CN112080133B - 可3d打印且透明的导电离子凝胶及其制备和应用 - Google Patents

可3d打印且透明的导电离子凝胶及其制备和应用 Download PDF

Info

Publication number
CN112080133B
CN112080133B CN202010997673.4A CN202010997673A CN112080133B CN 112080133 B CN112080133 B CN 112080133B CN 202010997673 A CN202010997673 A CN 202010997673A CN 112080133 B CN112080133 B CN 112080133B
Authority
CN
China
Prior art keywords
conductive
gel
ionic gel
conductive ionic
ionic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010997673.4A
Other languages
English (en)
Other versions
CN112080133A (zh
Inventor
郭明雨
陈连敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Zhongte Chemical Co ltd
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University filed Critical Suzhou University
Priority to CN202010997673.4A priority Critical patent/CN112080133B/zh
Publication of CN112080133A publication Critical patent/CN112080133A/zh
Application granted granted Critical
Publication of CN112080133B publication Critical patent/CN112080133B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3442Heterocyclic compounds having nitrogen in the ring having two nitrogen atoms in the ring
    • C08K5/3445Five-membered rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/34Carboxylic acids; Esters thereof with monohydroxyl compounds
    • C08G18/348Hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4833Polyethers containing oxyethylene units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/6692Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/34
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/753Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
    • C08G18/755Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/102Printing inks based on artificial resins containing macromolecular compounds obtained by reactions other than those only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • G01B7/18Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in resistance
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • C08J2375/08Polyurethanes from polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

本发明涉及一种可3D打印且透明的导电离子凝胶组合物及其制备和应用。本发明的导电离子凝胶采用组合物制备,其包括具有线性结构的聚氨酯脲、离子液体以及有机溶剂,离子液体占具有线性结构的聚氨酯脲质量分数的5%‑80%。可通过直写3D打印构建不同结构的离子导电凝胶,本发明的导电离子凝胶具有良好机械强度(应力高达2.55MPa,应变高达2200%)、高透明度(高达98%)、高导电性(高达3.18S·m‑1),且工作温度范围宽。导电离子凝胶卓越的机电性能使其具有良好的应变感应能力,可用于制备应变传感器,用于监测人体的各种运动。

Description

可3D打印且透明的导电离子凝胶及其制备和应用
技术领域
本发明涉及透明、柔性导电凝胶领域,尤其涉及一种可3D打印且透明的导电离子凝胶及其制备和应用。
背景技术
随着可穿戴设备的兴起,柔性传感器的需求和研究日益增多,其需要具有较强的拉伸性、延展性,可弯折性以及耐久度,较低的功耗和质量,如果是亲肤性的传感器,还要具有生物兼容性。柔性传感器可用在人体健康监测、人体运动监测、人机交互以及软机器人技术等等上。传统的柔性可拉伸器件是基于导电填料和弹性体的混合物,存在二者机械性能的不匹配,界面相容性差、透明性差等问题,限制了其诸多潜在应用。可拉伸导电水凝胶因为其具有的高可拉伸性、生物相容性、可调节的强度以及韧性等优势在柔性电子器件领域引起广泛关注。但传统水凝胶,存在低温结冰、变脆、不透明和水分易挥发等问题,应用受到限制。
3D打印是一种以计算机数字化模型为基础,通过逐层打印的方式来构造物体的技术。这种成型技术能做到自动、快速、直接和精确地将计算机中的设计转化为产品。
目前制作柔性传感器的材料有很多,但主要是金属材料、无机半导体材料、有机材料和柔性基底,一般都不透明。硬的填料和软的基底之间由于模量相差太大,所以经常会存在界面不相容的问题。所用的基底为了达到较高强度,多为交联结构,通常难以直接以3D打印技术进行制备。
发明内容
为解决上述技术问题,本发明的目的是提供一种可3D打印且透明的导电离子凝胶及其制备和应用,本发明的导电离子凝胶组合物以高透明、可拉伸聚氨酯脲为基体,以离子液体作为导电材料,可通过3D打印成型,所制备的导电离子凝胶具有导电性、高透明性和良好的机械性能,可用于制备导电传感器。
本发明的第一个目的是提供一种可3D打印且透明的导电离子凝胶组合物,包括具有线性结构的聚氨酯脲(PUU)、离子液体以及有机溶剂,离子液体占具有线性结构的聚氨酯脲质量分数的5%-80%;
其中,具有线性结构的聚氨酯脲的结构式包括如下结构式:
Figure BDA0002693154450000021
其中,A为分子量200-10000g/mol的聚酯基或聚醚基,B为含有4-18个碳原子的脂肪链、脂环基或芳香基,C为含有2-10个碳原子的脂肪链;
a=1-100中任一自然数,b=1-100中任一自然数,r=1-100中任一自然数,n=1-100中任一整数。
进一步地,A选自以下结构式中的一种或几种:
Figure BDA0002693154450000022
优选地,A为*-CH2CH2-*。
进一步地,B选自以下结构式中的一种或几种:
*-(CH2)4-*、*-(CH2)6-*、*-(CH2)8-*、*-(CH2)12-*、
Figure BDA0002693154450000023
Figure BDA0002693154450000024
优选地,B为
Figure BDA0002693154450000025
进一步地,R选自以下结构式中的一种或几种:
Figure BDA0002693154450000026
优选地,R为
Figure BDA0002693154450000031
本发明中,A、B、R所选基团中的“*”标记处代表基团连接位点。
进一步地,离子液体包括咪唑盐类离子液体,但不限于咪唑盐类离子液体。优选地,咪唑盐类离子液体为1-乙基-3-甲基咪唑溴盐、1-己基-3-甲基咪唑溴盐、1-癸基-3-甲基咪唑溴盐、1-乙基-3-甲基咪唑四氟硼酸盐、1-乙基-3-甲基咪唑双氰胺盐和1-丁基-2,3-二甲基咪唑双三氟甲磺酰亚胺盐中的一种或几种。更优选地,咪唑盐类离子液体为1-乙基-3-甲基咪唑四氟硼酸盐或1-乙基-3-甲基咪唑双氰胺盐。
本发明所使用的离子液体是一种室温熔融盐,其具有许多独特的性能,如可忽略的蒸汽压、热稳定性、不可燃性、高离子电导率和广泛的电化学稳定窗口等。本发明的导电离子凝胶组合物结合了离子液体和凝胶的优势,具有形状可调,高电导率等特点。
进一步地,有机溶剂为二甲基甲酰胺、二甲基乙酰胺、丙酮、甲醇、乙醇、叔丁醇、乙酸、二氯甲烷、二氯乙烷和氯仿中的一种或几种。
优选地,有机溶剂为低沸点溶剂(沸点为40℃-80℃)。更优选为甲醇、乙醇、叔丁醇和乙酸中的一种或几种。采用低沸点溶剂,可以在室温下快速挥发,方便后续在导电离子凝胶的制备过程中快速成型,尤其是在3D打印过程中的快速成型。
本发明中,导电离子凝胶组合物中含有具有线性结构的PUU,由于其线性结构,其易于溶解于有机溶剂,使得导电离子凝胶组合物具有良好的流动性,因而具有可3D打印性。本发明所使用的PUU还具备高强度和高透明性。
进一步地,具有线性结构的PUU的制备方法包括以下步骤:
(1)将a份聚酯或聚醚二醇溶解于有机溶剂D中,然后向其中加入b份扩链剂和r份二异氰酸酯,在催化剂的作用下于20~100℃的条件下进行预聚反应,反应时间为0.5~10小时;其中,按摩尔比,a:b=0.1-10:1,r:a=0.1-20:1;
所述扩链剂为含有2-10个碳原子的脂肪族二元醇;
所述二异氰酸酯为含有4-18个碳原子的脂肪族二异氰酸酯、脂环族二异氰酸酯或芳香族二异氰酸酯;
(2)向步骤(1)得到的产物中加入水作为间接扩链剂,在20~100℃下继续反应12~72小时,以摩尔数计,加入水的量为2(r-a-b)份;反应完全后的产物中包括本发明的上述具有线性结构的PUU。
进一步地,在步骤(1)中,扩链剂包括一种或几种以下结构式的化合物:
Figure BDA0002693154450000041
HO-(CH2)4OH、HO-(CH2)2-OH、
Figure BDA0002693154450000042
进一步地,在步骤(1)中,脂肪族二异氰酸酯为:
Figure BDA0002693154450000043
ONC-(CH2)4-NCO、ONC-(CH2)6-NCO、ONC-(CH2)8-NCO、ONC-(CH2)12-NCO或1,5-二异氰酸-2-甲基戊烷;
脂环族二异氰酸酯为:
Figure BDA0002693154450000044
芳香族二异氰酸酯为:
Figure BDA0002693154450000045
Figure BDA0002693154450000046
进一步地,在步骤(1)中,聚酯或聚醚二元醇为聚己二酸-1,4-丁二醇、聚乙二醇(PEG)、聚四氢呋喃醚、聚己内酯二醇、聚丙烯酸甲酯二元醇或聚碳酸酯二元醇。
进一步地,在步骤(1)中,有机溶剂D为二甲基甲酰胺、二甲基乙酰胺(DMAC)、丙酮、二甲基亚砜、乙醇、二氯甲烷、二氯乙烷、氯仿等中的一种或几种。
进一步地,在步骤(1)中,催化剂为CT-E229、辛酸亚锡、二月桂酸二丁基锡中的一种或一种以上。
进一步地,在步骤(2)中,反应完全后,还包括将产物在溶剂E中进行沉淀,将沉淀物干燥后得到本发明的上述具有线性结构的PUU的步骤。
进一步地,溶剂E为PUU的不良溶剂,溶剂E选自正己烷、正庚烷、异己烷、异庚烷、环己烷和乙醚中的一种或一种以上。
本发明的第二个目的是提供一种透明的导电离子凝胶的制备方法,包括以下步骤:
将本发明的上述导电离子凝胶组合物成型并干燥以去除组合物中的有机溶剂,得到透明的导电离子凝胶。
在本发明一种具体实施例中,采用以下方法成型:
将导电离子凝胶组合物注入模具中成型。优选地,注入模具中后成膜状。
在本发明的另外一种具体实施例中,采用以下方法成型:
将导电离子凝胶组合物转移到针筒中并进行3D打印,打印过程中有机溶剂挥发。
进一步地,3D打印速度为1mm·s-1~12mm·s-1;打印空压为1000kPa以下。
进一步地,3D打印成型结构包括纤维结构、蛛网结构、圆筒结构、蜂窝结构、立体框架结构、立方体结构、椅子状结构、空心框结构或金字塔结构。
本发明导电离子凝胶组合物可直接作为导电墨水进行3D打印,得到具有特定结构及形状的导电离子凝胶。
本发明的第三个目的是提供一种采用上述制备方法所制备的透明的导电离子凝胶,其包括凝胶基体以及分布于凝胶基体中的离子液体;凝胶基体中包括具有线性结构的聚氨酯脲。
本发明的第四个目的是公开本发明上述透明的导电离子凝胶在制备传感器件中的应用。
进一步地,传感器件为应变传感器。
进一步地,应变传感器的制备方法包括以下步骤:
在本发明所制备的透明的导电离子凝胶的两处分别连接电极,以组装成应变传感器。
进一步地,导电离子凝胶的形状为长条状。
进一步地,电极为铜电极。
借由上述方案,本发明至少具有以下优点:
本发明提供了一种高透明、可拉伸的导电离子凝胶的简单制备方法,以含线性结构的PUU和离子液体的组合物制备得到,由于PUU为线性结构,可通过直写3D打印构建不同结构的离子导电凝胶。
本发明的导电离子凝胶具有良好机械强度(应力高达2.55MPa,应变高达2200%)、高透明度(高达98%)、高导电性(高达3.18S·m-1),且工作温度范围宽。导电离子凝胶卓越的机电性能使其具有良好的应变感应能力,可用于制备应变传感器,用于监测人体的各种运动。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合详细附图说明如后。
