CN103855229B - 一种增强光电效应的石墨烯基半导体光电器件及其制备方法 - Google Patents

一种增强光电效应的石墨烯基半导体光电器件及其制备方法 Download PDF

Info

Publication number
CN103855229B
CN103855229B CN201210520713.1A CN201210520713A CN103855229B CN 103855229 B CN103855229 B CN 103855229B CN 201210520713 A CN201210520713 A CN 201210520713A CN 103855229 B CN103855229 B CN 103855229B
Authority
CN
China
Prior art keywords
graphene
photoelectric
photoelectric device
metal
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210520713.1A
Other languages
English (en)
Other versions
CN103855229A (zh
Inventor
魏峰
曾亭
杜军
熊玉华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GRIMN Engineering Technology Research Institute Co Ltd
Original Assignee
Beijing General Research Institute for Non Ferrous Metals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing General Research Institute for Non Ferrous Metals filed Critical Beijing General Research Institute for Non Ferrous Metals
Priority to CN201210520713.1A priority Critical patent/CN103855229B/zh
Publication of CN103855229A publication Critical patent/CN103855229A/zh
Application granted granted Critical
Publication of CN103855229B publication Critical patent/CN103855229B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了属于光电器件技术领域的一种增强光电效应的石墨烯基半导体光电器件及其制备方法。本发明的石墨烯光电器件,包括背电极、半导体衬底、石墨烯、顶电极以及位于所述石墨烯和顶电极之间的阻挡功能层材料,阻挡功能层材料由一层金属氧化物薄膜。本发明采用某些金属氧化物薄膜作为阻挡功能层,利用氧化物薄膜材料的高透光度和阻挡空穴传输电子的功能,获得了具有提高光电效应的石墨烯基半导体异质结器件。本发明的光电器件具有制备方法简单、光电转换效率明显提高并且与新型的石墨烯材料相兼容等优点。

Description

一种增强光电效应的石墨烯基半导体光电器件及其制备方法
技术领域
本发明属于光电器件技术领域,具体涉及一种增强光电效应的石墨烯基半导体光电器件及其制备方法。
背景技术
石墨烯具有超高的透过率及电子迁移率,在光电器件中很广泛的应用前景。在太阳能电池中的应用,石墨烯薄层可以被分散与聚合物耦合来提高激发电子的分离和电荷的传输;在有机和染化太阳能电池中,石墨烯用作透明导电电极,尽管它的电池效率还低于ITO和FTO电极;但对于已经被广泛研究的碳纳米管来说,石墨烯还是有它很多优势的。单双层石墨烯具有高导电性,能避免碳纳米管与纳米管带之间的接触电阻,有最小的多孔性,非常平坦的表面等优点促使其在器件中的应用。
石墨烯是一种典型的半金属,功函数约为4.8 eV;当与功函数低于该值的半导体结合时,即可形成异质结。研究表明石墨烯/半导体异质结形成的电池具有较低的光电转换效率,远远达不到工业应用的要求。需要找到提高石墨烯基半导体异质结光电效应的方法,发掘出石墨烯在光电领域的应用价值。
发明内容
本发明的目的是克服现有技术中的不足,提供一种增强光电效应的石墨烯基半导体光电器件及其制备方法。
一种增强光电效应的石墨烯基半导体光电器件,包括依次层叠的背电极、半导体衬底、石墨烯和顶电极,所述石墨烯和顶电极之间具有一层金属氧化物薄膜。
所述金属氧化物薄膜的材料为ZnO、Mo2O3或钛的氧化物。
所述金属氧化物薄膜的厚度为2 nm~100 nm。
所述半导体衬底的材料为为Si、Ge、GaAs或SiC的p型或n型半导体材料。
所述背电极为Al或Ag。
所述顶电极为Al、Ag或Ni和Al的合金。
上述增强光电效应的石墨烯基半导体光电器件的制备方法,包括如下具体步骤:
(1)清洗半导体衬底;
(2)石墨烯的制备和转移:用化学气相沉积法(Chemical vapordeposition,CVD)制备石墨烯,然后通过腐蚀基体法将石墨烯转移到衬底上;
(3)利用磁控溅射技术在转移好石墨烯的衬底上沉积金属氧化物薄膜材料;沉积过程中,氧、氩比控制在0.1~1之间;
(4)利用磁控溅射技术在金属氧化物薄膜上面沉积顶电极;
(5)利用磁控溅射技术在衬底背面沉积背电极。
本发明的有益效果为:本发明的光电器件在石墨烯表面沉积一种金属氧化物薄膜,具有良好的光透过率,使得器件能很好地接收光;同时,氧化物薄膜具有很好的阻挡空穴传输电子的功能,能有效地阻止光生电子-空穴的复合,进而提高光电转换效率。本发明的光电器件具有制备方法简单、光电转换效率明显提高并且与新型的石墨烯材料相兼容等优点。
附图说明
图1为增强光电效应的石墨烯基半导体光电器件的基本结构示意图。
图中各标号为:1-半导体衬底,2-石墨烯,3-金属氧化物薄膜, 4-顶电极,5-背电极。
图2为增强光电效应的石墨烯基半导体光电器件的制备方法流程图。
图3为实施例1制备的石墨烯基半导体光电器件的光电特性曲线。
图4为实施例2制备的石墨烯基半导体光电器件的光电特性曲线。
具体实施方式:
下面结合附图对本发明石墨烯光电器件的制备做进一步详细描述,并不意味着对本发明保护范围的限制。
图1为本发明的石墨烯基半导体光电器件的结构示意图。是一种金属氧化物作为阻挡功能层薄膜材料的光电器件,如图1所示;该结构的半导体衬底1用于支撑整个器件的结构;在半导体衬底1上面转移有石墨烯2,在石墨烯2上沉积一层金属氧化物薄膜3,在金属氧化物薄膜3上面沉积顶电极4;在半导体衬底1上沉积背电极5。
实施例1
按图2所示流程图,一种增强光电效应的石墨烯基半导体光电器件的制备方法,包括如下具体步骤:
步骤1:衬底清洗,衬底为n型Si,主要起到与石墨烯形成异质结和支撑整个器件的作用。
步骤2:将CVD制备的石墨烯通过腐蚀基体法转移在n型Si衬底上;
步骤3:利用磁控溅射在石墨烯上面沉积金属氧化物ZnO薄膜材料,沉积前,腔室真空度在1×10-4Pa;沉积过程中,腔室气压保持在3Pa,氧氩比控制在0.1~1之间,ZnO阻挡功能层材料的沉积厚度分别为15nm。
步骤4:利用磁控溅射技术,通过加金属掩模板或光刻在金属氧化物ZnO薄膜上面沉积一层金属Al电极,厚度为100 nm。
步骤5:利用磁控溅射技术在衬底背面沉积Ag,形成背电极,厚度为100 nm。
图3为实施例1所制备的Al(100 nm)/ZnO(15nm)/Graphene/n-Si/Ag(100 nm)原型光电器件的I-V测试图。由图中数据可以看出所制备的器件开关性能好、异质结整流效应好,适用于光电器件中。
实施例2
按图2所示流程图,一种增强光电效应的石墨烯基半导体光电器件的制备方法,包括如下具体步骤:
步骤1:衬底清洗,衬底为P型Si,主要起到与石墨烯形成异质结和支撑整个器件的作用。
步骤2:将CVD制备的石墨烯通过腐蚀基体法转移在P型Si衬底上;
步骤3:利用磁控溅射在石墨烯上面沉积金属氧化物ZnO阻挡功能层薄膜材料,沉积前,腔室真空度在1×10-4Pa;沉积过程中,腔室气压保持在3Pa,氧氩比控制在0.1~1之间,ZnO阻挡功能层材料的沉积厚度为45nm。
步骤4:利用磁控溅射技术在金属氧化物ZnO薄膜上面沉积一层金属Al电极(加金属掩模板或光刻),厚度为100 nm。
步骤5:利用磁控溅射技术在衬底背面沉积Al,形成背电极,厚度为100 nm。
图4为实施例1所制备的Al(100 nm)/ZnO(45nm)/Graphene/p-Si/Al(100 nm)原型光电器件的I-V测试图。由图中数据可以看出所制备的器件良好的开光比、很好的整流效应、较高的光转换效率,适用于光电器件中。

Claims (5)

1.一种增强光电效应的石墨烯基半导体光电器件,其特征在于:包括依次层叠的背电极、半导体衬底、石墨烯和顶电极,所述石墨烯和顶电极之间具有一层金属氧化物薄膜;
所述金属氧化物薄膜的材料为ZnO、Mo2O3或钛的氧化物;
所述金属氧化物薄膜的厚度为2nm~100nm。
2.根据权利要求1所述的光电器件,其特征在于:所述半导体衬底的材料为Si、Ge、GaAs或SiC的p型或n型半导体材料。
3.根据权利要求1所述的光电器件,其特征在于:所述背电极为Al或Ag。
4.根据权利要求1所述的光电器件,其特征在于:所述顶电极为Al、Ag或Ni和Al的合金。
5.权利要求1所述增强光电效应的石墨烯基半导体光电器件的制备方法,其特征在于:包括如下具体步骤:
(1)清洗半导体衬底;
(2)石墨烯的制备和转移:用化学气相沉积法制备石墨烯,然后通过腐蚀基体法将石墨烯转移到衬底上;
(3)利用磁控溅射技术在转移好石墨烯的衬底上沉积金属氧化物薄膜材料;沉积过程中,氧、氩比控制在0.1~1之间;
(4)利用磁控溅射技术,通过加金属掩模板或光刻的方法在金属氧化物薄膜上面沉积顶电极;
(5)利用磁控溅射技术在衬底背面沉积背电极。
CN201210520713.1A 2012-12-06 2012-12-06 一种增强光电效应的石墨烯基半导体光电器件及其制备方法 Active CN103855229B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210520713.1A CN103855229B (zh) 2012-12-06 2012-12-06 一种增强光电效应的石墨烯基半导体光电器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210520713.1A CN103855229B (zh) 2012-12-06 2012-12-06 一种增强光电效应的石墨烯基半导体光电器件及其制备方法

Publications (2)

Publication Number Publication Date
CN103855229A CN103855229A (zh) 2014-06-11
CN103855229B true CN103855229B (zh) 2016-08-17

Family

ID=50862644

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210520713.1A Active CN103855229B (zh) 2012-12-06 2012-12-06 一种增强光电效应的石墨烯基半导体光电器件及其制备方法

Country Status (1)

Country Link
CN (1) CN103855229B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106770466A (zh) * 2016-11-30 2017-05-31 庞倩桃 一种氧化铁量子点增强的气体传感器及其制备方法
CN107293602B (zh) * 2017-07-06 2019-03-29 北京邮电大学 基于氧化锌/石墨烯/氧化锌三明治结构的光电探测器
CN108365047A (zh) * 2018-01-31 2018-08-03 华南理工大学 一种石墨烯-GaAs肖特基结太阳能电池及其制备方法
CN108695403B (zh) * 2018-05-28 2019-10-01 扬州工业职业技术学院 一种费米能级可调的石墨烯异质结结构及其制备方法
CN112750959A (zh) * 2020-03-25 2021-05-04 广东聚华印刷显示技术有限公司 复合电极及其制备方法、电致发光器件

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101771092A (zh) * 2009-12-16 2010-07-07 清华大学 一种基于石墨烯/硅肖特基结的光伏电池及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101771092A (zh) * 2009-12-16 2010-07-07 清华大学 一种基于石墨烯/硅肖特基结的光伏电池及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Fabricaion of n-type ZnO nanowire/graphene/p-type silicon hybrid structures and electrical properties of heterojunctions;Zhiwen Liang等;《Phys. Chem. Chem. Phys.》;20121016;第16111页左栏第2段至右栏第1段、第16112页右栏第1段至第16113页左栏第2段 *
Junction investigation of graphene/silicon Schottky diodes;Muatez Mohammed等;《Nanoscale Research Letters》;20120611(第7期);第1页右栏第3段,图1 *

Also Published As

Publication number Publication date
CN103855229A (zh) 2014-06-11

Similar Documents

Publication Publication Date Title
CN105679861B (zh) 一种表面等离子增强的二维材料/半导体异质结太阳能电池及其制备方法
CN103855229B (zh) 一种增强光电效应的石墨烯基半导体光电器件及其制备方法
JP6685896B2 (ja) 太陽電池及びその製造方法
CN103682153B (zh) 用于钙钛矿型有机卤化铅薄膜太阳能电池的金属‑绝缘层‑半导体背接触界面结构及其制备方法
CN101552322B (zh) 一种氧化锌基有机/无机杂化纳米结构太阳电池
CN106449985A (zh) 一种具有石墨烯阻挡层的钙钛矿电池及制备方法
CN105140398B (zh) 一种背接触钙钛矿太阳电池
CN101771092A (zh) 一种基于石墨烯/硅肖特基结的光伏电池及其制备方法
JP2011176225A (ja) 光学変換装置及び同装置を含む電子機器
CN104157789A (zh) 一种新型双面薄膜太阳电池及其工业制造方法
Acosta et al. AZO/Ag/AZO multilayers electrodes evaluated using a photonic flux density figure of merit for solar cells applications
CN102938429A (zh) 一种减反射异质结太阳能电池及其制备方法
Hsu et al. Enhanced carrier collection in p-Ni1− xO: Li/n-Si heterojunction solar cells using LiF/Al electrodes
CN104851935B (zh) 一种电场调控的石墨烯/磷化铟太阳电池及其制备方法
CN103137770B (zh) 一种石墨烯/Si p-n双结太阳能电池及其制备方法
CN207441751U (zh) 一种同质结钙钛矿薄膜太阳能电池
CN107644805A (zh) 空穴钝化隧穿薄膜、制备方法及其在太阳电池中的应用
CN102790176A (zh) 混合型异质结作为空穴传输层的有机太阳能电池及其制备方法
Li et al. CuI-Si heterojunction solar cells with carbon nanotube films as flexible top-contact electrodes
Cho et al. Li-doped Cu2O/ZnO heterojunction for flexible and semi-transparent piezoelectric nanogenerators
CN107768523A (zh) 一种同质结钙钛矿薄膜太阳能电池及其制备方法
CN101540345B (zh) 纳米硅薄膜三叠层太阳电池及其制备方法
CN104377252B (zh) 一种柔性铜基硫属半导体薄膜太阳电池窗口层结构
CN102842634A (zh) 一种背发射极异质结太阳电池及制备方法
CN104966783A (zh) 基于渐变混合活性层为衔接层有机薄膜太阳能电池

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20190305

Address after: 101407 No. 11 Xingke East Street, Yanqi Economic Development Zone, Huairou District, Beijing

Patentee after: Research Institute of engineering and Technology Co., Ltd.

Address before: No. 2, Xinjie street, Xicheng District, Beijing, Beijing

Patentee before: General Research Institute for Nonferrous Metals

TR01 Transfer of patent right