CN111223677B - 一种钾离子混合电容器的电极材料及其制备方法 - Google Patents

一种钾离子混合电容器的电极材料及其制备方法 Download PDF

Info

Publication number
CN111223677B
CN111223677B CN202010038993.7A CN202010038993A CN111223677B CN 111223677 B CN111223677 B CN 111223677B CN 202010038993 A CN202010038993 A CN 202010038993A CN 111223677 B CN111223677 B CN 111223677B
Authority
CN
China
Prior art keywords
electrode material
potassium ion
fes
mof
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010038993.7A
Other languages
English (en)
Other versions
CN111223677A (zh
Inventor
蔡锦丰
彭小昕
夏凯翔
张恒伟
夏静
肖忠良
马建民
夏浩午
张婉琪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yiyang Wanjingyuan Electronics Co ltd
Original Assignee
Yiyang Wanjingyuan Electronics Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yiyang Wanjingyuan Electronics Co ltd filed Critical Yiyang Wanjingyuan Electronics Co ltd
Priority to CN202010038993.7A priority Critical patent/CN111223677B/zh
Publication of CN111223677A publication Critical patent/CN111223677A/zh
Application granted granted Critical
Publication of CN111223677B publication Critical patent/CN111223677B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

一种钾离子混合电容器的电极材料,包括碳包覆的FeS2。本发明的碳包覆的FeS2复合材料(C/FeS2/C)与金属氧化物、氢氧化物相比具有更高的电容和丰富的氧化还原反应活性位点。并且本发明的电极材料其毒性低,比电容大,是安全有效的钾离子混合电容器电极材料。