附图说明
图1是不同导电离子凝胶在可见光区的透过图;
图2是本发明中所制备的60wt%离子液体含量的导电离子凝胶自然光下的高透明度的数码照片;
图3是本发明中所制备的导电离子凝胶的结构示意图;
图4是不同离子液体含量的凝胶的拉伸试验的应力-应变图;
图5是本发明中所制备的不同离子液体含量的导电离子凝胶的电导率图;
图6是本发明中所制备的60wt%离子液体含量的导电离子凝胶的电阻随应变变化的传感图;
图7是本发明中通过3D打印得到的离子凝胶的样品实物图;
附图标记说明:
1-聚氨酯脲形成的三维网络;2-离子液体。
具体实施方式
下面结合实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
实施例1
本实施例提供了一种PUU聚合物的制备方法,具体步骤如下:
(1)称量4.00g(2mmol)PEG(Mn=2000g/mol)于100mL三口烧瓶中,将其放置于80℃真空烘箱中干燥一晚,同时在真空烘箱中放有少量五氧化二磷以便除尽水分。干燥结束后,取出三口烧瓶,将其放置在常温的油浴锅中,用量筒向三口烧瓶中加入10mL预先用无水硫酸钠干燥好的DMAC,加入磁子搅拌。再加入0.1480g(1mmol)二羟甲基丁酸(DMBA),4.00g(18mmol)的异佛尔酮二异氰酸酯(IPDI)和20μL的二月桂酸二丁锡(催化剂)。
(2)将以上混合物升温至70℃后加热搅拌反应4h,然后将反应体系降温至50℃,加入18mmol的H2O继续搅拌反应。加入水后,随着反应的进行,溶液粘度不断增大,反应过程中不断补加DMAC(大约30-35mL)来控制溶液的浓度,防止体系凝胶化,反应24h后,停止反应并降温。
(3)待反应液冷却到室温后,将反应液缓慢倒入反应溶剂10倍体积量的乙醚中沉淀,得到块状固体,再将其剪碎,换乙醚超声45min(为了充分将高沸点的DMAC置换出来)。再将固体放置在60℃的真空烘箱中干燥12h,得到PUU聚合物。
实施例2
本实施例提供了一种导电离子凝胶的制备方法,具体步骤如下:
取1.0g实施例1制备的PUU聚合物于10mL玻璃瓶中,加入0.25g 1-乙基-3-甲基咪唑双氰胺盐,再加入4g甲醇,在搅拌器上加热50℃溶解,待样品溶解后,将溶液倒入5cm×5cm×1cm的聚四氟乙烯模具中,在模具上放上滤纸,防止甲醇挥发过快会出现气泡。室温下自然晾干1-2天,然后置于40℃的真空干燥箱中进一步干燥直至恒重,得到20wt%离子液体含量的导电离子凝胶。
实施例3
本实施例提供了一种导电离子凝胶的制备方法,具体步骤如下:
取1.0g实施例1制备的PUU聚合物于10mL玻璃瓶中,加入0.43g 1-乙基-3-甲基咪唑双氰胺盐,再加入4g甲醇,在搅拌器上加热50℃溶解,待样品溶解后,将溶液倒入5cm×5cm×1cm的聚四氟乙烯模具中,在模具上放上滤纸,防止甲醇挥发过快会出现气泡。室温下自然晾干1-2天,然后置于40℃的真空干燥箱中进一步干燥直至恒重,得到30wt%离子液体含量的导电离子凝胶。
实施例4
本实施例提供了一种导电离子凝胶的制备方法,具体步骤如下:
取1.0g实施例1制备的PUU聚合物于10mL玻璃瓶中,加入0.67g 1-乙基-3-甲基咪唑双氰胺盐,再加入4g甲醇,在搅拌器上加热50℃溶解,待样品溶解后,将溶液倒入5cm×5cm×1cm的聚四氟乙烯模具中,在模具上放上滤纸,防止甲醇挥发过快会出现气泡。室温下自然晾干1-2天,然后置于40℃的真空干燥箱中进一步干燥直至恒重,得到40wt%离子液体含量的导电离子凝胶。
实施例5
本实施例提供了一种导电离子凝胶的制备方法,具体步骤如下:
取1.0g实施例1制备的PUU聚合物于10mL玻璃瓶中,加入1.0g 1-乙基-3-甲基咪唑双氰胺盐,再加入4g甲醇,在搅拌器上加热50℃溶解,待样品溶解后,将溶液倒入5cm×5cm×1cm的聚四氟乙烯模具中,在模具上放上滤纸,防止甲醇挥发过快会出现气泡。室温下自然晾干1-2天,然后置于40℃的真空干燥箱中进一步干燥直至恒重,得到50wt%离子液体含量的导电离子凝胶。
实施例6
本实施例提供了一种导电离子凝胶的制备方法,具体步骤如下:
取1.0g实施例1制备的PUU聚合物于10mL玻璃瓶中,加入1.5g 1-乙基-3-甲基咪唑双氰胺盐,再加入4g甲醇,在搅拌器上加热50℃溶解,待样品溶解后,将溶液倒入5cm×5cm×1cm的聚四氟乙烯模具中,在模具上放上滤纸,防止甲醇挥发过快会出现气泡。室温下自然晾干1-2天,然后置于40℃的真空干燥箱中进一步干燥直至恒重,得到60wt%离子液体含量的导电离子凝胶。
图1是以上实施例2-6制备的20wt%和60wt%离子液体含量的导电离子凝胶在可见光区的透过率图。图中可见,20wt%离子液体含量的导电离子凝胶的透光率在98.4%以上,30wt%离子液体含量的导电离子凝胶的透光率在98.5%以上,40wt%离子液体含量的导电离子凝胶的透光率在98.3%以上,50wt%离子液体含量的导电离子凝胶的透光率在98.6%以上,60wt%离子液体含量的导电离子凝胶的透光率在98.5%以上,所制备的导电离子凝胶在可见光区都具有高透明度。
图2是实施例6制备的60wt%离子液体含量的导电离子凝胶自然光下的高透明度的数码照片,结果显示,透过该导电离子凝胶,可清晰的看到位于导电离子凝胶之后的物体。
图3是以上实施例提供的导电离子凝胶的结构示意图,其包括凝胶基体以及均匀分布于凝胶基体中的离子液体2,凝胶基体为聚氨酯脲形成的三维网络1。本发明合成的导电离子凝胶以疏水性强氢键聚脲短链聚集形成的纳米微区为强物理交联点。
图4是本发明以上实施例制备的不同离子液体含量的导电离子凝胶的拉伸测试曲线图,图中0wt%离子液体对应实施例1合成的PUU聚合物。结果表明,不含离子液体的聚氨酯脲的断裂应力约为30.33MPa,断裂拉伸应变约为1480%;20wt%离子液体含量的导电离子凝胶断裂应力约为16.82MPa;断裂拉伸应变约为1530%;30wt%离子液体含量的导电离子凝胶断裂应力约为9.00MPa,断裂拉伸应变约为1770%;40wt%离子液体含量的导电离子凝胶的断裂应力约为5.98MPa,断裂拉伸应变约为2400%,;50wt%离子液体含量的导电离子凝胶断裂应力约为3.5MPa;断裂拉伸应变约为2530%;60wt%离子液体含量的导电离子凝胶断裂应力约为2.55MPa;断裂拉伸应变约为2200%。
图5是本发明以上实施例2-6制备的不同离子液体含量的导电离子凝胶的电导率图。20wt%离子液体含量的导电离子凝胶的电导率为0.23S·m-1;30wt%离子液体含量的导电离子凝胶的电导率为0.53S·m-1;40wt%离子液体含量的导电离子凝胶的电导率为0.90S·m-1;50wt%离子液体含量的导电离子凝胶的电导率为1.76S·m-1;60wt%离子液体含量的导电离子凝胶的电导率为3.18S·m-1
实施例7
本实施例提供了一种基于导电离子凝胶的应变传感器的制备方法,具体步骤如下:
(1)按照实施例6的方法制备导电离子凝胶。
(2)将以上制备的导电离子凝胶裁剪成0.6cm×5cm×0.5mm的长条,在两端安装导电铜电极,组装成离子凝胶应变传感器。
在电极的两端连接电阻测试元件,同时对导电离子凝胶进行拉伸应变,离子凝胶在拉伸的过程中,离子凝胶中的网络变形,阻碍了离子液体在网络中的自由扩散,使电阻增大。利用电阻测试元件测试对导电离子凝胶发生应变过程中的电阻变化实现应变传感。图6是本实施例制备的离子凝胶应变传感器的电阻随应变变化的传感图,从图中可看到,应变发生变化,传感器的电阻也随之变化,且随着应变的增加,离子凝胶应变传感器的电阻变化率也增加,表明本发明的导电离子凝胶可用于制备应变传感器。
实施例8
本实施例提供了一种基于导电离子凝胶的应变传感器的制备方法,采用3D打印法进行,具体步骤如下:
取1.0g实施例1制备的PUU聚合物于10mL玻璃瓶中,加入1.5g1-乙基-3-甲基咪唑双氰胺盐,再加入4g甲醇,在搅拌器上加热50℃溶解得到均一的混合溶液。然后将混合溶液转移到针筒中,利用3D打印机建立一个立方体结构模型,进行切片,设定打印速度为10mm·s-1,打印气压为20kPa,填充形状为线,填充密度为95%,将离子液体和聚氨酯脲的混合溶液进行3D打印,层层堆叠,打印过程中溶剂挥发,得到3D打印样品。图7是本实施例中得到的3D打印样品。图中的打印样品具有颜色是由于其中添加了染料。
以上仅是本发明的优选实施方式,并不用于限制本发明,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本发明的保护范围。

Claims (10)

1.一种可3D打印且透明的导电离子凝胶组合物,其特征在于,包括具有线性结构的聚氨酯脲、离子液体以及有机溶剂,所述离子液体占具有线性结构的聚氨酯脲质量分数的5%-80%;
其中,所述具有线性结构的聚氨酯脲的结构式包括如下结构式:
Figure DEST_PATH_IMAGE002
其中,A为分子量200-10000g/mol的聚酯基或聚醚基,B为含有4-18个碳原子的脂肪链、脂环基或芳香基,R为含有2-10个碳原子的脂肪链;
a=1-100中任一自然数,b=1-100中任一自然数,r=1-100中任一自然数,n=1-100中任一整数。
2.根据权利要求1所述的导电离子凝胶组合物,其特征在于,A选自以下结构式中的一种或几种:
Figure DEST_PATH_IMAGE004
3.根据权利要求1所述的导电离子凝胶组合物,其特征在于,B选自以下结构式中的一种或几种:
*-(CH2)4-*、*-(CH2)6-*、*-(CH2)8-*、*-(CH2)12-*、
Figure DEST_PATH_IMAGE006
Figure DEST_PATH_IMAGE008
4.根据权利要求1所述的导电离子凝胶组合物,其特征在于,R选自以下结构式中的一种或几种:
Figure DEST_PATH_IMAGE010
5.根据权利要求1所述的导电离子凝胶组合物,其特征在于,所述离子液体包括咪唑盐类离子液体;所述咪唑盐类离子液体为1-乙基-3-甲基咪唑溴盐、1-己基-3-甲基咪唑溴盐、1-癸基-3-甲基咪唑溴盐、1-乙基-3-甲基咪唑四氟硼酸盐、1-乙基-3-甲基咪唑双氰胺盐和1-丁基-2,3-二甲基咪唑双三氟甲磺酰亚胺盐中的一种或几种。
6.一种透明的导电离子凝胶的制备方法,其特征在于,包括以下步骤:
将权利要求1-5中任一项所述的导电离子凝胶组合物成型并干燥以去除组合物中的有机溶剂,得到所述透明的导电离子凝胶。
7.根据权利要求6所述的制备方法,其特征在于,采用以下方法成型:
将所述导电离子凝胶组合物注入模具中成型。
8.根据权利要求6所述的制备方法,其特征在于,采用以下方法成型:
将所述导电离子凝胶组合物转移到针筒中并进行3D打印,打印过程中所述有机溶剂挥发。
9.一种权利要求6所述的制备方法所制备的透明的导电离子凝胶,其特征在于,包括凝胶基体以及分布于所述凝胶基体中的所述离子液体;所述凝胶基体中包括所述具有线性结构的聚氨酯脲。
10.权利要求9所述的透明的导电离子凝胶在制备传感器件中的应用。
CN202010997673.4A 2020-09-21 2020-09-21 可3d打印且透明的导电离子凝胶及其制备和应用 Active CN112080133B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010997673.4A CN112080133B (zh) 2020-09-21 2020-09-21 可3d打印且透明的导电离子凝胶及其制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010997673.4A CN112080133B (zh) 2020-09-21 2020-09-21 可3d打印且透明的导电离子凝胶及其制备和应用

Publications (2)

Publication Number Publication Date
CN112080133A CN112080133A (zh) 2020-12-15
CN112080133B true CN112080133B (zh) 2022-05-17

Family

ID=73738603

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010997673.4A Active CN112080133B (zh) 2020-09-21 2020-09-21 可3d打印且透明的导电离子凝胶及其制备和应用

Country Status (1)

Country Link
CN (1) CN112080133B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113201098A (zh) * 2021-06-03 2021-08-03 哈尔滨工程大学 一种基于类离子液体的高透明度导电聚氨酯的制备方法
CN114456579B (zh) * 2022-02-09 2022-12-13 中国科学院兰州化学物理研究所 一种高强度共晶凝胶及其制备方法和应用、应变传感器
CN115044191A (zh) * 2022-05-17 2022-09-13 东华大学 一种基于动态肟氨酯键离子凝胶及其制备方法和应用
CN115304725B (zh) * 2022-07-26 2023-07-25 中山大学 一种可降解无溶剂离子导电弹性体及其制备方法和应用

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9034378B2 (en) * 2004-03-24 2015-05-19 Polynovo Biomaterials Pty Ltd Biodegradable polyurethane and polyurethane ureas
DE102006031952A1 (de) * 2006-07-11 2008-01-17 Goldschmidt Gmbh Verwendung von ionischen Flüssigkeiten oder Lösungen aus Metallsalzen in ionischen Flüssigkeiten als Antistatika für Kunststoffe
JP2009269974A (ja) * 2008-05-02 2009-11-19 Three M Innovative Properties Co ゲル状組成物とその製造方法、およびそれを用いた衝撃吸収材
US8968168B2 (en) * 2009-08-05 2015-03-03 Shin-Etsu Polymer Co., Ltd. Electrically conductive roller and image-forming device
JP2011057919A (ja) * 2009-09-14 2011-03-24 Sanyo Chem Ind Ltd ポリウレタンゲル
CA2761201C (en) * 2011-10-04 2017-01-17 The Penn State Research Foundation Analogue ionic liquids for the separation and recovery of hydrocarbons from particulate matter
CN103539919B (zh) * 2013-10-28 2017-01-18 苏州大学 一种具有形状记忆功能的聚氨酯脲水凝胶的应用
CN103524697B (zh) * 2013-10-28 2016-03-02 苏州大学 一种聚氨酯脲水凝胶及其制备方法
CN103865022B (zh) * 2014-04-09 2016-04-27 山东普兰特板业有限公司 一种用于催化制备高阻燃硬质聚氨酯板材的复合碱性离子液体
CN103992458A (zh) * 2014-06-11 2014-08-20 苏州大学 一种超高强度的聚氨酯脲超分子水凝胶及其制备方法
CN111584130B (zh) * 2020-05-21 2021-04-09 电子科技大学中山学院 一种热修复柔性透明导电膜及其制备方法

Also Published As

Publication number Publication date
CN112080133A (zh) 2020-12-15

Similar Documents

Publication Publication Date Title
CN112080133B (zh) 可3d打印且透明的导电离子凝胶及其制备和应用
Wei et al. Reprocessable 3D-printed conductive elastomeric composite foams for strain and gas sensing
Ding et al. A semi-interpenetrating network ionic composite hydrogel with low modulus, fast self-recoverability and high conductivity as flexible sensor
Wang et al. 3D printable, highly stretchable, superior stable ionogels based on poly (ionic liquid) with hyperbranched polymers as macro-cross-linkers for high-performance strain sensors
Odent et al. Highly elastic, transparent, and conductive 3D‐printed ionic composite hydrogels
Cui et al. Natural sunlight-actuated shape memory materials with reversible shape change and self-healing abilities based on carbon nanotubes filled conductive polymer composites
CN109734842B (zh) 一种透明导电柔性细菌纤维素复合材料及其制备方法
CN109504368B (zh) 一种CDs/TPU荧光纳米复合材料制备方法
Yao et al. Directly printing of upconversion fluorescence-responsive elastomers for self-healable optical application
Chen et al. Transparent, highly-stretchable, adhesive, and ionic conductive composite hydrogel for biomimetic skin
CN112229317A (zh) 具有大变形性能及其监测功能的柔性传感膜及其制备方法
Ma et al. A transparent self-healing polyurethane–isophorone-diisocyanate elastomer based on hydrogen-bonding interactions
Wu et al. Biomimetic supramolecular polyurethane with sliding polyrotaxane and disulfide bonds for strain sensors with wide sensing range and self-healing capability
WO2020000062A1 (en) Hydrogel-based ph sensors for wet environments
Jiang et al. Ultrastretchable composite organohydrogels with dual cross-links enabling multimodal sensing
EP2406795A1 (en) Electrolyte composition
CN115651228A (zh) 一种纤维素基离子凝胶的制备方法及应用
Song et al. 4D printing of PLA/PCL-based bio-polyurethane via moderate cross-linking to adjust the microphase separation
Zhang et al. Direct ink writing of polymers and their composites, and related applications
Wu et al. Preparation and characterization of thermoplastic starch mixed with waterborne polyurethane
Cheng et al. A novel ionic conductive polyurethane based on deep eutectic solvent continuing traditional merits
Gorbunova et al. Nanocellulose-based thermoplastic polyurethane biocomposites with shape memory effect
Kausar Shape memory polyester-based nanomaterials: cutting-edge advancements
Fan et al. Bacterial cellulose nanofiber-reinforced PVA conductive organohydrogel for flexible strain sensors with high sensitivity and durability
Kim et al. 3D printing of mechanically tough and self-healing hydrogels with carbon nanotube fillers

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230602

Address after: No. 1889, Chuangxin Road, Daixi Town, Wuxing District, Huzhou, Zhejiang Province, 313023

Patentee after: ZHEJIANG ZHONGTE CHEMICAL Co.,Ltd.

Address before: No. 188, Shihu West Road, Wuzhong District, Suzhou City, Jiangsu Province

Patentee before: SOOCHOW University