CN111254414B - 柔性石墨烯基硅纳米线异质结的制备与转移方法 - Google Patents

柔性石墨烯基硅纳米线异质结的制备与转移方法 Download PDF

Info

Publication number
CN111254414B
CN111254414B CN202010071226.6A CN202010071226A CN111254414B CN 111254414 B CN111254414 B CN 111254414B CN 202010071226 A CN202010071226 A CN 202010071226A CN 111254414 B CN111254414 B CN 111254414B
Authority
CN
China
Prior art keywords
graphene
silicon nanowire
based silicon
nanowire heterojunction
pdms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010071226.6A
Other languages
English (en)
Other versions
CN111254414A (zh
Inventor
李连碧
臧源
陈鸿
胡继超
林生晃
张国青
蒲红斌
封先锋
宋立勋
涂喆研
李泽斌
徐永康
王蓉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xi'an Qianyue Electronic Technology Co ltd
Original Assignee
Xian Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Polytechnic University filed Critical Xian Polytechnic University
Priority to CN202010071226.6A priority Critical patent/CN111254414B/zh
Publication of CN111254414A publication Critical patent/CN111254414A/zh
Application granted granted Critical
Publication of CN111254414B publication Critical patent/CN111254414B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Composite Materials (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种柔性石墨烯基硅纳米线异质结的制备与转移方法,将石墨烯湿法转移至SiO2/Si上,采用金属催化VLS机制的CVD法(化学气相沉积法),利用2nm厚Au作为催化剂,在石墨烯上直接生长Si纳米线。生长温度为500℃,源气体SiH4流量为10sccm,生长压力1.33×104Pa,生长时间10分钟。生长结束后,关闭SiH4气体阀门,在氩气保护下,CVD炉自然冷却后得到石墨烯基硅纳米线异质结。然后,将制备好的石墨烯基硅纳米线异质结,旋涂PMMA/PDMS双支撑膜,利用NaOH溶液刻蚀掉SiO2,实现石墨烯基硅纳米线异质结的整体转移,得到柔性、可移植的石墨烯基硅纳米线异质结。

Description

柔性石墨烯基硅纳米线异质结的制备与转移方法
技术领域
本发明属于硅纳米线制备及转移技术领域,涉及一种柔性石墨烯基硅纳米线异质结的制备方法,还涉及纳米线异质结的转移方法。
背景技术
硅作为二十世纪最重要的半导体材料之一,由于其适宜的带隙结构,成熟的制造技术,高可靠性,可控性良好的表面状态和低成本的可扩展生产以及高速光电探测能力,成为了用于光电探测器的理想半导体材料。然而体硅的刚度限制了其在柔性光电探测器领域的应用。硅纳米线由于具有独特的机械柔性、优异的陷光能力,为新一代高性能柔性光电探测器的开发提供了可能。研究发现,硅纳米线的独特电子限域作用有利于电子和空穴能态保持分离,能有效延长载流子寿命,展现出了优秀的光电特性;同时,线性的几何结构,使得其对外力具有很好的弹性,在发生形变后,材料表面不会产生裂纹。这些特点都使得Si纳米线在柔性、可移植、高性能光电探测器领域具有巨大应用前景。
石墨烯在光电器件领域主要应用在两方面,一方面,石墨烯良好的电导性能和透光性能,使它在透明电极方面有非常好的应用前景。传统的太阳能电池所用的透明电极一般为氧化铟锡(ITO)或者为掺氟氧化锡(FTO)。但这些材料本身都具有很高的脆性以及对酸碱的敏感性,成本也越來越高。石墨烯在柔韧性、成本和力学强度方面的显著优势,使其作为新的透明导电材料受到了广泛关注。另一方面,石墨烯具有从紫外至远红外的宽光谱吸收特性、室温下超高的载流子迁移率,将石墨烯与半导体材料结合形成异质结光电器件,可应用于超宽谱和超快光电探测器等领域。但是,石墨烯用于光探测也存在着明显的劣势。本征石墨烯由于光吸收率低(单层石墨烯对可见光的吸收率仅为2.3%),石墨烯探测器的光响应率较低;石墨烯自身的光生载流子寿命短,仅皮秒左右,难以有效收集,也影响了探测器的光电响应度,导致石墨烯探测器无法满足实际应用的需要。
发明内容
本发明的目的是提供一种柔性石墨烯基硅纳米线异质结的制备与转移方法,采用金属催化VLS机制的CVD法(化学气相沉积法),以石墨烯(Gr)作为基材直接制备硅纳米线并整体转移,具有柔性、可移植的特点。
本发明所采用的技术方案是,柔性石墨烯基硅纳米线异质结的制备方法,采用湿法将石墨烯转移至SiO2/Si上,并利用CVD法制备石墨烯基硅纳米线异质结,具体包括以下步骤:
步骤1.将表面覆盖有约2nm厚Au的石墨烯基材放入CVD炉中,开启机械泵抽真空;
步骤2.待机械泵将CVD炉内气压抽真空至l0-1 Pa,打开分子泵,并将炉腔气压抽真空至l×10-4Pa;
步骤3.关闭分子泵,并打开氩气路阀门,调整气体流量约为0.1slm,调节机械泵旋钮,使CVD炉腔体压力为1.33×104Pa,打开加热系统,并以35℃/min的速率加热到500℃;
步骤4.保持500℃的时间为10min,并通入10sccm的SiH4
步骤5.待10分钟生长结束后,关闭SiH4气体阀门;在氩气保护下,CVD炉自然冷却到室温,得到石墨烯基硅纳米线异质结。
本发明的特点还在于:
柔性石墨烯基硅纳米线异质结的转移方法,将制备好的石墨烯基硅纳米线异质结,旋涂PMMA/PDMS双支撑膜,利用NaOH溶液刻蚀掉SiO2,实现石墨烯基硅纳米线异质结的整体转移,具体方法如下:
步骤1.将石墨烯基硅纳米线异质结放入匀胶机中,滴上PMMA溶液进行旋涂,使PMMA溶液均匀覆盖硅纳米线;
步骤2.将步骤1旋涂好的样品放在120℃的电热板上20min,进行固化PMMA;
步骤3.配置PDMS溶液,并将PDMS溶液均匀滴涂在样品表面,然后将样品放入95℃的烘箱中40min,进行固化PDMS;
步骤4.切除多余的PDMS,然后放入1mol/L的NaOH溶液中,以刻蚀衬底中的SiO2
步骤5.采用去离子水将刻蚀后的样品清洗干净,并将覆盖有PDMS/PMMA的石墨烯基硅纳米线异质结从SiO2/Si衬底上剥离。
步骤6.石墨烯基硅纳米线异质结转移到柔性衬底上,完成转移过程。
步骤1中匀胶机的转速为800r/min,保持6s,并以2000r/min旋涂30s,重复一次匀胶旋涂过程。
步骤3中,PDMS溶液采用聚二甲基硅氧烷(PDMS)和固化剂(Sylgard184,DowCorning)按10:1的比例混合制得。
步骤5中,刻蚀的NaOH溶液为90℃,水浴加热下反应40min。
本发明的有益效果是:
本发明采用金属催化VLS机制的CVD法,以石墨烯作为基材直接制备硅纳米线,辅以转移方法,在柔性石墨烯衬底上制备可移植的石墨烯基异质结三维结构,结合硅纳米线对可见-近红外光的高敏感度和石墨烯高柔韧性、高载流子迁移率、高热导率等优良材料性能,得到可见-近红外高响应度的柔性石墨烯基硅纳米线异质结。石墨烯一方面作为三维结构移植至其他柔性塑料衬底前的柔性基材,与硅纳米线形成异质结;另一方面,石墨烯也是器件电极的优选材料,可以提高器件的光响应度和响应速度;另外,鉴于其超高热导率,石墨烯甚至可以作为散热窗口使用。硅纳米线则作为可见-近红外光的主要吸收材料,弥补石墨烯材料光吸收率低的缺憾,提高器件的性能。
附图说明
图1是本发明石墨烯/硅纳米线异质结转移过程意图;
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
本发明柔性石墨烯基硅纳米线异质结的制备方法,采用湿法将石墨烯转移至SiO2/Si上,并利用CVD法制备石墨烯基硅纳米线异质结,具体包括以下步骤:
步骤1.将表面覆盖有约2nm厚Au的石墨烯基材放入CVD炉中,开启机械泵,将管式炉内抽真空;
步骤2.待机械泵将CVD管式炉内气压抽真空至l0-1 Pa,打开分子泵,并将炉腔气压抽真空至l×10-4Pa;
步骤3.关闭分子泵,并打开氩气路阀门,调整气体流量约为0.1slm,调节机械泵旋钮,使CVD炉腔体压力为1.33×104Pa;打开加热系统,并以35℃/min的速率加热到500℃;
步骤4.保持500℃的时间为10min,并通入10sccm的SiH4
步骤5.待10分钟生长结束后,关闭SiH4气体阀门,在氩气保护下,CVD炉自然冷却后得到石墨烯基硅纳米线异质结。
如图1所示,柔性石墨烯基硅纳米线异质结的转移方法,将制备好的石墨烯基硅纳米线异质结,旋涂PMMA/PDMS双支撑膜,利用NaOH溶液刻蚀掉SiO2,实现石墨烯基硅纳米线异质结的整体转移,具体方法如下:
步骤1.将石墨烯基硅纳米线异质结放入匀胶机中,滴上PMMA溶液进行旋涂,使PMMA溶液均匀覆盖硅纳米线;
步骤2.将步骤1旋涂好的样品放在120℃的电热板上20min,进行固化PMMA;
步骤3.配置PDMS溶液,并将PDMS溶液均匀滴涂在样品表面,然后将样品放入95℃的烘箱中40min,进行固化PDMS;
步骤4.切除多余的PDMS,然后放入1mol/L的NaOH溶液中,以刻蚀衬底中的SiO2
步骤5.采用去离子水将刻蚀后的样品清洗干净,并将覆盖有PDMS/PMMA的石墨烯基硅纳米线异质结从SiO2/Si衬底上剥离。
步骤6.石墨烯基硅纳米线异质结转移到柔性衬底上,完成转移过程。
步骤1中匀胶机的转速为800r/min,保持6s,并以2000r/min旋涂30s,重复一次匀胶旋涂过程。
步骤3中,PDMS溶液采用聚二甲基硅氧烷(PDMS)和固化剂(Sylgard184,DowCorning)按10:1的比例混合制得。
步骤5中,刻蚀的NaOH溶液为90℃,水浴加热下反应40min。
本发明的有益效果是:
本发明采用金属催化VLS机制的CVD法,以石墨烯作为基材直接制备硅纳米线,辅以转移方法,在柔性石墨烯衬底上制备可移植的石墨烯基异质结三维结构,结合硅纳米线对可见-近红外光的高敏感度和石墨烯高柔韧性、高载流子迁移率、高热导率等优良材料性能,得到可见-近红外高响应度的柔性石墨烯基硅纳米线异质结。石墨烯一方面作为三维结构移植至其他柔性塑料衬底前的柔性基材,与硅纳米线形成异质结;另一方面,石墨烯也是器件电极的优选材料,可以提高器件的光响应度和响应速度;另外,鉴于其超高热导率,石墨烯甚至可以作为散热窗口使用。硅纳米线则作为可见-近红外光的主要吸收材料,弥补石墨烯材料光吸收率低的缺憾,提高器件的性能。

Claims (4)

1.柔性石墨烯基硅纳米线异质结的制备与转移方法,其特征在于,采用湿法将石墨烯转移至SiO2/Si上,并利用CVD法制备石墨烯基硅纳米线异质结,将制备好的石墨烯基硅纳米线异质结,旋涂PMMA/PDMS双支撑膜,利用NaOH溶液刻蚀掉SiO2,实现石墨烯基硅纳米线异质结的整体转移,具体包括以下步骤:
步骤1.将表面覆盖有2nm厚Au的石墨烯基材放入CVD炉中,开启机械泵抽真空;
步骤2.待机械泵将CVD炉内气压抽真空至l0-1Pa,打开分子泵,并将炉腔气压抽真空至l×10-4Pa;
步骤3.关闭分子泵,并打开氩气路阀门,调整气体流量为0.1slm,调节机械泵旋钮,使CVD炉腔体压力为1.33×104Pa,打开加热系统,并以35℃/min的速率加热到500℃;
步骤4.保持500℃的时间为10 min,并通入10 sccm的SiH4
步骤5.待10分钟生长结束后,关闭SiH4气体阀门;在氩气保护下,CVD炉自然冷却到室温,得到石墨烯基硅纳米线异质结;
步骤6.将石墨烯基硅纳米线异质结放入匀胶机中,滴上PMMA溶液进行旋涂,使PMMA溶液均匀覆盖硅纳米线;
步骤7.将旋涂好的样品放在120℃的电热板上20min,进行固化PMMA;
步骤8.配置PDMS溶液,并将PDMS溶液均匀滴涂在样品表面,然后将样品放入95℃的烘箱中40min,进行固化PDMS;
步骤9.切除多余的PDMS,然后放入1mol/L的NaOH溶液中,以刻蚀衬底中的SiO2
步骤10.采用去离子水将刻蚀后的样品清洗干净,并将覆盖有PDMS/PMMA的石墨烯基硅纳米线异质结从SiO2/Si衬底上剥离;
步骤11.石墨烯基硅纳米线异质结转移到柔性衬底上,完成转移过程。
2.根据权利要求1所述的柔性石墨烯基硅纳米线异质结的制备与转移方法,其特征在于,步骤6中,匀胶机的转速为800r/min,保持6s,并以2000r/min旋涂30s,重复一次匀胶旋涂过程。
3.根据权利要求1所述的柔性石墨烯基硅纳米线异质结的制备与转移方法,其特征在于,步骤8中,PDMS溶液采用聚二甲基硅氧烷(PDMS)和固化剂按10:1的比例混合制得。
4.根据权利要求1所述的柔性石墨烯基硅纳米线异质结的制备与转移方法,其特征在于,步骤9中,刻蚀的NaOH溶液为90℃,水浴加热下反应40min。
CN202010071226.6A 2020-01-21 2020-01-21 柔性石墨烯基硅纳米线异质结的制备与转移方法 Active CN111254414B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010071226.6A CN111254414B (zh) 2020-01-21 2020-01-21 柔性石墨烯基硅纳米线异质结的制备与转移方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010071226.6A CN111254414B (zh) 2020-01-21 2020-01-21 柔性石墨烯基硅纳米线异质结的制备与转移方法

Publications (2)

Publication Number Publication Date
CN111254414A CN111254414A (zh) 2020-06-09
CN111254414B true CN111254414B (zh) 2022-03-29

Family

ID=70944181

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010071226.6A Active CN111254414B (zh) 2020-01-21 2020-01-21 柔性石墨烯基硅纳米线异质结的制备与转移方法

Country Status (1)

Country Link
CN (1) CN111254414B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103935992A (zh) * 2014-04-25 2014-07-23 无锡格菲电子薄膜科技有限公司 一种石墨烯转移方法
CN105304729A (zh) * 2015-09-08 2016-02-03 安阳师范学院 基于石墨烯和II-VI族半导体轴向p-n结纳米线阵列的柔性光电子器件及其制备方法
KR20170013557A (ko) * 2015-07-28 2017-02-07 주성엔지니어링(주) 그래핀 전사기판 제조방법
CN106784141A (zh) * 2016-12-16 2017-05-31 合肥工业大学 一种短沟道半导体/石墨烯异质结光探测器的构筑方法
CN107818921A (zh) * 2017-10-20 2018-03-20 北京工业大学 一种基于二维平面异质结增强型场效应管的制备方法
CN109850882A (zh) * 2018-08-30 2019-06-07 中国科学院微电子研究所 一种多支撑膜辅助的石墨烯电化学转移方法
CN110234602A (zh) * 2017-12-01 2019-09-13 南方科技大学 自牺牲支撑层辅助的石墨烯转移方法及石墨烯
CN111697101A (zh) * 2019-12-31 2020-09-22 西安九天孵化器科技有限公司 一种石墨烯上硅纳米线的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103935992A (zh) * 2014-04-25 2014-07-23 无锡格菲电子薄膜科技有限公司 一种石墨烯转移方法
KR20170013557A (ko) * 2015-07-28 2017-02-07 주성엔지니어링(주) 그래핀 전사기판 제조방법
CN105304729A (zh) * 2015-09-08 2016-02-03 安阳师范学院 基于石墨烯和II-VI族半导体轴向p-n结纳米线阵列的柔性光电子器件及其制备方法
CN106784141A (zh) * 2016-12-16 2017-05-31 合肥工业大学 一种短沟道半导体/石墨烯异质结光探测器的构筑方法
CN107818921A (zh) * 2017-10-20 2018-03-20 北京工业大学 一种基于二维平面异质结增强型场效应管的制备方法
CN110234602A (zh) * 2017-12-01 2019-09-13 南方科技大学 自牺牲支撑层辅助的石墨烯转移方法及石墨烯
CN109850882A (zh) * 2018-08-30 2019-06-07 中国科学院微电子研究所 一种多支撑膜辅助的石墨烯电化学转移方法
CN111697101A (zh) * 2019-12-31 2020-09-22 西安九天孵化器科技有限公司 一种石墨烯上硅纳米线的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A Double Support Layer for Facile Clean Transfer of Two-Dimensional Materials for High-Performance Electronic and Optoelectronic Devices;Zhang Dingdong et al.;《ACS Nano》;20190423;第13卷;第5513-5522页 *

Also Published As

Publication number Publication date
CN111254414A (zh) 2020-06-09

Similar Documents

Publication Publication Date Title
Kang et al. Ultrathin, lightweight and flexible perovskite solar cells with an excellent power-per-weight performance
CN103413594B (zh) 拓扑绝缘体柔性透明导电材料及其制备方法与应用
CN101859858B (zh) 基于石墨烯的透明导电电极及其制法与应用
CN102897750B (zh) 一种石墨烯薄膜的制备方法
CN111682088A (zh) 一种基于范德华异质结的隧穿型光电探测器及其制备方法
Ho et al. Sunlight-activated graphene-heterostructure transparent cathodes: enabling high-performance n-graphene/p-Si Schottky junction photovoltaics
CN104157720B (zh) 一种混合结构的石墨烯硅基雪崩光电探测器及制备方法
CN107331775B (zh) 一种高质量电子传输层的钙钛矿太阳电池及其制备方法
CN102709399B (zh) 一种纳米天线太阳能电池的制作方法
CN111739961B (zh) 基于有序SnO2纳米棒阵列的无机钙钛矿太阳能电池及其制备方法
CN100373635C (zh) 柔性衬底薄膜太阳电池阻挡层及其制备方法
Yu et al. Effect of sol–gel derived ZnO annealing rate on light-trapping in inverted polymer solar cells
CN102154694A (zh) 一种氢氧共掺杂石墨烯的制备方法
Srivastava et al. Pentacene and CuO nanocomposite based self-powered broadband photodetector
CN103855229B (zh) 一种增强光电效应的石墨烯基半导体光电器件及其制备方法
He et al. Residual strain reduction leads to efficiency and operational stability improvements in flexible perovskite solar cells
CN103280454B (zh) 基于导电纳米带电极的微纳单晶场效应晶体管及制备方法
CN108878575B (zh) 一种基于硅/氟化石墨烯的双工作模式宽波段光电探测器及其制备方法
CN111254414B (zh) 柔性石墨烯基硅纳米线异质结的制备与转移方法
CN107863401B (zh) 一种硫化锑基全无机薄膜太阳能电池的制备方法
CN117577728A (zh) 一种高缺陷n型非晶硅锗层的可调波段硫硒化锑光电探测器及其制备方法
CN112909187A (zh) 钙钛矿晶体硅两端叠层太阳电池结构及其制备方法
CN210805800U (zh) 生长在石墨烯基板上GaN纳米柱阵列的柔性紫外探测器
CN104979038B (zh) 拓扑绝缘体/石墨烯复合柔性透明导电薄膜及其制备方法与应用
CN105679848A (zh) 三维石墨烯泡沫复合纳米硫化镉光电化学电极的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230926

Address after: Room 21211, Building 4, Phase 2, Yicuiyuan, No. 11 Tangyan South Road, Zhangba Street Office, High tech Zone, Xi'an City, Shaanxi Province, 710065

Patentee after: Xi'an Qianyue Electronic Technology Co.,Ltd.

Address before: 710048 Shaanxi province Xi'an Beilin District Jinhua Road No. 19

Patentee before: XI'AN POLYTECHNIC University

TR01 Transfer of patent right