Description

一种钾离子混合电容器的电极材料及其制备方法
技术领域
本发明涉及一种电极材料,尤其涉及一种钾离子混合电容器的电极材料及其制备方法。
背景技术
钾离子混合电容器拥有容量大、充放电速度快以及寿命长等优点,因此可以作为高效的小型储能元件。根据储能机理不同,钾离子混合电容器可以分为双电层电容器与赝电容电容器。赝电容器又称法拉第准电容器,因其高功率密度、高放电、长循环寿命和高安全性等性能受到广泛关注。与通过阴阳离子在电解液和电极表面进行交替沉积储存能量的双电层电容器不同,赝电容器是通过在电极表面进行的一系列快速氧化还原反应来存储和释放电量。当对赝电容器施加电压时,电极材料表面发生可逆的氧化还原反应,电容器单元产生电荷和感应电流,电荷存储到电极中提高电容器的充电电压;相应地,当其外接负载放电时,储存在电极中的电荷通过外接回路释放,形成电流,进入活性材料中的离子由于失去电场的作用回到电解液中。正因为工作原理的不同,同样的赝电容器电容量往往比双电层电容器高几十甚至上百倍。然而,目前赝电容器的发展应用却并不理想,这主要是因为绝大多数赝电容器的电极活性材料,如过渡金属氧化物等,属于半导体或绝缘体,限制了电子/离子的传输,使电极性能随电子/离子的传输距离增加而急剧下降,从而失去实用价值。
双电层电容器与赝电容电容器的电极材料前者主要为碳材料,后者主要为金属氧化物、氢氧化物等过渡金属化合物。然而氧化物与氢氧化物的导电性差因而限制了它在钾离子混合电容器中的应用。
发明内容
本发明要解决的技术问题是克服现有技术的不足,提供一种大的理论比电容、制备成本低等优点的钾离子混合电容器的电极材料及其制备方法。
为解决上述技术问题,本发明提出的技术方案为:一种钾离子混合电容器的电极材料,包括碳包覆的FeS2
一种钾离子混合电容器的电极材料的制备方法,包括以下步骤,
1)棒状Fe-MOF的合成;
①将FeCl3与富马酸溶解于N,N-二甲基甲酰胺中,搅拌形成黄色透明的溶液;
②向步骤①的溶液中滴加氢氧化钠搅拌均匀;
③将步骤②的溶液转移到高压釜内,在80-120℃的温度下反应12-36小时;
④将步骤③的产物清洗干净后,真空干燥,得到棒状Fe-MOF;
2)有机物的包覆;
I将1份步骤1)制备的棒状Fe-MOF溶解于5-10份去离子水中,然后依次加入2-4份十六烷基三甲基溴化铵、0.2-1份间苯二酚、2-5份乙醇以及0.05-0.2份氨水溶液,室温下充分搅拌均匀,份数均匀重量份;
II在持续的搅拌条件下向步骤I的溶液中滴加4-6倍氨水体积的福尔马林溶液;在搅拌5-7小时后于室温下老化10小时以上得到有机物保护的Fe-MOF材料;
3)硫化;
将1重量份有机物包覆的Fe-MOF与10重量份的硫粉分别放置在两个容器中,在氩气气氛下以1-2℃ min-1的速率升到500℃以上,维持2-5h后自然冷却到室温,得到碳包覆的FeS2复合材料(C/FeS2/C)。
上述的钾离子混合电容器的电极材料的制备方法,优选的,所述步骤1)中FeCl3为FeCl3·6H2O。
上述的钾离子混合电容器的电极材料的制备方法,优选的,所述步骤1)中①为将0.54g FeCl3·6H2O与0.4g富马酸溶解于27mLN,N-二甲基甲酰胺中,搅拌20min形成黄色透明溶液。
上述的钾离子混合电容器的电极材料的制备方法,优选的,所述步骤1)中氢氧化钠的浓度为0.4mol L-1
上述的钾离子混合电容器的电极材料的制备方法,优选的,所述步骤1)中高压釜的内壁设置有聚四氟乙烯内衬。
与现有技术相比,本发明的优点在于:本发明的碳包覆的FeS2复合材料(C/FeS2/C)与金属氧化物、氢氧化物相比具有更高的电容和丰富的氧化还原反应活性位点。并且本发明的电极材料其毒性低,比电容大,是安全有效的钾离子混合电容器电极材料。
附图说明
图1为实施例1中棒状Fe-MOF的SEM扫描图。
图2为实施例1中有机物保护的Fe-MOF材料的SEM扫描图。
图3为实施例1碳包覆的FeS2复合材料(C/FeS2/C)的SEM扫描图。
图4为实施例1中碳包覆的FeS2复合材料(C/FeS2/C)的充放电曲线图。
图5为实施例1中碳包覆的FeS2复合材料(C/FeS2/C)的循环曲线和库伦效率图。
具体实施方式
为了便于理解本发明,下文将结合较佳的实施例对本发明作更全面、细致地描述,但本发明的保护范围并不限于以下具体的实施例。
需要特别说明的是,当某一元件被描述为“固定于、固接于、连接于或连通于”另一元件上时,它可以是直接固定、固接、连接或连通在另一元件上,也可以是通过其他中间连接件间接固定、固接、连接或连通在另一元件上。
除非另有定义,下文中所使用的所有专业术语与本领域技术人员通常理解的含义相同。本文中所使用的专业术语只是为了描述具体实施例的目的,并不是旨在限制本发明的保护范围。
实施例1
本实施例的钾离子混合电容器的电极材料的制备方法包括以下步骤:
1)棒状Fe-MOF的合成:棒状Fe-MOF参考文献上的方法合成8。首先,0.54g FeCl3·6H2O 与0.44g富马酸溶解于27mLN,N-二甲基甲酰胺中,搅拌20min形成黄色透明溶液。接着,将3mL 0.4mol L-1的氢氧化钠溶液缓慢加入到上述溶液中,搅拌10min后将溶液转移到容量为50mL的聚四氟乙烯内衬不锈钢高压釜中,在100℃下反应24h。反应完后将产物用乙醇清洗三次,60℃真空干燥12h。图1为棒状Fe-MOF的SEM扫描图。
2)有机物包覆:将0.1g上一步得到的Fe-MOF超声溶解于8mL去离子水中,然后依次加入0.285g十六烷基三甲基溴化铵、0.0435g间苯二酚、3.53mL乙醇以及12.5μL氨水溶液,室温下搅拌30min。最后,在持续搅拌的条件缓慢滴加62.5μL福尔马林溶液到上述溶液中,搅拌6h后于室温下老化12h得到有机物包覆的Fe-MOF材料。图2为有机物保护的Fe-MOF材料的SEM扫描图。
3)硫化:将0.1g有机物包覆的Fe-MOF与1g硫粉分别放置在两个瓷舟中,在氩气气氛下以2℃ min-1的速率升到500℃,维持3h后自然冷却到室温,得到碳包覆的FeS2复合材料(C/FeS2/C)。图3为碳包覆的FeS2复合材料(C/FeS2/C)的SEM扫描图。
为了测试本实施例得到的碳包覆的FeS2复合材料(C/FeS2/C)的性能,将不让你实施例的FeS2复合材料(C/FeS2/C)、乙炔黑和羧甲基纤维素钠研磨充分至细腻浆料。把浆料滴涂在预处理后的铜箔上,在真空干燥箱中60℃干燥充分,取出之后将活性物质用压片机在15Mpa 压力下压实,采用三电极测试体系,采用3M的KPF6@DME电解液,对复合材料进行充放电测试,图4为实施例1中碳包覆的FeS2复合材料(C/FeS2/C)的充放电曲线图。图5为实施例1中碳包覆的FeS2复合材料(C/FeS2/C)的循环曲线和库伦效率图。
由于高的自然丰度、低的氧化还原电位与溶剂化半径,钾离子电池被认为是具有极高应用价值的电化学储能系统。然而,钾离子电池功率密度低下,循环稳定性差,而钾离子混合电容器是一种能在不牺牲寿命的情况下提供高功率的新型能源设备,因而成为有望替代钾离子电池的理想设备。对于本实施例的碳包覆的FeS2复合材料(C/FeS2/C)的储能机理,在钾离子混合电容器能量存储和转换的过程中,KPF6的中K+在电极材料中进行嵌入和脱嵌,而电能和化学能进行相互转化。在充电期间,K+从正极脱嵌,并在外部电势的驱动下通过隔膜和电解质迁移到负极。同时,电子通过外部电路从正极向负极迁移,并被K+捕获,形成钾金属,来自外部电路的电能被转换为化学能并存储在负极材料中。在放电期间,存储在负极中的金属钾转化为K+,这些K+通过电解质和隔膜迁移到正极,并嵌入正极材料的晶格中。充放电过程的反应式如下:
放电过程:FeS2+xK++xe-→KxFeS2
KxFeS2+(4-x)K++(4-x)e-→Fe+2K2S
充电过程:KxFeS2→FeS2+xK++xe-
Fe+2K2S→KxFeS2+(4-x)K++(4-x)e-

Claims (5)

1.一种钾离子混合电容器的电极材料的制备方法,其特征在于:包括以下步骤,
1)棒状Fe-MOF的合成;
Figure 753332DEST_PATH_IMAGE001
将FeCl3与富马酸溶解于N,N-二甲基甲酰胺中,搅拌形成黄色透明的溶液;
Figure 771098DEST_PATH_IMAGE002
向步骤
Figure 360211DEST_PATH_IMAGE001
的溶液中滴加氢氧化钠搅拌均匀;
Figure 435614DEST_PATH_IMAGE003
将步骤
Figure 586235DEST_PATH_IMAGE002
的溶液转移到高压釜内,在80-120℃的温度下反应12-36小时;
Figure 996357DEST_PATH_IMAGE004
将步骤
Figure 359467DEST_PATH_IMAGE003
的产物清洗干净后,真空干燥,得到棒状Fe-MOF;
2)有机物的包覆;
Figure 273066DEST_PATH_IMAGE005
将1份步骤1)制备的棒状Fe-MOF溶解于5-10份去离子水中,然后依次加入2-4份十六烷基三甲基溴化铵、0.2-1份间苯二酚、2-5份乙醇以及0.05-0.2份氨水溶液,室温下充分搅拌均匀,份数均匀重量份;
Figure 860167DEST_PATH_IMAGE006
在持续的搅拌条件下向步骤
Figure 242738DEST_PATH_IMAGE005
的溶液中滴加4-6倍氨水体积的福尔马林溶液;在搅拌5-7小时后于室温下老化10小时以上得到有机物保护的Fe-MOF材料;
3)硫化;
将1重量份有机物包覆的Fe-MOF与10重量份的硫粉分别放置在两个容器中,在氩气气氛下以1-2 °C min−1的速率升到500 °C以上,维持2-5 h后自然冷却到室温,得到碳包覆的FeS2复合材料。
2.根据权利要求1所述的钾离子混合电容器的电极材料的制备方法,其特征在于:所述步骤1)中FeCl3为FeCl3·6H2O。
3.根据权利要求1所述的钾离子混合电容器的电极材料的制备方法,其特征在于:所述步骤1)中
Figure 596490DEST_PATH_IMAGE001
为将0.54 g FeCl3·6H2O 与0.4 g富马酸溶解于27 mL N,N-二甲基甲酰胺中,搅拌20 min形成黄色透明溶液。
4.根据权利要求1所述的钾离子混合电容器的电极材料的制备方法,其特征在于:所述步骤1)中氢氧化钠的浓度为0.4 mol L-1
5.根据权利要求1所述的钾离子混合电容器的电极材料的制备方法,其特征在于:所述步骤1)中高压釜的内壁设置有聚四氟乙烯内衬。
CN202010038993.7A 2020-01-14 2020-01-14 一种钾离子混合电容器的电极材料及其制备方法 Active CN111223677B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010038993.7A CN111223677B (zh) 2020-01-14 2020-01-14 一种钾离子混合电容器的电极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010038993.7A CN111223677B (zh) 2020-01-14 2020-01-14 一种钾离子混合电容器的电极材料及其制备方法

Publications (2)

Publication Number Publication Date
CN111223677A CN111223677A (zh) 2020-06-02
CN111223677B true CN111223677B (zh) 2021-07-20

Family

ID=70828248

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010038993.7A Active CN111223677B (zh) 2020-01-14 2020-01-14 一种钾离子混合电容器的电极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN111223677B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111960477A (zh) * 2020-08-20 2020-11-20 辽宁科技大学 一种全固态超级电容器电极材料的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102593444A (zh) * 2012-01-17 2012-07-18 东莞市迈科科技有限公司 一种碳包覆钛酸锂的制备方法及其产物
CN103606677A (zh) * 2013-11-25 2014-02-26 山东神工海特电子科技有限公司 一次锂电池二硫化铁/碳复合正极材料的制备方法及用该正极材料组装扣式电池的方法
CN104716319A (zh) * 2013-12-17 2015-06-17 华中科技大学 碳包覆金属硫化物电极材料及其制备方法和应用
CN105977484A (zh) * 2016-07-01 2016-09-28 江苏科技大学 一种三氧化二铁纳米管材料及其制备方法与应用
CN106848282A (zh) * 2017-01-26 2017-06-13 彭宪利 一种非水电解质二次电池用负极材料及其制备方法和应用
KR20170093350A (ko) * 2016-02-05 2017-08-16 전남대학교산학협력단 용매열합성법을 이용한 하이브리드 커패시터 전극재료의 제조방법
CN107749467A (zh) * 2017-09-20 2018-03-02 华东师范大学 一种梭形结构碳包覆磷化铁电极材料及其制备方法
CN110265652A (zh) * 2019-07-19 2019-09-20 河南师范大学 一种用于锂离子/钠离子电池负极的纳米片状Sb/C复合材料的制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090317725A1 (en) * 2008-06-23 2009-12-24 Zhiping Jiang Lithium cell with cathode containing iron disulfide
CN101693168B (zh) * 2009-10-14 2012-12-26 大连理工大学 一种金属有机骨架膜的制备方法
JP5960144B2 (ja) * 2010-09-30 2016-08-02 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se フマル酸アルミニウムに基づく多孔質金属有機骨格体の製造方法
US10103057B2 (en) * 2014-11-11 2018-10-16 The Board Of Trustees Of The University Of Illinois Use of an inhibitor molecule in chemical vapor deposition to afford deposition of copper on a metal substrate with no deposition on adjacent SIO2 substrate
US9954222B2 (en) * 2014-12-10 2018-04-24 Basf Corporation Metal hydride compositions and lithium ion batteries
DE102015218435A1 (de) * 2015-09-25 2017-03-30 Robert Bosch Gmbh Symmetrischer Hybridsuperkondensator und Verwendung von Li3V2(PO4)3 als Elektrodenmaterial für einen Hybridsuperkondensator
CN105366644B (zh) * 2015-10-09 2017-11-17 苏州高通新材料科技有限公司 磺化石墨烯金属盐及其制备方法和应用
CN109962250A (zh) * 2017-12-14 2019-07-02 中国科学院大连化学物理研究所 一种Fe-N-C催化剂及其制备方法和应用
CN109192520B (zh) * 2018-09-23 2020-05-22 齐鲁工业大学 一种基于废旧锌-锰干电池碳包的混合式超级电容器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102593444A (zh) * 2012-01-17 2012-07-18 东莞市迈科科技有限公司 一种碳包覆钛酸锂的制备方法及其产物
CN103606677A (zh) * 2013-11-25 2014-02-26 山东神工海特电子科技有限公司 一次锂电池二硫化铁/碳复合正极材料的制备方法及用该正极材料组装扣式电池的方法
CN104716319A (zh) * 2013-12-17 2015-06-17 华中科技大学 碳包覆金属硫化物电极材料及其制备方法和应用
KR20170093350A (ko) * 2016-02-05 2017-08-16 전남대학교산학협력단 용매열합성법을 이용한 하이브리드 커패시터 전극재료의 제조방법
CN105977484A (zh) * 2016-07-01 2016-09-28 江苏科技大学 一种三氧化二铁纳米管材料及其制备方法与应用
CN106848282A (zh) * 2017-01-26 2017-06-13 彭宪利 一种非水电解质二次电池用负极材料及其制备方法和应用
CN107749467A (zh) * 2017-09-20 2018-03-02 华东师范大学 一种梭形结构碳包覆磷化铁电极材料及其制备方法
CN110265652A (zh) * 2019-07-19 2019-09-20 河南师范大学 一种用于锂离子/钠离子电池负极的纳米片状Sb/C复合材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FeS2@C nanowire derived from organic-inorganic hybrid nanowrires for high-rate and long life lithium-ion batteries;Zhang Feifei et.al;《Joural of Power fources》;20160806;第238卷;全文 *

Also Published As

Publication number Publication date
CN111223677A (zh) 2020-06-02

Similar Documents

Publication Publication Date Title
Chen et al. V2O5@ CNTs as cathode of aqueous zinc ion battery with high rate and high stability
CN101577323B (zh) 一种二次锂硫电池硫基正极及其制备方法
CN109742360B (zh) 一种具有高容量硒化钼-小球藻衍生碳少层复合物电池负极材料制备
Cheng et al. Sulfur and nitrogen codoped cyanoethyl cellulose‐derived carbon with superior gravimetric and volumetric capacity for potassium ion storage
CN106058222B (zh) 一种聚合物碳化原位包覆三氟化铁复合正极材料及其制备方法
Chen et al. In-situ thermally fabricated porous and heterogeneous yolk-shell selenides wrapped in carbon as anode for high-performance hybrid lithium-ion capacitors
Wang et al. Phosphorus-doped activated carbon as a promising additive for high performance lead carbon batteries
CN110265652B (zh) 一种用于锂离子/钠离子电池负极的纳米片状Sb/C复合材料的制备方法
CN110335764B (zh) 一种高效构筑钠离子电容器的预钠化方法
AU2015400449A2 (en) Doped conductive oxide and improved electrochemical energy storage device polar plate based on same
CN106784669A (zh) 一种导电高分子聚苯胺改性磷酸钒钠正极材料及其制备方法
CN109671935B (zh) 一种二氧化硅/生物炭复合材料的制备方法及其用途
CN108598405B (zh) 一种三维石墨烯氧化锡碳复合负极材料的制备方法
CN109928384A (zh) 一种氮掺杂多孔碳材料的制备方法
Vangapally et al. Lead-acid batteries and lead–carbon hybrid systems: A review
CN108987735A (zh) 一种多孔空心碳球负载一硫化锡纳米量子点复合电极材料
Meng et al. The investigation on the electrochemical performance of CuI as cathode material for zinc storage
CN111261854A (zh) 一种榆钱状二硒化钼@氮掺杂碳纳米纤维及其制备方法和应用
CN111223677B (zh) 一种钾离子混合电容器的电极材料及其制备方法
CN113241431A (zh) 一种ZnS纳米花@NC的锂离子电池负极材料的制法和应用
He et al. Valence modulation and morphological engineering of MoO3 as high-performance cathode for aqueous zinc ion batteries
CN106784750A (zh) 一种TiO/C负极材料及其制备方法和应用
CN112599361B (zh) 基于铋基电极的宽温区高性能电化学储能器件
CN107946565A (zh) 石墨烯包覆芳香族有机氧盐材料及其制备方法和应用
CN109802122B (zh) 高稳定性有机钠离子电池正极材料及其工艺和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant