CN111188022A - 用气相沉积碳纳米管管包覆硅负极材料的制备方法 - Google Patents

用气相沉积碳纳米管管包覆硅负极材料的制备方法 Download PDF

Info

Publication number
CN111188022A
CN111188022A CN202010114577.0A CN202010114577A CN111188022A CN 111188022 A CN111188022 A CN 111188022A CN 202010114577 A CN202010114577 A CN 202010114577A CN 111188022 A CN111188022 A CN 111188022A
Authority
CN
China
Prior art keywords
parts
silicon
powder
catalyst
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010114577.0A
Other languages
English (en)
Other versions
CN111188022B (zh
Inventor
顾灵锋
杨丽娜
舒显全
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Danyuan New Material Technology Co Ltd
Original Assignee
Shanghai Danyuan New Material Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Danyuan New Material Technology Co Ltd filed Critical Shanghai Danyuan New Material Technology Co Ltd
Priority to CN202010114577.0A priority Critical patent/CN111188022B/zh
Publication of CN111188022A publication Critical patent/CN111188022A/zh
Application granted granted Critical
Publication of CN111188022B publication Critical patent/CN111188022B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • B01J35/33
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4417Methods specially adapted for coating powder
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/442Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using fluidised bed process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种用气相沉积碳纳米管管包覆硅负极材料的制备方法,包括依次进行的以下步骤:将硅粉与催化剂放入搅拌机中混合,取出;将混合得到的粉体放入流化床中,通入H2还原粉体;在流化床中继续将还原得到的粉体用N2流化,通入碳源气体,炉温500~1000℃反应,得到反应后产物A;将反应后产物A进行气流粉碎,得到成品。本发明中的制备方法简单,成本低廉;制得的材料增强了电极的导电性,限制了硅脱嵌锂过程中的膨胀和收缩,适用于所有锂离子电池的负极。

Description

用气相沉积碳纳米管管包覆硅负极材料的制备方法
技术领域
本发明属于电池材料领域,涉及一种锂离子电池负极材料的制备方法,具体地说是一种用气相沉积碳纳米管管包覆硅负极材料的制备方法。
背景技术
锂离子电池具有能量密度高、自放电小、工作电压范围宽、无记忆效应、使用寿命长、无环境污染等优点,已广泛应用于电子产品和电动汽车以及储能领域。目前负极材料的应用主要以传统石墨材料为主,但石墨比容量已接近372mAh/g的理论值,难有提升的空间,限制了锂离子电池的能量密度。而硅碳复合材料由于具有较高的比容量,成为了锂离子电池负极材料的发展趋势。
但硅作为锂离子电池负极材料也有明显的缺点:首先硅作为半导体材料,其自身电导率较低;其次在充放电过程,随着锂离子的嵌入和脱出,硅材料体积变化较大,导致材料粉化、脱落,最终导致与集流体脱离,循环稳定性较差;最后,虽然可采用掺杂、纳米化等方法来提高硅基材料的电化学性能,但这些制备方法比较复杂且成本较高,不易规模制备,制得材料的电化学性能还有待进一步提高。
发明内容
为解决现有技术中存在的以上不足,本发明旨在提供一种用气相沉积碳纳米管管包覆硅负极材料的制备方法,以达到增强电极的导电性、降低硅材料的体积膨胀,并且简化制备过程、易于规模制备的目的。
为实现上述目的,本发明所采用的技术方案如下:一种用气相沉积碳纳米管管包覆硅负极材料的制备方法,包括依次进行的以下步骤:
混合:将按重量份数计的粒度为10~1000nm的硅粉100~1000份与催化剂1~10份,放入搅拌机中混合,取出;
还原:将混合得到的粉体放入流化床中,通入H2还原粉体;
流化:在流化床中继续将还原得到的粉体用N2流化,通入碳源气体,炉温500~1000℃反应,取出,得到反应后产物A;
粉碎:将反应后产物A进行气流粉碎,得到成品。
作为对本发明的限定:所述混合步骤中的搅拌机的转速为50~3000r/min,混合时间为1~120min。(主要根据实际设备情况取值)
作为对本发明的限定:所述催化剂的制备包括依次进行的以下步骤:
步骤一:取制得催化剂的原料,配制成催化剂溶液;
步骤二:将催化剂溶液400~800℃烧结制得催化剂粉末。
作为对本发明的进一步限定:所述还原步骤中通入H2的流量为0.5~10L/min,反应时间为1~120min。(主要根据实际设备情况取值)
作为对本发明的进一步限定:所述制得催化剂的原料以重量份数计包括:过渡活性金属材料0.5~5份、载体材料0.5~5份、水6~100份。
作为对本发明的再进一步限定:所述流化步骤中N2的流量为100~800L/min,通入碳源气体的流量为100~800L/min,反应时间为1~60min。(主要根据实际设备情况取值)
作为对本发明的再进一步限定:所述过渡活性金属材料包括硝酸铁、硝酸钴、硝酸镍中的至少一种。
作为对本发明的更进一步限定:所述流化步骤中通入的碳源气体为C6H6(丙烯)气体、甲烷、乙烯、乙炔中的任一种。
作为对本发明的更进一步限定:所述载体材料以重量份数计包括:硝酸铝0.02~5份、硝酸镁1~10份、柠檬酸0.02~30份。
由于采用了上述技术方案,本发明与现有技术相比,所取得的有益效果在于:
(1)本发明中的碳源气体在流化床中高温裂解,使得碳原子一部分沉积在硅表面形成碳包覆层,一部分沉积在催化剂上形成碳纳米管,省去了现有技术中复杂的改善电性能的步骤,使制备过程更加简单,降低了成本,并在沉积过程中使硅与碳管连接更紧密;由于碳纳米管具有极佳的导电性,可以有效的解决硅导电性差的缺点,同时碳纳米管具有极大的长径比优势,更有效的限制硅脱嵌锂过程中的膨胀和收缩;
(2)本发明制得的材料在硅外层包覆有碳层,可以有效地避免硅直接接触电解液,防止结构破裂使其不断形成SEI(固体电解质界面)膜,提高了循环效率。
综上所述,本发明中的制备方法简单,成本低廉;本发明制得的材料解决了硅导电性差的问题,增强了电极的导电性,并限制了硅脱嵌锂过程中的膨胀和收缩,适用于所有锂离子电池的负极。
附图说明
下面结合附图及具体实施例对本发明作更进一步详细说明。
图1为本发明实施例1所得产物的SEM(扫描电子显微镜)图;
图2为本发明实施例2所得产物的SEM(扫描电子显微镜)图;
图3为本发明实施例3所得产物的SEM(扫描电子显微镜)图。
具体实施方式
以下结合附图对本发明的优选实施例进行说明。应当理解,此处所描述的用气相沉积碳纳米管管包覆硅负极材料及其制备方法为优选实施例,仅用于说明和解释本发明,并不构成对本发明的限制。
实施例1 用气相沉积碳纳米管管包覆硅负极材料的制备方法
本实施例为一种用气相沉积碳纳米管管包覆硅负极材料的制备方法,包括依次进行的以下步骤:
制备催化剂:取制得催化剂的原料,配制成催化剂溶液,将催化剂溶液650℃烧结制得催化剂粉末;
混合:将粒度为100nm的硅粉1000g与催化剂1g放入VC搅拌机中1500r/min混合60min,取出;
还原:将混合得到的粉体放入流化床中,通入H2还原粉体,流量1L/min还原20min;
流化:在流化床中继续将还原得到的粉体用N2以400L/min的流量流化,以200L/min的流量通入碳源气体,在本实施例中,碳源气体为C6H6气体,炉温600℃反应20min,取出,得到反应后产物;
粉碎:将流化得到的反应后产物进行气流粉碎,得到成品。
在本实施例中,制得催化剂的原料包括:过渡活性金属材料3g、载体材料6.2g、水60g。
过渡活性金属材料包括任意比例的硝酸铁、硝酸钴、硝酸镍中的至少一种,在本实施例中,过渡活性金属材料包括:硝酸铁2g、硝酸镍1g;载体材料包括:硝酸铝0.2g,硝酸镁5g,柠檬酸1g。
实施例2~5 用气相沉积碳纳米管管包覆硅负极材料的制备方法
实施例2~5为一种用气相沉积碳纳米管管包覆硅负极材料的制备方法,其制备过程与实施例1均相同,不同之处在于制备过程中的参数,具体见下表1:
表1 制备过程中的参数
Figure 179418DEST_PATH_IMAGE001
其中,制得催化剂的原料组份与实施例1均相同,不同之处在于各组分的用量有差别,具体配比见表2:
表2 制得催化剂的原料中各组份的含量
Figure 367823DEST_PATH_IMAGE002
其中,过渡金属材料的选择与实施例1有所不同,载体材料的组分与实施例6均相同,不同之处在于各组分的用量有差别,具体配比见表3
表3 过渡金属材料的选择和载体材料中各组份的含量
Figure 35565DEST_PATH_IMAGE003
实施例6 用气相沉积碳纳米管管包覆硅负极材料微观结构
为观察本发明所制得的用气相沉积碳纳米管管包覆硅负极材料的结构,将实施例1~3所制得的材料在扫描电子显微镜下成像,分别如图1~3所示,为该材料的SEM(扫描电子显微镜)图。根据图片可知,碳纳米管沉积在硅粉中,使其包覆在硅颗粒表面,形成导电网络;故使用本发明中的方法能够改善硅粉的导电性。
实施例7 锂离子电池的制备与充放电测试
将实施例1~3所制得的碳硅复合材料,和使用常规方法(取硅粉,将其与分散剂、异丙醇至于砂磨机砂磨一定时间后干燥得到纳米硅颗粒,将纳米硅颗粒与沥青混合包覆碳化)制得的碳硅复合材料,按照硅碳复合材料:导电剂(导电碳黑,即super-p):粘结剂(0.2% CMC+0.8% SBR)=8:1:1的质量比混合,制成负极片,锂片作为正极片,隔膜为聚丙烯膜,电解液为含锂盐为1mol/L的六氟磷酸锂(LiPF6 ),溶剂为体积比为1:1:1的碳酸乙烯酯(EC):碳酸二甲酯(DMC):碳酸甲乙酯(EMC),制成扣式电池。实施例1~3制得的碳硅复合材料制成的扣式电池依次为样本1~3,常规方法制得的碳硅复合材料制成的扣式电池为样本4。利用蓝电测试系统恒流对锂离子电池进行充放电测试,电压测试范围为0.01~1.5V。测试结果见下表4~7:
表4 样本1的充放电测试结果
Figure 173285DEST_PATH_IMAGE004
表5 样本2的充放电测试结果
Figure 884758DEST_PATH_IMAGE005
表6 样本3的充放电测试结果
Figure 373508DEST_PATH_IMAGE006
表7 样本4的充放电测试结果
Figure 579362DEST_PATH_IMAGE007
由表4~7的数据可知:经过 100个循环后,样本1~3相比于样本4,具有着更好的循环稳定性,样本1~3的充电比容量保持率相较于样本4也保持在一个较高水平。由此可知,使用本发明中的方法所制备的用气相沉积碳纳米管管包覆硅负极材料导电性强,且限制了硅脱嵌锂过程中的膨胀和收缩。

Claims (9)

1.一种用气相沉积碳纳米管管包覆硅负极材料的制备方法,其特征在于,包括依次进行的以下步骤:
混合:将按重量份数计的粒度为10~1000nm的硅粉100~1000份与催化剂1~10份,放入搅拌机中混合,取出;
还原:将混合得到的粉体放入流化床中,通入H2还原粉体;
流化:在流化床中继续将还原得到的粉体用N2流化,通入碳源气体,炉温500~1000℃反应,取出,得到反应后产物A;
粉碎:将反应后产物A进行气流粉碎,得到成品。
2.根据权利要求1所述的用气相沉积碳纳米管管包覆硅负极材料的制备方法,其特征在于,所述混合步骤中搅拌机的转速为50~3000r/min,混合时间为1~120min。
3.根据权利要求2所述的用气相沉积碳纳米管管包覆硅负极材料的制备方法,其特征在于,所述还原步骤中通入H2的流量为0.5~10L/min,反应时间为1~120min。
4.根据权利要求3所述的用气相沉积碳纳米管管包覆硅负极材料的制备方法,其特征在于,所述流化步骤中N2的流量为100~800L/min,通入碳源气体的流量为100~800L/min,反应时间为1~60min。
5.根据权利要求4中所述的用气相沉积碳纳米管管包覆硅负极材料的制备方法,其特征在于,所述流化步骤中通入的碳源气体为丙烯气体、甲烷、乙烯、乙炔中的任一种。
6.根据权利要求1-5中任一项所述的用气相沉积碳纳米管管包覆硅负极材料的制备方法,其特征在于,所述催化剂的制备包括依次进行的以下步骤:
步骤一:取制得催化剂的原料,配制成催化剂溶液;
步骤二:将催化剂溶液400~800℃烧结制得催化剂粉末。
7.根据权利要求6所述的用气相沉积碳纳米管管包覆硅负极材料的制备方法,其特征在于,所述制得催化剂的原料以重量份数计包括:过渡活性金属材料0.5~5份、载体材料0.5~5份、水6~100份。
8.根据权利要求7所述的用气相沉积碳纳米管管包覆硅负极材料的制备方法,其特征在于,所述过渡活性金属材料包括硝酸铁、硝酸钴、硝酸镍中的至少一种。
9.根据权利要求8所述的用气相沉积碳纳米管管包覆硅负极材料的制备方法,其特征在于,所述载体材料以重量份数计包括:硝酸铝0.02~5份、硝酸镁1~10份、柠檬酸0.02~30份。
CN202010114577.0A 2020-02-25 2020-02-25 用气相沉积碳纳米管管包覆硅负极材料的制备方法 Active CN111188022B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010114577.0A CN111188022B (zh) 2020-02-25 2020-02-25 用气相沉积碳纳米管管包覆硅负极材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010114577.0A CN111188022B (zh) 2020-02-25 2020-02-25 用气相沉积碳纳米管管包覆硅负极材料的制备方法

Publications (2)

Publication Number Publication Date
CN111188022A true CN111188022A (zh) 2020-05-22
CN111188022B CN111188022B (zh) 2021-08-06

Family

ID=70705110

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010114577.0A Active CN111188022B (zh) 2020-02-25 2020-02-25 用气相沉积碳纳米管管包覆硅负极材料的制备方法

Country Status (1)

Country Link
CN (1) CN111188022B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112216828A (zh) * 2020-09-23 2021-01-12 中国科学院成都有机化学有限公司 一种碳纳米管/mof基硅碳复合材料及其制备方法和应用
CN113957417A (zh) * 2021-09-13 2022-01-21 长沙矿冶研究院有限责任公司 Cvd流化沉积装置及硅碳负极材料的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1618226B1 (fr) * 2003-04-17 2007-01-03 Centre National de la Recherche Scientifique Procede de croissance de nanotubes de carbone
CN101969112A (zh) * 2010-09-30 2011-02-09 湛江市聚鑫新能源有限公司 锂离子电池用正、负极材料及其改性方法
CN109550941A (zh) * 2018-11-15 2019-04-02 中国科学院过程工程研究所 一种碳纳米管包覆钛球形复合粉体及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1618226B1 (fr) * 2003-04-17 2007-01-03 Centre National de la Recherche Scientifique Procede de croissance de nanotubes de carbone
CN101969112A (zh) * 2010-09-30 2011-02-09 湛江市聚鑫新能源有限公司 锂离子电池用正、负极材料及其改性方法
CN109550941A (zh) * 2018-11-15 2019-04-02 中国科学院过程工程研究所 一种碳纳米管包覆钛球形复合粉体及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112216828A (zh) * 2020-09-23 2021-01-12 中国科学院成都有机化学有限公司 一种碳纳米管/mof基硅碳复合材料及其制备方法和应用
CN113957417A (zh) * 2021-09-13 2022-01-21 长沙矿冶研究院有限责任公司 Cvd流化沉积装置及硅碳负极材料的制备方法

Also Published As

Publication number Publication date
CN111188022B (zh) 2021-08-06

Similar Documents

Publication Publication Date Title
CN114050265B (zh) 一种交联纳米碳片负载硒化镍/硒化锰纳米复合材料及其制备方法以及钠离子电池负极
CN111188022B (zh) 用气相沉积碳纳米管管包覆硅负极材料的制备方法
CN112952048A (zh) 硅碳复合负极材料及其制备方法、电极和二次电池
CN115072703B (zh) 一种复合负极材料及其制备方法、应用
CN114079086A (zh) 正极补锂添加剂、正极极片、其制备方法及锂离子电池
CN111129449A (zh) 一种石墨烯/碳/四氧化三铁纳米复合材料及其制备方法和应用
CN108110226B (zh) 锂离子电池、锂离子电池正极材料及其制备方法
CN114497549B (zh) 电化学制备正极补锂材料的方法和补锂材料及补锂浆料
CN114122402A (zh) 锂离子电池正极补锂添加剂、正极片、其制备方法和用途
CN111342020A (zh) 一种硅基负极材料及其制备方法以及一种锂离子电池
CN112928246A (zh) 一种复合材料、其制备方法及应用
CN114497508A (zh) 一种功率型人造石墨复合材料及其制备方法
CN113871605A (zh) 一种预锂化硅基负极材料及其制备方法和用途
WO2022032749A1 (zh) 一种三维棒状钛酸钾材料的制备方法
CN111072012B (zh) 锂离子电池微晶石墨掺石墨烯负极材料及其制备方法
CN116190552A (zh) 一种Li2B4O7-LiF共包覆高镍NCM锂离子电池正极材料制备方法
CN114804057B (zh) 改性磷酸铁前驱体、改性磷酸铁锂及其制备方法
CN114956193A (zh) 一种正极活性材料的制备方法及其应用
CN110931746B (zh) 一种硅-锡-石墨烯复合物电极材料及其制备方法和应用
CN109216673B (zh) 磷酸铁锂/多层石墨烯复合材料及其制备方法和应用其的锂离子电池
CN114068892A (zh) 一种低温锂电池/双碳层包覆复合材料的制备方法
CN112968155A (zh) 一种锂离子电池用复合负极材料及其制备方法
CN108493406B (zh) 高镍三元正极材料作为催化剂在制备碳纳米管方面的应用、正极材料及其制备方法、锂电池
CN112520787A (zh) 一种β相偏钒酸钠的溶液制备方法及其在锂离子电池的应用
Li et al. GO‐CoNiP New Composite Material Modified Separator for Long Cycle Lithium–Sulfur Batteries

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant