド膜の形成方法
JP2797044B2 (ja) * 1992-04-20 1998-09-17 ニッポン高度紙工業 株式会社 接着方法及び接着性部材
JP4183765B2 (ja) * 1995-08-10 2008-11-19 新日鐵化学株式会社 フレキシブルプリント配線用基板の製造方法
JP3996418B2 (ja) * 2002-03-28 2007-10-24 アトミクス株式会社 塗膜層の作製方法
US8008575B2 (en) 2006-07-24 2011-08-30 Sunpower Corporation Solar cell with reduced base diffusion area
US7838062B2 (en) 2007-05-29 2010-11-23 Sunpower Corporation Array of small contacts for solar cell fabrication
JP5655206B2 (ja) * 2010-09-21 2015-01-21 株式会社ピーアイ技術研究所 太陽電池の裏面反射層形成用ポリイミド樹脂組成物及びそれを用いた太陽電池の裏面反射層形成方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6099959A (en) * 1998-07-01 2000-08-08 International Business Machines Corporation Method of controlling the spread of an adhesive on a circuitized organic substrate
JP2011062674A (ja) * 2009-09-18 2011-03-31 Fujifilm Corp ポリマー層の形成方法
CN104107794A (zh) * 2013-04-18 2014-10-22 无锡华润上华半导体有限公司 聚酰亚胺膜固化方法
CN106463549A (zh) * 2014-06-11 2017-02-22 信越化学工业株式会社 太阳能电池及太阳能电池的制造方法
US20170186894A1 (en) * 2014-06-11 2017-06-29 Shin-Etsu Chemical Co., Ltd. Solar cell and method for producing solar cell
JP2016072467A (ja) * 2014-09-30 2016-05-09 信越化学工業株式会社 太陽電池及びその製造方法
CN106575679A (zh) * 2014-09-30 2017-04-19 信越化学工业株式会社 太阳能电池及其制造方法

Also Published As

Publication number Publication date
KR20200079488A (ko) 2020-07-03
CN111278575B (zh) 2022-08-09
KR102637680B1 (ko) 2024-02-15
US20200303570A1 (en) 2020-09-24
WO2019082495A1 (ja) 2019-05-02
EP3702048A4 (en) 2021-07-14
EP3702048A1 (en) 2020-09-02
EP3702048B1 (en) 2023-06-14
ES2950782T3 (es) 2023-10-13
JP2019076859A (ja) 2019-05-23
TW201922860A (zh) 2019-06-16
US11742439B2 (en) 2023-08-29
JP6875252B2 (ja) 2021-05-19

Similar Documents

Publication Publication Date Title
EP2191513B1 (en) Group iv nanoparticle junctions and devices therefrom
JPWO2012105381A1 (ja) 太陽電池用スクリーン製版及び太陽電池の電極の印刷方法
WO2009013307A2 (en) Method for producing a silicon solar cell with a back-etched emitter as well as a corresponding solar cell
JP2009076546A (ja) 太陽電池の製造方法
JP4684056B2 (ja) 太陽電池の製造方法
JP6199727B2 (ja) 太陽電池の製造方法
JP5991945B2 (ja) 太陽電池および太陽電池モジュール
JP2012054442A (ja) 太陽電池の製造方法及びこれに用いるスクリーン製版
KR102646477B1 (ko) 고광전변환효율 태양전지 및 고광전변환효율 태양전지의 제조 방법
CN111278575B (zh) 聚酰亚胺糊料的干燥方法及高光电转化效率太阳能电池的制造方法
JP5477233B2 (ja) 太陽電池の製造方法
JP2928433B2 (ja) 光電変換素子の製造方法
KR102581702B1 (ko) 고광전변환효율 태양전지 및 고광전변환효율 태양전지의 제조방법
JP6405292B2 (ja) 太陽電池の製造方法及び太陽電池
JP2004281569A (ja) 太陽電池素子の製造方法
CN110785856B (zh) 高效太阳能电池的制造方法
JP6114205B2 (ja) 太陽電池の製造方法
JP6153885B2 (ja) 裏面接合型太陽電池
JP6663492B2 (ja) 太陽電池、太陽電池の製造方法及び太陽電池の製造システム
JP5316491B2 (ja) 太陽電池の製造方法
JP6371883B2 (ja) 裏面接合型太陽電池の製造方法
JP6405285B2 (ja) 太陽電池の製造方法
CN104241454A (zh) 一种提高太阳能电池转化效率的方法
JP2018160709A (ja) 太陽電池の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant