CN111257397A - 一种用于恩诺沙星检测的印迹电致发光传感器的制备方法 - Google Patents

一种用于恩诺沙星检测的印迹电致发光传感器的制备方法 Download PDF

Info

Publication number
CN111257397A
CN111257397A CN202010082900.0A CN202010082900A CN111257397A CN 111257397 A CN111257397 A CN 111257397A CN 202010082900 A CN202010082900 A CN 202010082900A CN 111257397 A CN111257397 A CN 111257397A
Authority
CN
China
Prior art keywords
electrode
cuncs
enro
opd
enrofloxacin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010082900.0A
Other languages
English (en)
Other versions
CN111257397B (zh
Inventor
庄旭明
王大伟
栾锋
田春媛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yantai University
Original Assignee
Yantai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yantai University filed Critical Yantai University
Priority to CN202010082900.0A priority Critical patent/CN111257397B/zh
Publication of CN111257397A publication Critical patent/CN111257397A/zh
Application granted granted Critical
Publication of CN111257397B publication Critical patent/CN111257397B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/76Chemiluminescence; Bioluminescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Electrochemistry (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optics & Photonics (AREA)
  • Composite Materials (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本发明提供了一种用于恩诺沙星检测的印迹电致发光传感器的制备方法。该电化学传感器基于铜纳米团簇(CuNCs)制备而成,将含有恩诺沙星(ENRO)和邻苯二胺(OPD)的醋酸缓冲溶液作为电解液,以CuNCs/ENRO‑OPD修饰的玻碳电极为工作电极,Ag/AgCl电极为参比电极,铂丝电极为辅助电极,构成三电极系统。采用循环伏安法,聚合电位为0~0.8V,得到CuNCs/ENRO‑OPD薄膜;用洗脱剂洗脱后,获得恩诺沙星分子印迹聚合物薄膜;然后进行电化学发光的测定,进而对ENRO进行定量的测定。利用本发明检测恩诺沙星,具有检出限低,灵敏度高,选择性好,稳定性好等优点,在优化的实验条件下,可以实现对不同畜牧类样品中恩诺沙星的检测。

Description

一种用于恩诺沙星检测的印迹电致发光传感器的制备方法
技术领域
本发明涉及电化学检测技术领域,具体涉及一种用于恩诺沙星检测的印 迹电致发光传感器的制备方法。
背景技术
恩诺沙星为合成的第三代喹诺酮类抗菌药物,又名乙基环丙沙星,属于 广谱抗菌药,抗菌效果十分显著;由于它们对革兰氏阴性菌和革兰氏阳性病 原体等具有极好的杀菌作用,所以已广泛用于兽医和人类医学。然而,近年 来抗生素的滥用及残留问题引起了人们的广泛关注,抗生素的滥用不仅会增 加病原菌对该类药物的耐药性,还会造成畜禽的中毒、人类的过敏反应等。 恩诺沙星是国家指定的专用兽药,为国家指定抽检项目。因此,建立一种快 速简单,准确灵敏的恩诺沙星检测方法具有重要的意义。
目前,常用的恩诺沙星的检测方法有气相色谱法,高效液相色谱法,色 谱-质谱联用技术等。以上的技术虽然灵敏度高,但样品前处理成本较高且 步骤复杂,测定时间较长。
发明内容
为解决上述现有技术存在的问题,本发明的目的在于提供一种用于恩诺 沙星检测的印迹电致发光传感器的制备方法。该方法所得产品可对食品中的 恩诺沙星进行快速检测。
一种用于恩诺沙星检测的印迹电致发光传感器的制备方法,步骤包括:
(1)铜纳米团簇的制备:将5mL,20mM的3-巯基丙酸(MPA)与5mL, 1mM的CuSO4·5H2O混合,用1M NaOH调节混合溶液pH=6.5-7.0,室温下 反应5min,离心机离心三次去上清液即得CuNCs产品;
(2)将步骤(1)中的CuNCs用1O mL N,N-二甲基甲酰胺(DMF)超声 分散,通入氮气除去氧气,取5μL滴涂到磨好的玻碳电极GCE上,在空气 中自然晾干,得到CuNCs修饰的电极;
(3)在含有ENRO和OPD的醋酸缓冲溶液作为电解液,以CuNCs修饰的 玻碳电极GCE为工作电极,Ag/AgCl电极为参比电极,铂丝电极为辅助电极, 构成三电极系统;采用循环伏安法进行电聚合,得到CuNCs/ENRO-OPD修饰的 电极;
(4)将步骤(3)得到的CuNCs/ENRO-OPD修饰的电极用洗脱剂进行洗 脱,获得恩诺沙星分子印迹聚合物薄膜,并将其作为工作电极,Ag/AgCl电 极作为参比电极,铂丝电极作为辅助电极,构成三电极体系与电化学工作站 相连构成用于ENRO检测的电化学发光传感器。
优选的,步骤(1)中所述3-巯基丙酸MPA与CuSO4·5H2O摩尔比为20: 1。
优选的,步骤(3)中所述ENRO和OPD摩尔比为1:5,醋酸缓冲溶液 pH=5.2。
优选的,步骤(3)中循环伏安法所用电位为0-0.8V。
优选的,步骤(4)中所述洗脱剂为甲醇-水按体积比2:1混合溶液。
优选的,步骤(4)中所述工作电压为-2.1-0V;所述电化学工作站光 电倍增管高压为800V;所述电化学工作站扫描速率为0.1V/S。
与现有技术相比,本发明的有益效果和优点是:
铜纳米团簇(CuNCs)是一种由几个至几十个铜原子组成的新型荧光纳 米材料。具有类似Au、Ag等纳米材料的性质,且成本低廉,有很好的光稳 定性、良好的生物相容性、较低的生物毒性;比表面积较高,具有良好的光 学电学和催化特性,已经被广泛应用于生物分析和环境检测等领域。相比现 有检测方法,本发明的材料制备过程简单,成本低廉,反应条件温和且容易 操控。
电化学检测法具有操作简单、灵敏度高、成本低廉等特点,但其抗干扰 能力较差,对目标物的识别能力有待提高。利用分子印迹结合电化学的检测 方法可以有效地避免电化学的缺点,并且选择性好、稳定性强,具有对目标 物特异性识别的特点。近年来,将分子印迹与电化学结合构建分子印迹电化 学发光传感器已被广泛研究并发展成为一种很有潜力的分析方法。本发明首 次将CuNCs、ENRO、OPD通过电聚合的方法在玻碳电极GCE上制备分子印迹 聚合物(MIP)膜,并用于检测食品中的ENRO。
本试验采用的是分子印迹电化学传感器的方法,分子印迹具有特异性识 别的特点,选择性高,而电化学灵敏度高,准确度好,分析时间短;将二者 结合,相辅相成,所用设备简单,成本低,选择性好,灵敏度高,快速准确。 本试验以恩诺沙星为模板分子,采用分子印迹电化学传感器法对食品中的恩 诺沙星进行快速检测。
附图说明
图1为本发明扫描电镜图(SEM),其中(A)MPA-CuNCs修饰电极,(B) MPA-CuNCs/ENRO-OPD修饰电极聚合后和(C)MPA-CuNCs/ENRO-OPD修饰电极 洗脱后扫描电镜图(SEM)。
图2为本发明能谱分析图(EDS),其中(A)MPA-CuNCs/玻碳电极GCE, (B)MPA-CuNCs/ENRO-OPD/玻碳电极GCE和(C)对MPA-CuNCs/ENRO-OPD/玻碳 电极GCE进行洗脱的能谱分析图(EDS)。
图3A为在1mmol L-1K3[Fe(CN)6]/K4[Fe(CN)6]的PBS溶液(PH=7.4) 中(a)MPA-CuNCs/玻碳电极GCE,(b)MPA-CuNCs/ENRO-OPD/玻碳电极GCE, (c)对MPA-CuNCs/ENRO-OPD/玻碳电极GCE进行洗脱的电化学阻抗谱图 (EIS)。3B为(a)MPA-CuNCs/玻碳电极GCE,(b)MPA-CuNCs/ENRO-OPD/玻 碳电极GCE,(c)对MPA-CuNCs/ENRO-OPD/玻碳电极GCE进行洗脱的ECL光 谱图。3C为(a)裸玻碳电极GCE,(b)MPA-CuNCs/玻碳电极GCE,(c) MPA-CuNCs/ENRO-OPD/玻碳电极GCE的ECL光谱图。
图4为对(A)CuSO4·5H2O和MPA的摩尔比例、(B)制备CuNCs的pH、 (C)ENRO的电聚合浓度、(D)电聚合圈数进行的优化图。
图5为对(A)洗脱时间及(B)吸附时间进行的优化图。
图6(A)一系列ENRO浓度(0,1×10-10,5×10-10,1×10-9,5×10 -9,1×10-8,5×10-8,1×10-7,5×10-7,1×10-6mol L-1)的ECL 图,(B)ENRO检测的标准曲线,(C)相同浓度下ENRO与其相似物的选择性 实验,(D)不同激发波长下的ECL图,(E)MPA-CuNCs电化学发光的稳定性 实验。
具体实施方式
本发明一种用于恩诺沙星检测的印迹电致发光传感器的制备方法,首先 采用3-巯基丙酸MPA通过还原CuSO4·5H2O来制备CuNCs,然后将CuNCs滴 涂在玻碳电极GCE表面,晾干后在聚合物溶液中进行电聚合,之后进行洗脱 形成MIP聚合膜,通过在不同浓度的ENRO中进行吸附实验,最终进行ECL 测定,从而对ENRO进行检测。
以下结合具体实施例来进一步解释本发明,但实施例对本发明不做任何 形式的限定。
实施例1
一种用于恩诺沙星检测的印迹电致发光传感器的制备方法,步骤如下:
步骤一、MPA-CuNCs的制备
(1)用量筒准确量取5mL,1mM CuSO4·5H2O溶液于25mL烧杯中,边 搅拌边通入氮气,然后量取5mL,20mM MPA溶液与CuSO4·5H2O溶液混合, 用1M NaOH(大约250μL)溶液调节混合溶液pH=6.5-7.0,室温下反应5min, 混合溶液逐渐由无色变为白色絮状,在365nm紫外灯下发出明亮的橙色荧 光。
(2)将(1)中制得的混合溶液转入10mL离心管,放入离心机10000rpm 离心10min,去上清液,加入DMF超声分散离心洗涤三次去上清液后得到聚 集状态的MPA-CuNCs,聚集状态的MPA-CuNCs在365nm紫外灯下发亮橙色荧 光(以此作为MPA-CuNCs被成功制备的标志)。
本发明的MPA-CuNCs在室温下制备,一方面制备条件较为温和,操作简 单,成本低廉;另一方面制备的MPA-CuNCs比表面积大,活性位点多,有利 于加快电子转移,电化学信号强,具有很好的电化学发光性能。
步骤二、分子印迹电化学发光传感器的制备
(1)将玻碳电极GCE分别用粒径为0.5μm和0.03μm Al2O3粉末在 麂皮上打磨抛光3-5min。将抛光后的玻碳电极GCE用超纯水超声清洗三次, 每次3min。超声清洗完成后,在含有1mmol/L K3[Fe(CN)6]的0.1mol/L KCl 溶液中进行CV扫描,扫描电位设置为-0.2-0.6V,当氧化峰电势和还原 峰电势差值小于100mV,电极打磨合格。
(2)取步骤一中的MPA-CuNCs加入10mL DMF超声分散后充氮气2-3min 除净分散液中的氧气。将(1)中打磨好的电极自然晾干或用氮气吹干,用 0.5-10μL移液枪取5μL MPA-CuNCs分散液均匀的滴涂在玻碳电极GCE 表面,然后将MPA-CuNCs/玻碳电极GCE自然晾干(防止强光暴晒)。
(3)取10mL小烧杯,边通入氮气边分别加入5mL pH=5.2的乙酸-乙 酸钠(HAc-NaAc)缓冲溶液、500μL 50Mm OPD-乙醇溶液及100μL 50Mm ENRO-乙酸溶液,搅拌混合均匀作为电聚合溶液(ENRO与OPD摩尔比为1:5)。 然后,将晾干后的MPA-CuNCs/玻碳电极GCE在电聚合溶液中用电化学工作站 进行电聚合,扫描CV图,得到MPA-CuNCs/ENRO-OPD修饰的玻碳电极GCE。
(4)将甲醇和超纯水按照体积比为2:1搅拌混合均匀,通入氮气5min 除氧,将此混合溶液作为洗脱剂。取5mL甲醇-水溶液加入到10mL小烧杯 中将MPA-CuNCs/ENRO-OPD修饰的玻碳电极GCE在洗脱剂中洗脱15min后得 到分子印迹薄膜。
(5)取不同体积的50Mm ENRO-乙酸溶液分别用pH=5.2的HAc-NaAc 缓冲溶液稀释一系列浓度(10-8-10-4M),作为吸附剂。将(4)中制备的洗 脱后的玻碳电极GCE分别在5mL一系列不同浓度的吸附剂中物理吸附8min, 然后用光致电化学发光系统测ECL强度。以ENRO浓度的对数lg[cENRO]和F0-F 绘制标准曲线。以此作为分子印迹电化学发光传感器。
应用例1
本发明制备的用于构建分子印迹电化学发光传感器以检测ENRO的浓 度。检测方法为电化学发光方法,检测装置为MPI-E型电致化学发光分析系 统。
将本发明所制备的纳米复合材料修饰的玻碳电极作为三电极系统中的 工作电极,Ag/AgCl(饱和KCl)电极作为参比电极,铂丝电极作为辅助电 极。共反应剂为浓度为0.05M的过硫酸钾-磷酸盐缓冲溶液(pH=7.4)混 合液。将被测ENRO溶液加入到电致化学发光分析系统中的共反应剂中,根 据循环伏安曲线结合标准曲线来判断被测ENRO溶液的浓度。
所述的循环伏安法的检测条件:0.05M的过硫酸钾-磷酸盐缓冲溶液 (pH=7.4)混合液为共反应剂,扫描电位为-2.1–0V,扫面方向为正向扫 描,扫描速率为0.1V/S,采样间隔为0.001V,静止时间4s,光电倍增管高 压为800V。
进一步对上述各纳米材料进行结构形貌表征,结果良好。
图1为本发明所述的(A)MPA-CuNCs修饰电极,(B)MPA-CuNCs/ENRO-OPD 修饰电极聚合后和(C)MPA-CuNCs/ENRO-OPD修饰电极洗脱后扫描电镜图 (SEM)。如图1A所示,MPA-CuNC以大颗粒的聚集状态存在于玻碳电极GCE 的表面上,并且具有大的比表面积,这为形成分子印迹膜提供了基础。CuNCs/ 玻碳电极GCE电聚合后,ENR-OPD紧密结合到CuNCs/玻碳电极GCE的表面, 并显示出粗糙的表面,具有大小不同的紧密结合的颗粒(图1B所示)。从图1C可以看出,用洗脱液洗脱聚合的印迹膜提后,ENR被洗去,并且玻碳电极 GCE的表面形成了层状空腔结构。根据SEM的形貌表征结果,在玻碳电极GCE 表面成功构建了分子印迹膜,为后续的MIP-ECL传感器的构建提供了保证。
图2为本发明所述的(A)MPA-CuNCs/玻碳电极GCE,(B) MPA-CuNCs/ENRO-OPD/玻碳电极GCE和(C)对MPA-CuNCs/ENRO-OPD/玻碳电 极GCE进行洗脱的能谱分析图(EDS)。由能谱分析对不同材料修饰的电极表 面的元素进行分析,由图2A不同元素的重量百分比表格所示,C、O、S、 Cu元素为MPA-CuNCs中主要分布元素。图2B中C元素含量明显增多,而S、 Cu元素重量百分比也大幅减小,这证明ENRO-OPD成功聚合到MPA-CuNCs修 饰的电极的表面。图2C可看到,S、Cu元素重量百分比相比图2B增多,证 明了目标分子ENRO被成功的洗脱掉,在玻碳电极GCE表面形成了分子印迹 薄膜。由此表明MPA-CuNCs/ENRO-OPD的成功复合。
图3A为在1mmol L-1K3[Fe(CN)6]/K4[Fe(CN)6]的PBS溶液(PH=7.4) 中(a)MPA-CuNCs/玻碳电极GCE,(b)MPA-CuNCs/ENRO-OPD/玻碳电极GCE, (c)对MPA-CuNCs/ENRO-OPD/玻碳电极GCE进行洗脱的电化学阻抗谱图 (EIS)。在谱图中,(a)MPA-CuNCs几乎是一条直线,这表明[Fe(CN)6]3-/4-在MPA-CuNCs修饰的电极表面进行快速的电子转移过程。对于(b)MPA-CuNCs/ENRO-OPD/玻碳电极GCE,可观察到较大的半圆,由于ENRO-OPD 电聚合到电极表面,形成聚合薄膜,因此该表面对电子的转移具有很高的抵 抗力。当对MPA-CuNCs/ENRO-OPD/玻碳电极GCE进行洗脱后,ENRO被洗脱掉, 形成分子印迹的孔道结构,[Fe(CN)6]3-/4-扩散加快,促进了电子的转移,所 以比洗脱前电阻值小。由此证明分子印迹薄膜的成功制备。
图3B为(a)MPA-CuNCs/玻碳电极GCE,(b)MPA-CuNCs/ENRO-OPD/玻 碳电极GCE,(c)对MPA-CuNCs/ENRO-OPD/玻碳电极GCE进行洗脱的ECL光 谱图。由图中可看到MPA-CuNCs/玻碳电极GCE具有很高的ECL信号,在电聚 合ENRO-OPD后信号强度明显下降,而在对ENRO进行洗脱后,ECL信号又有 所恢复。由于ENRO-OPD聚合膜的形成,阻碍了共反应剂中S2O8 2-与MPA-CuNCs 的接触,而在ENRO被洗脱后形成分子印迹薄膜S2O8 2-再次与MPA-CuNCs发生 氧化还原反应,恢复部分ECL信号。说明该传感器具有很好的电化学性能。
图3C为(a)裸玻碳电极GCE,(b)MPA-CuNCs/玻碳电极GCE,(c) MPA-CuNCs/ENRO-OPD/玻碳电极GCE的ECL光谱图。通过对比不同材料修饰 电极的ECL信号强度证明该分子印迹电化学发光传感器的可行性。
再进一步对上述修饰电极进行常规的电化学性能测试,结果良好。
为了进一步获得更好的实验条件,我们分别对(图4A)CuSO4·5H2O和MPA 的摩尔比例、(图4B)制备CuNCs的pH、(图4C)ENRO的电聚合浓度、(图4D) 电聚合圈数、洗脱剂、(图5A)洗脱时间及(图5B)吸附时间进行优化。最终, CuSO4·5H2O与MPA的摩尔比例为1:20,CuSO4·5H2O与MPA反应的最适pH 为6.5-7,ENRO电聚合浓度确认为1mM,最适宜电聚合圈数为10;分别对 不同洗脱剂(0.5M甲醇-硫酸、0.5M甲醇-乙醇、乙醇-水、甲醇-水、0.2M NaOH水溶液)进行优化,最终确认最适合洗脱剂为甲醇-水(V甲醇:V=2:1)。 最适宜洗脱时间和吸附时间分别为15min和8min。
图6分别为:(A)一系列ENRO浓度(0,1×10-10,5×10-10,1×10-9, 5×10-9,1×10-8,5×10-8,1×10-7,5×10-7,1×10-6mol L-1)的ECL图,(B)ENRO检测的标准曲线,(C)相同浓度下ENRO与其相似物 的选择性实验,(D)不同激发波长下的ECL图,(E)MPA-CuNCs电化学发光的稳定性实验。图6A反应了ENRO浓度与ECL信号值关系,随着ENRO浓度 的逐渐增大,ECL信号依次减小;在图6B中ENRO浓度的对数与F0-F/F0在1 ×10-10-1×10-6μmol/L范围内呈线性关系,线性方程为y=0.027lgC+1.143 (R2=0.986)。图6C中ENRO相似物从左到右为盐酸环丙沙星(CH)、加替沙 星(GHT)、诺氟沙星(NOR)、甲硫盐培氟沙星(PM),在同样实验条件下,ENRO 在吸附相同时间后ECL信号下降最明显,其他沙星类相似物几乎没变化,证 明该分子印迹电化学发光传感器选择性好。图6D中在不同激发波长下 MPA-CuNCs的ECL信号在波长640nm最大,图6E中可观察到MPA-CuNCs的 ECL信号在运行多次后依然非常稳定。由此说明该方法制备的分子印迹电化 学发光传感器具有很好的灵敏度、选择性以及稳定性,适用于ENRO浓度的 检测。
表1为通过加标回收法,用本发明所述分子印迹电化学发光传感器对不 同畜牧类产品中ENRO检测的结果。从结果可以看出回收率在87.1-104.0% 之间,表明该分子印迹电化学发光传感器适用于不同畜牧类产品中ENRO的 检测。
表1分子印迹电化学发光传感器对不同畜牧类产品中ENRO检测的结果
Figure BDA0002380940230000091
对比例1
分子印迹电化学发光传感器的制备
对比例1的制备方法同实施例2。不同之处仅在于,直接采用玻碳电极 作为三电极系统中的工作电极。
对比例2
分子印迹电化学发光传感器的制备
对比例2的制备方法同实施例2。不同之处仅在于,采用CuNCs修饰电 极作为三电极系统中的工作电极。
所述CuNCs的制备方法同实施例1中的步骤。
对比例3
分子印迹电化学发光传感器的制备
对比例3的制备方法同实施例2。不同之处仅在于,采用 MPA-CuNCs/ENRO-OPD电聚合但未洗脱和吸附的电极作为三电极系统中的工 作电极。所述MPA-CuNCs/ENRO-OPD修饰电极的制备方法为:将采用实施例1 中所述的MPA-CuNCs与实施例1中步骤二所述的方式制备成 MPA-CuNCs/ENRO-OPD修饰电极(对比例1-3ECL图如图3C所示)。
购买厂家:对比例1中玻碳电极购自上海辰华仪器有限公司;本申请其 他原料均购自阿拉丁试剂(上海)有限公司和西格玛奥德里奇(上海)贸易 有限公司。
本发明为无标记型传感器,且只需一层分子印迹薄膜对ENRO的直接氧 化进行响应,便可实现高灵敏度和选择性。
本发明所制备的新型传感器对ENRO具有优异的电催化活性,且具有检 出限低,灵敏度高,以及抗干扰性能良好等显著优点。基于本发明构建的ENRO 分子印迹电化学发光传感器制备简单、成本低廉,在对食品安全方面有着很 好的应用前景。
本发明可用其他的不违背本发明的精神或主要特征的具体形式来概述。 因此,无论从哪一点来看,本发明的上述实施方案都只能认为是对本发明的 说明而不能限制本发明,权利要求书指出了本发明的范围,而上述的说明并 未指出本发明的范围,因此,在与本发明的权利要求书相当的含义和范围内 的任何改变,都应认为是包括在本发明的权利要求书的范围内。

Claims (6)

1.一种用于恩诺沙星检测的印迹电致发光传感器的制备方法,其特征在于,步骤包括:
(1)铜纳米团簇的制备:将20mM的3-巯基丙酸与1mM的CuSO4·5H2O混合,用1M NaOH调节混合溶液pH=6.5-7.0,室温下反应5min,离心机离心三次去上清液即得CuNCs产品;
(2)将步骤(1)中的CuNCs用N,N-二甲基甲酰胺超声分散,通入氮气除去氧气,再滴涂到磨好的玻碳电极上,在空气中自然晾干,得到CuNCs修饰的电极;
(3)将含有恩诺沙星ENRO和邻苯二胺OPD的醋酸缓冲溶液作为电解液,以CuNCs修饰的玻碳电极为工作电极,Ag/AgCl电极为参比电极,铂丝电极为辅助电极,构成三电极系统;采用循环伏安法进行聚合,得到CuNCs/ENRO-OPD修饰的电极;
(4)将步骤(3)得到的CuNCs/ENRO-OPD修饰的电极用洗脱剂进行洗脱,获得恩诺沙星分子印迹聚合物薄膜,并将其作为工作电极,Ag/AgCl电极作为参比电极,铂丝电极作为辅助电极,构成三电极体系与电化学工作站相连构成用于ENRO检测的电化学传感器。
2.如权利要求1所述的制备方法,其特征在于,步骤(1)中所述3-巯基丙酸与CuSO4·5H2O体积为比为1:1。
3.如权利要求1所述的制备方法,其特征在于,步骤(3)中所述ENRO和OPD摩尔比为1:5,醋酸缓冲溶液pH=5.2。
4.如权利要求1所述的制备方法,其特征在于,步骤(3)中循环伏安法所用电位为0-0.8V。
5.如权利要求1所述的制备方法,其特征在于,步骤(4)中所述洗脱剂为甲醇-水按体积比2:1混合溶液。
6.如权利要求1所述的制备方法,其特征在于,步骤(4)中所述工作电压为-2.1-0V;所述电化学工作站光电倍增管高压为800V;所述电化学工作站扫描速率为0.1V/S。
CN202010082900.0A 2020-02-07 2020-02-07 一种用于恩诺沙星检测的印迹电致发光传感器的制备方法 Active CN111257397B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010082900.0A CN111257397B (zh) 2020-02-07 2020-02-07 一种用于恩诺沙星检测的印迹电致发光传感器的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010082900.0A CN111257397B (zh) 2020-02-07 2020-02-07 一种用于恩诺沙星检测的印迹电致发光传感器的制备方法

Publications (2)

Publication Number Publication Date
CN111257397A true CN111257397A (zh) 2020-06-09
CN111257397B CN111257397B (zh) 2022-03-29

Family

ID=70943036

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010082900.0A Active CN111257397B (zh) 2020-02-07 2020-02-07 一种用于恩诺沙星检测的印迹电致发光传感器的制备方法

Country Status (1)

Country Link
CN (1) CN111257397B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112505024A (zh) * 2020-11-03 2021-03-16 常州大学 检测恩诺沙星的电化学发光适配体传感器及其制备方法和检测恩诺沙星的方法
CN113533279A (zh) * 2021-07-15 2021-10-22 河北农业大学 一种利用荧光二肽纳米微球/核酸适配体检测恩诺沙星的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103071537A (zh) * 2012-11-30 2013-05-01 江苏大学 光降解盐酸恩诺沙星漂浮型磁性导电表面分子印迹复合光催化剂的制备方法及其应用
CN103091305A (zh) * 2013-01-14 2013-05-08 大连理工大学 电化学发光检测喹诺酮类抗生素的方法
CN109164083A (zh) * 2018-11-13 2019-01-08 青岛大学 基于铜纳米簇/碳点/精氨酸复合物的扑热息痛比率荧光传感器的制备方法
CN110530949A (zh) * 2019-09-12 2019-12-03 济南大学 一种基于铜纳米簇-共振能量转移体系构建的免疫传感器的制备方法及应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103071537A (zh) * 2012-11-30 2013-05-01 江苏大学 光降解盐酸恩诺沙星漂浮型磁性导电表面分子印迹复合光催化剂的制备方法及其应用
CN103091305A (zh) * 2013-01-14 2013-05-08 大连理工大学 电化学发光检测喹诺酮类抗生素的方法
CN109164083A (zh) * 2018-11-13 2019-01-08 青岛大学 基于铜纳米簇/碳点/精氨酸复合物的扑热息痛比率荧光传感器的制备方法
CN110530949A (zh) * 2019-09-12 2019-12-03 济南大学 一种基于铜纳米簇-共振能量转移体系构建的免疫传感器的制备方法及应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BAHAREH BABAMIRI 等: "Nickel nanoclusters as a novel emitter for molecularly imprinted electrochemiluminescence based sensor toward nanomolar detection of creatinine", 《BIOSENSORS AND BIOELECTRONICS》 *
CHANGLING YAN 等: "Electrochemical determination of enrofloxacin based on molecularly imprinted polymer via one-step electro-copolymerization of pyrrole and o-phenylenediamine", 《JOURNAL OF ELECTROANALYTICAL CHEMISTRY》 *
LIN AI 等: "Engineering a red emission of copper nanocluster self-assembly architectures by employing aromatic thiols as capping ligands", 《NANOSCALE》 *
MIN ZHAO 等: "Cu Nanoclusters: Novel Electrochemiluminescence Emitters for Bioanalysis", 《ANALYTICAL CHEMISTRY》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112505024A (zh) * 2020-11-03 2021-03-16 常州大学 检测恩诺沙星的电化学发光适配体传感器及其制备方法和检测恩诺沙星的方法
CN113533279A (zh) * 2021-07-15 2021-10-22 河北农业大学 一种利用荧光二肽纳米微球/核酸适配体检测恩诺沙星的方法

Also Published As

Publication number Publication date
CN111257397B (zh) 2022-03-29

Similar Documents

Publication Publication Date Title
Wu et al. Rapid recognition and determination of tryptophan by carbon nanotubes and molecularly imprinted polymer-modified glassy carbon electrode
Shahrokhian et al. Application of thionine-nafion supported on multi-walled carbon nanotube for preparation of a modified electrode in simultaneous voltammetric detection of dopamine and ascorbic acid
Zuo et al. An electrochemiluminescent sensor for dopamine detection based on a dual-molecule recognition strategy and polyaniline quenching
CN112505116B (zh) 一种用于特异性检测卡那霉素的电化学发光适配体传感器以及制备方法和应用
CN109781815B (zh) 一种喹乙醇分子印迹膜电化学传感器的制备方法
Fu et al. The electrochemiluminescence resonance energy transfer between Fe-MIL-88 metal–organic framework and 3, 4, 9, 10-perylenetetracar-boxylic acid for dopamine sensing
CN111257397B (zh) 一种用于恩诺沙星检测的印迹电致发光传感器的制备方法
Deng et al. Sensitive voltammetric determination of tryptophan using an acetylene black paste electrode modified with a Schiff's base derivative of chitosan
CN113075269A (zh) 一种用于特异性检测氯霉素的电化学发光适配体传感器及其制备方法和应用
Chekin et al. Fabrication of chitosan‐multiwall carbon nanotube nanocomposite containing ferri/ferrocyanide: application for simultaneous detection of D‐penicillamine and tryptophan
CN112683971B (zh) 一种氯霉素光电化学适配体传感器及其制备方法和应用
Wang et al. A novel electrochemiluminescence sensor based on MXene and sodium ascorbate coordinated amplification CNNS signal strategy for ultrasensitive and selective determination of histamine
CN111175358B (zh) 一种氟氯氰菊酯分子印迹电致化学发光传感器的制备方法及其检测氟氯氰菊酯的方法
CN110487866A (zh) 一种多孔中空碳纳米球材料的制备及其检测亚硝酸盐的应用
CN110907425B (zh) 一种基于核壳结构聚多巴胺包裹纳米金颗粒的表面分子印迹sers传感器及其制备与应用
Liu et al. Fabrication of a highly sensitive electrochemiluminescence chlorpromazine sensor using a Ru (bpy) 3 2+ incorporated carbon quantum dot–gelatin composite film
Dang et al. Determination of norfloxacin using a tetraoxocalix [2] arene [2]-triazine covalently functionalized multi-walled carbon nanotubes modified electrode
CN109900760B (zh) 一种基于多酸的多巴胺电化学传感器的制备方法及其应用
CN105866211B (zh) 一种氨苄西林分子印迹传感器的制备方法及应用
CN112630279B (zh) 用于检测双氯酚酸的基于金纳米粒子的等离子共振增强型电化学发光传感器及制备方法
CN112881483B (zh) 一种测定呕吐毒素的分子印迹电化学传感器的制备方法及应用
CN110702758B (zh) 一种增强鳞状细胞癌抗原在电化学发光检测时的发光强度的方法
Yang et al. Voltammetric Detection of Ofloxacin in Human Urine at a Congo Red Functionalized Water‐Soluble Carbon Nanotube Film Electrode
Chen et al. Enhancement of electrochemiluminesence of lucigenin by ascorbic acid at single-wall carbon nanotube film-modified glassy carbon electrode
CN113567516B (zh) 一种磺胺间甲氧嘧啶分子印迹电极及其制备方法、应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant