CN111269354A - 一种光固化3d打印用抗冻导电水凝胶及其制备方法 - Google Patents

一种光固化3d打印用抗冻导电水凝胶及其制备方法 Download PDF

Info

Publication number
CN111269354A
CN111269354A CN202010131788.5A CN202010131788A CN111269354A CN 111269354 A CN111269354 A CN 111269354A CN 202010131788 A CN202010131788 A CN 202010131788A CN 111269354 A CN111269354 A CN 111269354A
Authority
CN
China
Prior art keywords
solution
hydrogel
photocuring
freezing
printing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010131788.5A
Other languages
English (en)
Other versions
CN111269354B (zh
Inventor
陈雷
张艺茹
王兆龙
段辉高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University
Original Assignee
Hunan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University filed Critical Hunan University
Priority to CN202010131788.5A priority Critical patent/CN111269354B/zh
Publication of CN111269354A publication Critical patent/CN111269354A/zh
Application granted granted Critical
Publication of CN111269354B publication Critical patent/CN111269354B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/265Calcium, strontium or barium carbonate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/321Phosphates
    • C08K2003/325Calcium, strontium or barium phosphate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

本发明公开了一种光固化3D打印用抗冻导电水凝胶及其制备方法,按质量百分比组份包括:丙烯酰胺10‑40%,交联剂0.1‑10%,蒸馏水30‑80%,低冰点介质10‑70%、金属盐2‑40%,纳米无机粒子0.5‑8%,光引发剂0.5‑4%,光吸收剂0.01‑2%。本光固化3D打印用抗冻导电水凝胶中的低冰点介质与水可以产生强大的氢键作用,使水稳定地固定在水凝胶三维网络中,不易被冷冻结冰;金属盐的赋予水凝胶的导电性的同时,进一步提高水凝胶的抗冻性能;此外,纳米无机粒子可以提高水凝胶的强度。该水凝胶制备方法简单,经光固化3D打印技术制造,在低温柔性传感器、低温电容器等领域具有巨大的应用前景,同时也可以应用在极端温度下生物信号的采集。

Description

一种光固化3D打印用抗冻导电水凝胶及其制备方法
技术领域
本发明涉及3D打印材料领域,尤其涉及一种光固化3D打印用抗冻导电水凝胶及其制备方法。
背景技术
光固化3D打印,是一种以数字模型文件为基础,通过光源对液态材料选择性照射实现液态材料的选择性固化,经过逐层叠加后形成三维结构。光固化3D打印材料主要有液态光敏树脂、水凝胶等,在一定程度上拓宽了光固化3D打印的应用范围。
水凝胶是一种亲水性的三维网状高分子聚合物,可以吸收大量水能够保持三维网络结构的软物质。依托水凝胶基体构建的导电水凝胶,可以将应变、力、温度等刺激信号转变为电信号输出,是一种经广泛关注的柔性电子材料,在生物医学领域、软驱动器、传感器、电子皮肤等方面具有广泛的应用。为了满足这些应用,水凝胶应具有良好的导电性,然而在零下以及极端温度环境下,导电水凝胶中水的结冰会导致水凝胶失去导电性,并且机械性能严重下降,这大大限制了水凝胶的应用范围。因此,设计一个可光固化3D打印抗冻导电水凝胶具有重要的应用价值。
发明内容
有鉴于此,本发明提供了一种光固化3D打印用抗冻导电水凝胶及其制备方法,本光固化3D打印用抗冻导电水凝胶中的低冰点介质与水可以产生强大的氢键作用,使水稳定地固定在水凝胶三维网络中,不易被冷冻结冰;金属盐的赋予水凝胶的导电性的同时,进一步提高水凝胶的抗冻性能。
一种光固化3D打印用抗冻导电水凝胶,按质量百分比组份包括:
Figure BDA0002395974730000011
Figure BDA0002395974730000021
优选地,所述交联剂为聚乙二醇丙烯酸酯、聚乙二醇二甲基丙烯酸酯、N,N-亚甲基双丙烯酰胺的至少一种。
优选地,所述低冰点介质为乙醇、乙二醇、丙三醇的至少一种。
优选地,所述导电填料分为氯化锂、氯化钠、氯化钾的至少一种。
优选地,所述纳米无机粒子为纳米二氧化硅、纳米羟基磷灰石、纳米三氧化二铝、纳米氧化镁、纳米碳酸钙、纳米蒙脱土的至少一种。
优选地,所述纳米无机粒子的粒径为5-200nm。
优选地,所述光引发剂为(2,4,6-三甲基苯甲酰基)二苯基氧化膦、苯基双(2,4,6-三甲基苯甲酰基)氧化膦、(2,4,6-三甲基苯甲酰基)膦酸乙酯、二苯甲酮、异丙基硫杂蒽酮、2,4-二甲基硫杂蒽酮、4-对甲苯巯基二苯甲酮、安息香二甲醚、二芳基碘鎓盐的至少一种。
优选地,所述光吸收剂为紫外光吸收剂UV-327、紫外光吸收剂UV-P、荧光增白剂OB、苏丹红I、罗丹明B、曙红Y的至少一种。
一种光固化3D打印用抗冻导电水凝胶的制备方法,方法包括:
a.称取一定质量的金属盐于蒸馏水中,在室温下搅拌20-50min,然后向上述溶液中加入一定质量的低冰点介质,置于超声机中超声波处理,得到均一的混合溶液;再向上述溶液中加入一定质量的丙烯酰胺、交联剂、光引发剂、光吸收剂,放在水浴锅中在温度30-50℃下继续搅拌25-70min至完全溶解,冷却至室温后,加入纳米无机填料,溶液放置超声机中超声10-40min,再抽真空至溶液中无气泡后,在黑暗中静置3-5h得到均匀的混合溶液;
b.将上述得到的混合溶液置于光固化3D打印机的液槽中,在波长为405nm的光照下每层曝光时间为1-10s,打印得到三维结构的水凝胶。
本发明提供了一种光固化3D打印用抗冻导电水凝胶及其制备方法,本光固化3D打印用抗冻导电水凝胶中的低冰点介质与水可以产生强大的氢键作用,使水稳定地固定在水凝胶三维网络中,不易被冷冻结冰;金属盐的赋予水凝胶的导电性的同时,进一步提高水凝胶的抗冻性能;此外,纳米无机粒子可以提高水凝胶的强度。该水凝胶制备方法简单,经光固化3D打印技术制造,在低温柔性传感器、低温电容器等领域具有巨大的应用前景,同时也可以应用在极端温度下生物信号的采集。
附图说明
为了更清楚地说明本发明实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为具体实施例1的打印物件的DSC曲线;
图2为具体实施例1的打印物件低温条件下作为导体点亮LED图。
具体实施方式
下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
具体实施例1
一种光固化3D打印用抗冻导电水凝胶,按质量百分比组份包括:
Figure BDA0002395974730000031
一种光固化3D打印用抗冻导电水凝胶的制备方法,方法包括:
a.称取一定质量的氯化锂于蒸馏水中,在室温下搅拌30min,然后向上述溶液中加入一定质量的丙三醇,置于超声机中超声波处理,得到均一的混合溶液;再向上述溶液中加入一定质量的丙烯酰胺、聚乙二醇丙烯酸酯、(2,4,6-三甲基苯甲酰基)膦酸乙酯、罗丹明B,放在水浴锅中在温度30℃下继续搅拌45min至完全溶解,冷却至室温后,加入纳米羟基磷灰石,溶液放置超声机中超声32min,再抽真空至溶液中无气泡后,在黑暗中静置3.5h得到均匀的混合溶液;
b.将上述得到的混合溶液置于光固化3D打印机的液槽中,在波长为405nm的光照下每层曝光时间为7s,打印得到三维结构的水凝胶。
具体实施例2
一种光固化3D打印用抗冻导电水凝胶,按质量百分比组份包括:
Figure BDA0002395974730000041
一种光固化3D打印用抗冻导电水凝胶的制备方法,方法包括:
a.称取一定质量的氯化钠于蒸馏水中,在室温下搅拌40min,然后向上述溶液中加入一定质量的乙二醇,置于超声机中超声波处理,得到均一的混合溶液;再向上述溶液中加入一定质量的丙烯酰胺、聚乙二醇二甲基丙烯酸酯、(2,4,6-三甲基苯甲酰基)二苯基氧化膦、苏丹红I,放在水浴锅中在温度35℃下继续搅拌30min至完全溶解,冷却至室温后,加入纳米二氧化硅,溶液放置超声机中超声30min,再抽真空至溶液中无气泡后,在黑暗中静置3h得到均匀的混合溶液;
b.将上述得到的混合溶液置于光固化3D打印机的液槽中,在波长为405nm的光照下每层曝光时间为8.2s,打印得到三维结构的水凝胶。
具体实施例3
一种光固化3D打印用抗冻导电水凝胶,按质量百分比组份包括:
Figure BDA0002395974730000051
一种光固化3D打印用抗冻导电水凝胶的制备方法,方法包括:
a.称取一定质量的氯化钾于蒸馏水中,在室温下搅拌35min,然后向上述溶液中加入一定质量的乙醇,置于超声机中超声波处理,得到均一的混合溶液;再向上述溶液中加入一定质量的丙烯酰胺、N,N-亚甲基双丙烯酰胺、苯基双(2,4,6-三甲基苯甲酰基)氧化膦、荧光增白剂OB,放在水浴锅中在温度45℃下继续搅拌40min至完全溶解,冷却至室温后,加入纳米碳酸钙,溶液放置超声机中超声16min,再抽真空至溶液中无气泡后,在黑暗中静置4.5h得到均匀的混合溶液;
b.将上述得到的混合溶液置于光固化3D打印机的液槽中,在波长为405nm的光照下每层曝光时间为6s,打印得到三维结构的水凝胶。
具体实施例4
一种光固化3D打印用抗冻导电水凝胶,按质量百分比组份包括:
Figure BDA0002395974730000052
Figure BDA0002395974730000061
一种光固化3D打印用抗冻导电水凝胶的制备方法,方法包括:
a.称取一定质量的氯化钠于蒸馏水中,在室温下搅拌50min,然后向上述溶液中加入一定质量的丙三醇,置于超声机中超声波处理,得到均一的混合溶液;再向上述溶液中加入一定质量的丙烯酰胺、N,N-亚甲基双丙烯酰胺、二苯甲酮、紫外光吸收剂UV-327,放在水浴锅中在温度40℃下继续搅拌60min至完全溶解,冷却至室温后,加入纳米蒙脱土,溶液放置超声机中超声24min,再抽真空至溶液中无气泡后,在黑暗中静置5h得到均匀的混合溶液;
b.将上述得到的混合溶液置于光固化3D打印机的液槽中,在波长为405nm的光照下每层曝光时间为5.6s,打印得到三维结构的水凝胶。
以具体实施例1为例:请参看图1、图2,图1为具体实施例1的打印物件的DSC曲线;图2为具体实施例1的打印物件作为导体点亮LED图。经DSC曲线分析得出本光固化3D打印用抗冻导电水凝胶在-170-25℃温度范围内无凝固点,只在-120℃左右出现玻璃化转变温度的点。这是由于水凝胶中的低冰点介质与水可以产生强大的氢键作用,使水稳定地固定在水凝胶三维网络中,不易被冷冻结冰;金属盐的赋予水凝胶的导电性的同时,进一步提高了水凝胶的抗冻性能。此外水凝胶在低温环境下仍能够点亮LED,说明水凝胶在低温环境下仍具有良好的导电性,在低温柔性传感器、低温电容器等领域具有巨大的应用前景,同时也可以应用在极端温度下生物信号的采集。参考实施例1-例4,可以看出,本光固化3D打印抗冻导电凝胶制备方法简单,制备周期短,省时省力。
本文进行了详细的介绍,应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。

Claims (9)

1.一种光固化3D打印用抗冻导电水凝胶,其特征在于:按质量百分比组份包括,
Figure FDA0002395974720000011
2.如权利要求1所述的光固化3D打印用抗冻导电水凝胶,其特征在于,所述交联剂为聚乙二醇丙烯酸酯、聚乙二醇二甲基丙烯酸酯、N,N-亚甲基双丙烯酰胺中的至少一种。
3.如权利要求1所述的光固化3D打印用抗冻导电水凝胶,其特征在于,所述低冰点介质为乙醇、乙二醇、丙三醇中的至少一种。
4.如权利要求1所述的光固化3D打印用抗冻导电水凝胶,其特征在于,所述导电填料分为氯化锂、氯化钠、氯化钾中的至少一种。
5.如权利要求1所述的光固化3D打印用抗冻导电水凝胶,其特征在于,所述纳米无机粒子为纳米二氧化硅、纳米羟基磷灰石、纳米三氧化二铝、纳米氧化镁、纳米碳酸钙、纳米蒙脱土中的至少一种。
6.如权利要求5所述的光固化3D打印用抗冻导电水凝胶,其特征在于,所述纳米无机粒子的粒径为5-200nm。
7.如权利要求1所述的光固化3D打印用抗冻导电水凝胶,其特征在于,所述光引发剂为(2,4,6-三甲基苯甲酰基)二苯基氧化膦、苯基双(2,4,6-三甲基苯甲酰基)氧化膦、(2,4,6-三甲基苯甲酰基)膦酸乙酯、二苯甲酮、异丙基硫杂蒽酮、2,4-二甲基硫杂蒽酮、4-对甲苯巯基二苯甲酮、安息香二甲醚、二芳基碘鎓盐中的至少一种。
8.如权利要求1所述的光固化3D打印用抗冻导电水凝胶,其特征在于,所述光吸收剂为紫外光吸收剂UV-327、紫外光吸收剂UV-P、荧光增白剂OB、苏丹红I、罗丹明B、曙红Y中的至少一种。
9.利用权利要求1-8任一所述的光固化3D打印用抗冻导电水凝胶进行的的制备方法,其特征在于,该方法包括:
a.称取一定质量的金属盐于蒸馏水中,在室温下搅拌20-50min,制得混合溶液;然后向上述混合溶液中加入一定质量的低冰点介质,置于超声机中超声波处理,得到均一的混合溶液;再向上述溶液中加入一定质量的丙烯酰胺、交联剂、光引发剂、光吸收剂,放在水浴锅中在温度30-50℃下继续搅拌25-70min至完全溶解,冷却至室温后,加入纳米无机填料,溶液放置超声机中超声10-40min,再抽真空至溶液中无气泡后,在黑暗中静置3-5h得到均匀的混合溶液;
b.将上述得到的混合溶液置于光固化3D打印机的液槽中,在波长为405nm的光照下每层曝光时间为1-10s,打印得到三维结构的水凝胶。
CN202010131788.5A 2020-02-29 2020-02-29 一种光固化3d打印用抗冻导电水凝胶及其制备方法 Active CN111269354B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010131788.5A CN111269354B (zh) 2020-02-29 2020-02-29 一种光固化3d打印用抗冻导电水凝胶及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010131788.5A CN111269354B (zh) 2020-02-29 2020-02-29 一种光固化3d打印用抗冻导电水凝胶及其制备方法

Publications (2)

Publication Number Publication Date
CN111269354A true CN111269354A (zh) 2020-06-12
CN111269354B CN111269354B (zh) 2021-02-02

Family

ID=70995567

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010131788.5A Active CN111269354B (zh) 2020-02-29 2020-02-29 一种光固化3d打印用抗冻导电水凝胶及其制备方法

Country Status (1)

Country Link
CN (1) CN111269354B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112062878A (zh) * 2020-08-25 2020-12-11 南方科技大学 水溶性光吸收剂及其制备方法和3d打印材料
CN112175146A (zh) * 2020-09-10 2021-01-05 北京化工大学常州先进材料研究院 一种负载金属催化剂的光固化涡环衍生粒子的制备方法
CN113444200A (zh) * 2021-06-09 2021-09-28 广州丰歌生物科技有限责任公司 一种抗冻水凝胶及其制备方法和应用
CN115386259A (zh) * 2022-09-28 2022-11-25 中国科学院兰州化学物理研究所 一种防干抗冻光敏水凝胶墨水及其制备方法和高精度光固化水凝胶及其应用
CN116284566A (zh) * 2022-09-09 2023-06-23 南方科技大学 一种可用于高弹性可穿戴应变传感器的光固化浆料、有机水凝胶及其制备方法
CN116396442A (zh) * 2023-06-01 2023-07-07 四川大学华西医院 一种原位相分离光固化打印高精度凝胶材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003018641A1 (en) * 2001-08-25 2003-03-06 Contura Sa Temperature-controlled process for preparation of homogeneous polymers
CN109081928A (zh) * 2018-07-30 2018-12-25 哈尔滨工业大学 一种用于3d打印uv引发的水凝胶及其制备和打印方法
CN109880024A (zh) * 2019-01-21 2019-06-14 西安工业大学 一种立体光固化成型3d打印用水凝胶及其制备方法
CN110111922A (zh) * 2019-04-08 2019-08-09 西安交通大学 一种多功能有机凝胶作为导电介质的应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003018641A1 (en) * 2001-08-25 2003-03-06 Contura Sa Temperature-controlled process for preparation of homogeneous polymers
CN109081928A (zh) * 2018-07-30 2018-12-25 哈尔滨工业大学 一种用于3d打印uv引发的水凝胶及其制备和打印方法
CN109880024A (zh) * 2019-01-21 2019-06-14 西安工业大学 一种立体光固化成型3d打印用水凝胶及其制备方法
CN110111922A (zh) * 2019-04-08 2019-08-09 西安交通大学 一种多功能有机凝胶作为导电介质的应用

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112062878A (zh) * 2020-08-25 2020-12-11 南方科技大学 水溶性光吸收剂及其制备方法和3d打印材料
CN112175146A (zh) * 2020-09-10 2021-01-05 北京化工大学常州先进材料研究院 一种负载金属催化剂的光固化涡环衍生粒子的制备方法
CN113444200A (zh) * 2021-06-09 2021-09-28 广州丰歌生物科技有限责任公司 一种抗冻水凝胶及其制备方法和应用
CN116284566A (zh) * 2022-09-09 2023-06-23 南方科技大学 一种可用于高弹性可穿戴应变传感器的光固化浆料、有机水凝胶及其制备方法
CN115386259A (zh) * 2022-09-28 2022-11-25 中国科学院兰州化学物理研究所 一种防干抗冻光敏水凝胶墨水及其制备方法和高精度光固化水凝胶及其应用
CN115386259B (zh) * 2022-09-28 2023-11-14 中国科学院兰州化学物理研究所 一种防干抗冻光敏水凝胶墨水及其制备方法和高精度光固化水凝胶及其应用
CN116396442A (zh) * 2023-06-01 2023-07-07 四川大学华西医院 一种原位相分离光固化打印高精度凝胶材料及其制备方法
CN116396442B (zh) * 2023-06-01 2023-08-15 四川大学华西医院 一种原位相分离光固化打印高精度凝胶材料及其制备方法

Also Published As

Publication number Publication date
CN111269354B (zh) 2021-02-02

Similar Documents

Publication Publication Date Title
CN111269354B (zh) 一种光固化3d打印用抗冻导电水凝胶及其制备方法
CN111423536A (zh) 一种光固化3d打印用高拉伸导电水凝胶及其制备方法
Odent et al. Highly elastic, transparent, and conductive 3D‐printed ionic composite hydrogels
Luo et al. Oppositely charged polyelectrolytes form tough, self-healing, and rebuildable hydrogels
CN110256694A (zh) 一种可拉伸透明导电水凝胶及其制备方法
CN109734842B (zh) 一种透明导电柔性细菌纤维素复合材料及其制备方法
CN112201386A (zh) 一种柔性透明高稳定离子导电电极、制备方法及其应用
CN113701924B (zh) 一种多孔固态离子凝胶电极及其制备方法、应用
CN108948379A (zh) 一种3d打印导电水凝胶的制备方法
CN111421928B (zh) 力致变色材料及其制备方法和应用
CN109880305A (zh) 一种水凝胶-弹性体复合3d打印的方法
CN104892939A (zh) 一种苯基硅树脂的制备方法
Han et al. Fabrication of agarose hydrogel with patterned silver nanowires for motion sensor
CN112080133B (zh) 可3d打印且透明的导电离子凝胶及其制备和应用
CN110265232A (zh) 一种可自愈水凝胶电解质薄膜及其制备方法和应用
CN112480312B (zh) 一种高弹性高强度双交联多孔水凝胶的制备方法
CN110108392A (zh) 一种多功能有机凝胶在传感器中的应用
CN110111922A (zh) 一种多功能有机凝胶作为导电介质的应用
CN112029035A (zh) 基于数字光处理3d打印的柔性传感器的制造方法
Xie et al. High-performance porous copolymer hydrogel for oceanic electricity generation
CN113583193A (zh) 一种光热离子凝胶薄膜及其制备方法和应用
CN112945433A (zh) 一种基于逐层组装技术(lbl)制备的柔性应力传感器
Zhu et al. Photocuring 3D printable flexible strain sensor enhanced by in situ grown silk fibroin nanoparticles
CN110669305A (zh) 聚丙烯酸酯/噻吩类复合导电水凝胶及其制备方法和应用
Han et al. Self-Powered Multifunctional Organic Hydrogel Based on Poly (acrylic acid-N-isopropylacrylamide) for Flexible Sensing Devices

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant