CN111176302A - 输入饱和的自动驾驶汽车路径跟踪控制方法 - Google Patents

输入饱和的自动驾驶汽车路径跟踪控制方法 Download PDF

Info

Publication number
CN111176302A
CN111176302A CN202010145290.4A CN202010145290A CN111176302A CN 111176302 A CN111176302 A CN 111176302A CN 202010145290 A CN202010145290 A CN 202010145290A CN 111176302 A CN111176302 A CN 111176302A
Authority
CN
China
Prior art keywords
vehicle
matrix
formula
path tracking
tracking control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010145290.4A
Other languages
English (en)
Other versions
CN111176302B (zh
Inventor
陈长芳
舒明雷
刘瑞霞
杨媛媛
魏诺
许继勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Computer Science Center National Super Computing Center in Jinan
Original Assignee
Shandong Computer Science Center National Super Computing Center in Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Computer Science Center National Super Computing Center in Jinan filed Critical Shandong Computer Science Center National Super Computing Center in Jinan
Priority to CN202010145290.4A priority Critical patent/CN111176302B/zh
Priority to NL2025573A priority patent/NL2025573B1/en
Publication of CN111176302A publication Critical patent/CN111176302A/zh
Application granted granted Critical
Publication of CN111176302B publication Critical patent/CN111176302B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0223Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving speed control of the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18145Cornering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/10Path keeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/06Improving the dynamic response of the control system, e.g. improving the speed of regulation or avoiding hunting or overshoot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0019Control system elements or transfer functions
    • B60W2050/0028Mathematical models, e.g. for simulation
    • B60W2050/0031Mathematical model of the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0019Control system elements or transfer functions
    • B60W2050/0028Mathematical models, e.g. for simulation
    • B60W2050/0031Mathematical model of the vehicle
    • B60W2050/0035Multiple-track, 3D vehicle model, e.g. including roll and pitch conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/14Yaw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2530/00Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
    • B60W2530/20Tyre data

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种输入饱和的自动驾驶汽车路径跟踪控制方法,通过设计鲁棒H∞路径跟踪控制器,解决了自动驾驶汽车路径跟踪控制的网络时延和输入饱和问题,提高了车辆在极端行驶条件下的路径跟踪性能。通过对车辆侧向速度和横摆角速度的调节,在实现自动驾驶汽车路径跟踪控制的同时提高了车辆的操作稳定性。自动驾驶汽车鲁棒H∞路径跟踪控制增益矩阵可以通过求解线性矩阵不等式得到,计算简便。该路径跟踪控制设计综合考虑了车辆动力学模型的不确定性和外界扰动的影响,提高了路径跟踪控制算法的鲁棒性。通过设计静态输出反馈控制器,在实现理想的路径跟踪控制的同时,大大降低了控制系统的成本。

Description

输入饱和的自动驾驶汽车路径跟踪控制方法
技术领域
本发明涉及自动驾驶汽车技术领域,具体涉及一种输入饱和的车辆跟踪控制方法。
背景技术
随着新一代信息技术的快速发展以及人们对汽车安全性和舒适性要求的提高,自动驾驶汽车的路径跟踪控制已成为近年来新兴的研究热点,并广泛应用于移动机器人和自动泊车系统。自动驾驶汽车将有助于减轻驾驶员的劳动强度,提高汽车行驶安全性,减少道路交通事故,提高道路通行效率。据汽车行业统计数据预测,在降低道路拥堵和交通事故等目标的驱动下,将来大多数汽车将具备无人驾驶功能,并有望主导道路交通。对自动驾驶汽车而言,首先要解决的基本问题之一是实现车辆的路径跟踪控制,其控制目标是使得车辆能够跟踪理想路径,保持稳态路径跟踪误差(即横向偏移和航向误差)为零。
关于自动驾驶汽车的路径跟踪控制算法有:滑动模态控制,自适应控制,鲁棒H∞控制,神经网络控制,模型预测控制,LMI优化控制和基于Lyapunov函数控制等。这些控制方法大多只考虑了传统的车辆操纵性和稳定性,而车辆状态测量和信号传输过程中通常存在不可避免的时延和数据丢包问题,而且,在实际应用中执行器是存在物理极限的,例如,在极端行驶条件下,轮胎力有可能达到饱和。当系统进入饱和状态时,控制器的输出和被控对象的输入将不再匹配,这将会大大降低控制器的性能,甚至会导致闭环系统不稳定。因而,如何在出现网络时延和执行器饱和的情形下,实现自动驾驶汽车的路径跟踪控制仍然是工业和学术领域面临的挑战性问题。
发明内容
本发明为了克服以上技术的不足,提供了一种实现自动驾驶汽车在极端行驶条件下具有优异操纵稳定性和路径跟踪性的输入饱和的车辆跟踪控制方法。
本发明克服其技术问题所采用的技术方案是:
一种输入饱和的自动驾驶汽车路径跟踪控制方法,包括如下步骤:
a)建立如公式(1)的车辆动力学模型:
Figure BDA0002399585450000021
Figure BDA0002399585450000022
其中,
Figure BDA0002399585450000023
为vy的一阶导数,
Figure BDA0002399585450000024
为γ的一阶导数,vx为车辆质心CG的纵向速度,vy为车辆质心CG的侧向速度,γ为车辆的横摆角速度,m为车体质量,Iz为车辆绕Z轴的转动惯量,d1(t)、d2(t)均为未建模动态,Fyf为车辆前轮轮胎的侧向力,Fyr为车辆后轮轮胎的侧向力,通过公式(2)计算外部横摆力矩ΔMz
Figure BDA0002399585450000025
式中Fxi为第i个轮胎的纵向力,lf为车辆质心CG到前轴的距离,lr为车辆质心CG到后轴的距离,ld为轮距,δf为前轮转向角;
b)建立如公式(3)的路径跟踪模型:
Figure BDA0002399585450000026
其中ls为车辆质心CG与传感器之间的水平距离,ye为距离车辆质心CGls处的横向偏移,φe为航向误差,
通过公式(4)计算得到车辆的实际横摆角φ:
φ=φed (4)
其中φd为参考路径正切方向相对于全局坐标系的横摆角,当车辆以纵向速度vx跟踪曲率为ρref的参考路径时,
Figure BDA0002399585450000027
Figure BDA0002399585450000028
为φd的一阶导数;
c)建立如公式(5)的路径跟踪动态模型:
Figure BDA0002399585450000031
其中
Figure BDA0002399585450000032
为x(t)的一阶导数,x(t)为状态变量,x(t)=[vy,γ,φe,ye]T,T为矩阵转置,u(t)为输入变量,u(t)=[δfΔMz]T,d(t)=[d1(t) d2(t) -vxρref -lsvxρref]T,通过公式(6)计算系统矩阵A和系统矩阵B;
Figure BDA0002399585450000033
d)当车辆纵向速度vx变化时,通过公式
Figure BDA0002399585450000034
表示,λv为时变参数且满足|λv|≤1,
Figure BDA0002399585450000035
为vx的标称值,系统矩阵A表示为A=A0+ΔA,ΔA=EMF,M=λv,F为单位矩阵,如公式(7)计算A0,如公式(8)计算E;
Figure BDA0002399585450000036
Figure BDA0002399585450000041
e)建立如公式(9)的车辆路径跟踪控制系统:
Figure BDA0002399585450000042
其中C1为4阶单位矩阵,u(t)∈Rn,Rn为n维实数空间,σ(u(t))=[σ(u1(t)),σ(u2(t)),…,σ(un(t))]T
Figure BDA0002399585450000043
uimax为ui(t)的最大值,ui(t)为u(t)的第i个元素;
f)建立如公式(10)的状态反馈路径跟踪控制器:
u(t)=Kx(t-τ(t)) (10)
其中τ(t)为时延,τ(t)=τ12,τ1为控制信号从传感器到控制器的传输时延,τ2为控制信号从控制器到执行器的时延,K为待设计的控制增益矩阵;
g)建立如公式(11)的自动驾驶汽车路径跟踪控制闭环系统:
Figure BDA0002399585450000044
当d(t)=0时,如公式(11)的自动驾驶汽车路径跟踪控制闭环系统是渐进稳定的,当d(t)≠0时,通过公式(12)计算鲁棒H扰动抑制性能指标γ1
Figure BDA0002399585450000051
h)求解满足如公式(13)的线性矩阵不等式的正定矩阵X>0,
Figure BDA0002399585450000052
一般矩阵Yk,Yh
Figure BDA0002399585450000053
i=1,2,3,和数量∈>0;
Figure BDA0002399585450000054
Figure BDA0002399585450000055
其中,公式(13)中*为矩阵对称元素的转置,γ1为性能指标,
Figure BDA0002399585450000061
Figure BDA0002399585450000062
Figure BDA0002399585450000063
Figure BDA0002399585450000064
Figure BDA0002399585450000065
Figure BDA0002399585450000066
Figure BDA0002399585450000067
Figure BDA0002399585450000068
yki为Yk的第i行,i=1,2,...,n,yhi为Yh的第i行,i=1,2,...,n,vi为v的第i个元素,i=1,2,...,n,μi为μ的第i个元素,i=1,2,...,n;
其中
Figure BDA0002399585450000069
为时延τ(t)的上界,ρ、uimax为正常数,v∈V,μ∈V,V={w∈Rn:wi=1 or 0}
i)通过公式(14)求取车辆状态反馈控制器增益矩阵:
K=YkX-1 (14)
求解如公式(15)的凸优化问题得到最优鲁棒H状态反馈路径跟踪控制器:
Figure BDA0002399585450000071
进一步的,步骤a)中通过公式Fyf=2Cfαf,Fyr=-2Crαr计算得到车辆前轮轮胎的侧向力Fyf和车辆后轮轮胎的侧向力Fyr,其中Cf为前车轮的侧偏刚度,Cr为后车轮的侧偏刚度,αf为前车轮的侧偏角,αr为后车轮的侧偏角,其中
Figure BDA0002399585450000072
优选的,步骤b)中曲率ρref通过联合的GPS和GIS系统得到。
进一步的,步骤g)之后执行如下步骤:
h2)选取输出向量y=C2x=[γ,φe,ye]T,求解满足如公式(16)的线性矩阵不等式的正定矩阵XN>0,XG>0,
Figure BDA0002399585450000073
一般矩阵
Figure BDA0002399585450000074
i=1,2,3,和数量∈>0;
Figure BDA0002399585450000075
Figure BDA0002399585450000076
其中,公式(16)中*为矩阵对称元素的转置,γ1为性能指标;
Figure BDA0002399585450000081
Figure BDA0002399585450000082
Figure BDA0002399585450000083
Figure BDA0002399585450000084
Figure BDA0002399585450000085
Figure BDA0002399585450000086
Figure BDA0002399585450000087
Figure BDA0002399585450000088
Figure BDA0002399585450000089
Figure BDA00023995854500000810
Figure BDA00023995854500000811
Figure BDA00023995854500000812
的第i行,i=1,2,...,n,
Figure BDA00023995854500000813
Figure BDA00023995854500000814
的第i行,i=1,2,...,n,vi为v的第i个元素,i=1,2,...,n,μi为μ的第i个元素,i=1,2,...,n;其中
Figure BDA00023995854500000815
为时延τ(t)的上界,ρ、uimax为正常数,v∈V,μ∈V,V={w∈Rn:wi=1 or 0};
i2)通过公式(17)求取车辆输出反馈控制器增益矩阵:
Figure BDA00023995854500000816
N0的列为输出矩阵C2零空间的基,矩阵G如公式(18)计算:
Figure BDA0002399585450000091
Figure BDA0002399585450000092
为矩阵C2的Moore-Penrose广义逆矩阵,
Figure BDA0002399585450000093
为矩阵N0的Moore-Penrose广义逆矩阵。
本发明的有益效果是:通过设计鲁棒H∞路径跟踪控制器,解决了自动驾驶汽车路径跟踪控制的网络时延和输入饱和问题,提高了车辆在极端行驶条件下的路径跟踪性能。通过对车辆侧向速度和横摆角速度的调节,在实现自动驾驶汽车路径跟踪控制的同时提高了车辆的操作稳定性。自动驾驶汽车鲁棒H∞路径跟踪控制增益矩阵可以通过求解线性矩阵不等式得到,计算简便。该路径跟踪控制设计综合考虑了车辆动力学模型的不确定性和外界扰动的影响,提高了路径跟踪控制算法的鲁棒性。通过设计静态输出反馈控制器,在实现理想的路径跟踪控制的同时,大大降低了控制系统的成本。
附图说明
图1为本发明的车动力学模型图;
图2为本发明的车辆路径跟踪示意图。
具体实施方式
下面结合附图1和附图2对本发明做进一步说明。
一种输入饱和的自动驾驶汽车路径跟踪控制方法,包括如下步骤:
a)如附图1所示,建立如公式(1)的车辆动力学模型:
Figure BDA0002399585450000094
Figure BDA0002399585450000095
其中,
Figure BDA0002399585450000096
为vy的一阶导数,
Figure BDA0002399585450000097
为γ的一阶导数,vx为车辆质心CG的纵向速度,vy为车辆质心CG的侧向速度,γ为车辆的横摆角速度,m为车体质量,Iz为车辆绕Z轴的转动惯量,d1(t)、d2(t)均为未建模动态,Fyf为车辆前轮轮胎的侧向力,Fyr为车辆后轮轮胎的侧向力,通过公式(2)计算外部横摆力矩ΔMz
Figure BDA0002399585450000101
式中Fxi为第i个轮胎的纵向力,lf为车辆质心CG到前轴的距离,lr为车辆质心CG到后轴的距离,ld为轮距,δf为前轮转向角;
b)如附图2所示,建立如公式(3)的路径跟踪模型:
Figure BDA0002399585450000102
其中ls为车辆质心CG与传感器之间的水平距离,ye为距离车辆质心CGls处的横向偏移,φe为航向误差,
通过公式(4)计算得到车辆的实际横摆角φ:
φ=φed (4)
其中φd为参考路径正切方向相对于全局坐标系的横摆角,当车辆以纵向速度vx跟踪曲率为ρref的参考路径时,
Figure BDA0002399585450000103
Figure BDA0002399585450000104
为φd的一阶导数;
c)建立如公式(5)的路径跟踪动态模型:
Figure BDA0002399585450000105
其中
Figure BDA0002399585450000106
为x(t)的一阶导数,x(t)为状态变量,x(t)=[vy,γ,φe,ye]T,T为矩阵转置,u(t)为输入变量,u(t)=[δfΔMz]T,d(t)=[d1(t) d2(t) -vxρref -lsvxρref]T,通过公式(6)计算系统矩阵A和系统矩阵B;
Figure BDA0002399585450000111
d)当车辆纵向速度vx变化时,通过公式
Figure BDA0002399585450000112
表示,λv为时变参数且满足|λv|≤1,
Figure BDA0002399585450000113
为vx的标称值,系统矩阵A表示为A=A0+ΔA,ΔA=EMF,M=λv,F为单位矩阵,如公式(7)计算A0,如公式(8)计算E;
Figure BDA0002399585450000114
Figure BDA0002399585450000115
e)为了完成自动驾驶汽车路径跟踪控制任务,车辆的横向偏移ye和航向误差φe应尽可能地小一些。同时,通过侧向速度和横摆角调节,可以提高车辆的侧向稳定性。进一步,考虑执行器的饱和特性,车辆路径跟踪控制系统可以建立如公式(9)的车辆路径跟踪控制系统:
Figure BDA0002399585450000121
其中C1为4阶单位矩阵,u(t)∈Rn,Rn为n维实数空间,
σ(u(t))=[σ(u1(t)),σ(u2(t)),…,σ(un(t))]T
Figure BDA0002399585450000122
uimax为ui(t)的最大值,ui(t)为u(t)的第i个元素;
f)建立如公式(10)的状态反馈路径跟踪控制器:
u(t)=Kx(t-τ(t)) (10)
其中τ(t)为时延,在基于网络控制的车辆路径跟踪控制系统中,车辆状态和控制信号在传输过程通常会出现不同程度的延时和丢包现象,τ(t)=τ12,τ1为控制信号从传感器到控制器的传输时延,τ2为控制信号从控制器到执行器的时延,K为待设计的控制增益矩阵;
g)建立如公式(11)的自动驾驶汽车路径跟踪控制闭环系统:
Figure BDA0002399585450000123
自动驾驶汽车路径跟踪控制目标是通过设计鲁棒H状态/输出反馈控制器,使得:1)当d(t)=0时,闭环系统(11)是渐进稳定的;2)当d(t)≠0时,满足鲁棒H扰动抑制性能指标γ1,即公式(12)所示;
Figure BDA0002399585450000131
h)为了解决自动驾驶汽车路径跟踪控制的网络时延和输入饱和问题,通过设计鲁棒H状态反馈控制器和静态输出反馈控制器,使得闭环系统当d(t)=0时为渐进稳定性的,满足给定的H扰动抑制性能指标,且控制增益矩阵可以通过求解相应的线性矩阵不等式得到,计算简便。求解满足如公式(13)的线性矩阵不等式的正定矩阵X>0,
Figure BDA0002399585450000135
一般矩阵Yk,Yh
Figure BDA0002399585450000132
i=1,2,3,和数量∈>0;
Figure BDA0002399585450000133
Figure BDA0002399585450000134
其中,公式(13)中*为矩阵对称元素的转置,γ1为性能指标,
Figure BDA0002399585450000141
Figure BDA0002399585450000142
Figure BDA0002399585450000143
Figure BDA0002399585450000144
Figure BDA0002399585450000145
Figure BDA0002399585450000146
Figure BDA0002399585450000147
Figure BDA0002399585450000148
yki为Yk的第i行,i=1,2,...,n,yhi为Yh的第i行,i=1,2,...,n,vi为v的第i个元素,i=1,2,...,n,μi为μ的第i个元素,i=1,2,...,n;
其中
Figure BDA0002399585450000149
为时延τ(t)的上界,ρ、uimax为正常数,v∈V,μ∈V,V={w∈Rn:wi=1 or 0}
i)通过公式(14)求取车辆状态反馈控制器增益矩阵:
K=YkX-1 (14)
求解如公式(15)的凸优化问题,可以得到最优鲁棒H状态反馈路径跟踪控制器:
Figure BDA0002399585450000151
实施例1:
优选的,步骤a)中通过公式Fyf=2Cfαf,Fyr=-2Crαr计算得到车辆前轮轮胎的侧向力Fyf和车辆后轮轮胎的侧向力Fyr,其中Cf为前车轮的侧偏刚度,Cr为后车轮的侧偏刚度,αf为前车轮的侧偏角,αr为后车轮的侧偏角,其中
Figure BDA0002399585450000152
实施例2:
步骤b)中曲率ρref通过联合的GPS和GIS系统得到。
实施例3:
为了解决自动驾驶汽车路径跟踪控制的网络时延和输入饱和问题,通过设计鲁棒H状态反馈控制器和静态输出反馈控制器,使得闭环系统当d(t)=0时为渐进稳定性的,满足给定的H扰动抑制性能指标,且控制增益矩阵可以通过求解相应的线性矩阵不等式得到,计算简便。因此在步骤g)之后执行如下步骤:
h2)由于车辆侧向速度vy很难通过低成本的传感器测量得到,故为了降低控制系统成本,我们选取输出向量y=C2x=[γ,φe,ye]T,设计了静态输出反馈路径跟踪控制器,求解满足如公式(16)的线性矩阵不等式的正定矩阵XN>0,XG>0,
Figure BDA0002399585450000153
一般矩阵
Figure BDA0002399585450000154
i=1,2,3,和数量∈>0;
Figure BDA0002399585450000161
Figure BDA0002399585450000162
其中,公式(16)中*为矩阵对称元素的转置,γ1为性能指标;
Figure BDA0002399585450000163
Figure BDA0002399585450000164
Figure BDA0002399585450000165
Figure BDA0002399585450000166
Figure BDA0002399585450000167
Figure BDA0002399585450000168
Figure BDA0002399585450000169
Figure BDA00023995854500001610
Figure BDA00023995854500001611
Figure BDA00023995854500001612
Figure BDA0002399585450000171
Figure BDA0002399585450000172
的第i行,i=1,2,...,n,
Figure BDA0002399585450000173
Figure BDA0002399585450000174
的第i行,i=1,2,...,n,vi为v的第i个元素,i=1,2,...,n,μi为μ的第i个元素,i=1,2,...,n;其中
Figure BDA0002399585450000175
为时延τ(t)的上界,ρ、uimax为正常数,v∈V,μ∈V,V={w∈Rn:wi=1 or 0};
i2)通过公式(17)求取车辆输出反馈控制器增益矩阵:
Figure BDA0002399585450000176
N0的列为输出矩阵C2零空间的基,矩阵G如公式(18)计算:
Figure BDA0002399585450000177
Figure BDA0002399585450000178
为矩阵C2的Moore-Penrose广义逆矩阵,
Figure BDA0002399585450000179
为矩阵N0的Moore-Penrose广义逆矩阵。

Claims (4)

1.一种输入饱和的自动驾驶汽车路径跟踪控制方法,其特征在于,包括如下步骤:
a)建立如公式(1)的车辆动力学模型:
Figure FDA0002399585440000011
Figure FDA0002399585440000012
其中,
Figure FDA0002399585440000013
为vy的一阶导数,
Figure FDA0002399585440000014
为γ的一阶导数,vx为车辆质心CG的纵向速度,vy为车辆质心CG的侧向速度,γ为车辆的横摆角速度,m为车体质量,Iz为车辆绕Z轴的转动惯量,d1(t)、d2(t)均为未建模动态,Fyf为车辆前轮轮胎的侧向力,Fyr为车辆后轮轮胎的侧向力,通过公式(2)计算外部横摆力矩ΔMz
Figure FDA0002399585440000015
式中Fxi为第i个轮胎的纵向力,lf为车辆质心CG到前轴的距离,lr为车辆质心CG到后轴的距离,ld为轮距,δf为前轮转向角;
b)建立如公式(3)的路径跟踪模型:
Figure FDA0002399585440000016
其中ls为车辆质心CG与传感器之间的水平距离,ye为距离车辆质心CGls处的横向偏移,φe为航向误差,
通过公式(4)计算得到车辆的实际横摆角φ:
φ=φed (4)
其中φd为参考路径正切方向相对于全局坐标系的横摆角,当车辆以纵向速度vx跟踪曲率为ρref的参考路径时,
Figure FDA0002399585440000021
Figure FDA0002399585440000022
为φd的一阶导数;
c)建立如公式(5)的路径跟踪动态模型:
Figure FDA0002399585440000023
其中
Figure FDA0002399585440000024
为x(t)的一阶导数,x(t)为状态变量,x(t)=[vy,γ,φe,ye]T,T为矩阵转置,u(t)为输入变量,u(t)=[δfΔMz]T,d(t)=[d1(t) d2(t) -vxρref -lsvxρref]T,通过公式(6)计算系统矩阵A和系统矩阵B;
Figure FDA0002399585440000025
Figure FDA0002399585440000026
d)当车辆纵向速度vx变化时,通过公式
Figure FDA0002399585440000027
表示,λv为时变参数且满足|λv|≤1,
Figure FDA0002399585440000028
为vx的标称值,系统矩阵A表示为A=A0+ΔA,ΔA=EMF,M=λv,F为单位矩阵,如公式(7)计算A0,如公式(8)计算E;
Figure FDA0002399585440000031
Figure FDA0002399585440000032
e)建立如公式(9)的车辆路径跟踪控制系统:
Figure FDA0002399585440000033
其中C1为4阶单位矩阵,u(t)∈Rn,Rn为n维实数空间,
σ(u(t))=[σ(u1(t)),σ(u2(t)),…,σ(un(t))]T
Figure FDA0002399585440000034
uimax为ui(t)的最大值,ui(t)为u(t)的第i个元素;
f)建立如公式(10)的状态反馈路径跟踪控制器:
u(t)=Kx(t-τ(t)) (10)
其中τ(t)为时延,τ(t)=τ12,τ1为控制信号从传感器到控制器的传输时延,τ2为控制信号从控制器到执行器的时延,K为待设计的控制增益矩阵;
g)建立如公式(11)的自动驾驶汽车路径跟踪控制闭环系统:
Figure FDA0002399585440000041
当d(t)=0时,如公式(11)的自动驾驶汽车路径跟踪控制闭环系统是渐进稳定的,当d(t)≠0时,通过公式(12)计算鲁棒H扰动抑制性能指标γ1
Figure FDA0002399585440000042
h)求解满足如公式(13)的线性矩阵不等式的正定矩阵X>0,
Figure FDA0002399585440000043
一般矩阵Yk,Yh
Figure FDA0002399585440000044
i=1,2,3,和数量∈>0;
Figure FDA0002399585440000045
Figure FDA0002399585440000046
其中,公式(13)中*为矩阵对称元素的转置,γ1为性能指标,
Figure FDA0002399585440000051
Figure FDA0002399585440000052
Figure FDA0002399585440000053
Figure FDA0002399585440000054
Figure FDA0002399585440000055
Figure FDA0002399585440000056
Figure FDA0002399585440000057
Figure FDA0002399585440000058
yki为Yk的第i行,i=1,2,...,n,yhi为Yh的第i行,i=1,2,...,n,vi为v的第i个元素,i=1,2,...,n,μi为μ的第i个元素,i=1,2,...,n,
其中
Figure FDA0002399585440000059
为时延τ(t)的上界,ρ、uimax为正常数,v∈V,μ∈V,V={w∈Rn:wi=1 or 0}
i)通过公式(14)求取车辆状态反馈控制器增益矩阵:
K=YkX-1 (14)
求解如公式(15)的凸优化问题得到最优鲁棒H状态反馈路径跟踪控制器:
minγ1
Figure FDA0002399585440000061
2.根据权利要求1所述的输入饱和的自动驾驶汽车路径跟踪控制方法,其特征在于:步骤a)中通过公式Fyf=2Cfαf,Fyr=-2Crαr计算得到车辆前轮轮胎的侧向力Fyf和车辆后轮轮胎的侧向力Fyr,其中Cf为前车轮的侧偏刚度,Cr为后车轮的侧偏刚度,αf为前车轮的侧偏角,αr为后车轮的侧偏角,其中
Figure FDA0002399585440000062
3.根据权利要求1所述的输入饱和的自动驾驶汽车路径跟踪控制方法,其特征在于:步骤b)中曲率ρref通过联合的GPS和GIS系统得到。
4.根据权利要求1所述的输入饱和的自动驾驶汽车路径跟踪控制方法,其特征在于:步骤g)之后执行如下步骤:
h2)选取输出向量y=C2x=[γ,φe,ye]T,求解满足如公式(16)的线性矩阵不等式的正定矩阵XN>0,XG>0,
Figure FDA0002399585440000063
一般矩阵
Figure FDA0002399585440000064
和数量∈>0;
Figure FDA0002399585440000065
Figure FDA0002399585440000071
其中,公式(16)中*为矩阵对称元素的转置,γ1为性能指标;、
Figure FDA0002399585440000072
Figure FDA0002399585440000073
Figure FDA0002399585440000074
Figure FDA0002399585440000075
Figure FDA0002399585440000076
Figure FDA0002399585440000077
Figure FDA0002399585440000078
Figure FDA0002399585440000079
Figure FDA00023995854400000710
Figure FDA00023995854400000711
Figure FDA00023995854400000712
Figure FDA00023995854400000713
的第i行,i=1,2,...,n,
Figure FDA00023995854400000714
Figure FDA00023995854400000715
的第i行,i=1,2,...,n,vi为v的第i个元素,i=1,2,...,n,μi为μ的第i个元素,i=1,2,...,n;其中
Figure FDA00023995854400000716
为时延τ(t)的上界,ρ、uimax为正常数,v∈V,μ∈V,V={w∈Rn:wi=1 or 0};
i2)通过公式(17)求取车辆输出反馈控制器增益矩阵:
Figure FDA0002399585440000081
N0的列为输出矩阵C2零空间的基,矩阵G如公式(18)计算:
Figure FDA0002399585440000082
Figure FDA0002399585440000083
为矩阵C2的Moore-Penrose广义逆矩阵,
Figure FDA0002399585440000084
为矩阵N0的Moore-Penrose广义逆矩阵。
CN202010145290.4A 2020-03-04 2020-03-04 输入饱和的自动驾驶汽车路径跟踪控制方法 Active CN111176302B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202010145290.4A CN111176302B (zh) 2020-03-04 2020-03-04 输入饱和的自动驾驶汽车路径跟踪控制方法
NL2025573A NL2025573B1 (en) 2020-03-04 2020-05-13 Method for controlling path tracking of an autonomous vehicle with input saturation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010145290.4A CN111176302B (zh) 2020-03-04 2020-03-04 输入饱和的自动驾驶汽车路径跟踪控制方法

Publications (2)

Publication Number Publication Date
CN111176302A true CN111176302A (zh) 2020-05-19
CN111176302B CN111176302B (zh) 2021-04-20

Family

ID=70626139

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010145290.4A Active CN111176302B (zh) 2020-03-04 2020-03-04 输入饱和的自动驾驶汽车路径跟踪控制方法

Country Status (2)

Country Link
CN (1) CN111176302B (zh)
NL (1) NL2025573B1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111824146A (zh) * 2020-06-19 2020-10-27 武汉理工大学 一种路径跟随模型预测控制方法、系统、装置及存储介质
CN111897344A (zh) * 2020-08-14 2020-11-06 清华大学 一种兼顾稳定性的自动驾驶汽车路径跟踪控制方法
CN111959500A (zh) * 2020-08-07 2020-11-20 长春工业大学 一种基于轮胎力分配的汽车路径跟踪性能提升方法
CN112829766A (zh) * 2021-02-07 2021-05-25 西南大学 一种基于分布式驱动电动车辆的自适应路径跟踪方法
CN113022567A (zh) * 2021-03-03 2021-06-25 南京航空航天大学 一种基于Popov超稳定性的智能车路径跟踪控制方法
CN113126623A (zh) * 2021-04-13 2021-07-16 吉林大学 一种考虑输入饱和的自适应动态滑模自动驾驶车辆路径跟踪控制方法
CN113176733A (zh) * 2021-04-27 2021-07-27 广东工业大学 一种基于切换控制的自主车辆路径跟踪与稳定性控制方法
CN113212431A (zh) * 2021-06-09 2021-08-06 中国第一汽车股份有限公司 一种跟踪控制方法、装置、设备及存储介质
CN113830088A (zh) * 2021-10-08 2021-12-24 中南大学 一种智能半挂牵引车轨迹跟踪预测控制方法与车辆
CN114114929A (zh) * 2022-01-21 2022-03-01 北京航空航天大学 一种基于lssvm的无人驾驶车辆路径跟踪方法
WO2023016613A1 (de) * 2021-08-12 2023-02-16 Continental Autonomous Mobility Germany GmbH Verfahren und system zur steuerung eines fahrzeugs

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070239350A1 (en) * 2006-04-07 2007-10-11 Zumsteg Philip J Multi-function tracking device with robust asset tracking system
CN102495631A (zh) * 2011-12-09 2012-06-13 中国科学院合肥物质科学研究院 一种无人驾驶车辆跟踪预定轨迹的智能控制方法
CN106681154A (zh) * 2017-03-01 2017-05-17 重庆大学 针对不确定质心和未知输入饱和的电动车自适应控制方法
CN106909151A (zh) * 2017-01-22 2017-06-30 无锡卡尔曼导航技术有限公司 用于农机无人驾驶的路径规划及其控制方法
CN107490968A (zh) * 2017-09-29 2017-12-19 山东省计算中心(国家超级计算济南中心) 自动驾驶汽车的自适应分层递阶路径跟踪控制方法
CN107831761A (zh) * 2017-10-16 2018-03-23 中国科学院电工研究所 一种智能车的路径跟踪控制方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109358621B (zh) * 2018-09-30 2019-05-07 山东省计算中心(国家超级计算济南中心) 自动驾驶汽车轨迹跟踪控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070239350A1 (en) * 2006-04-07 2007-10-11 Zumsteg Philip J Multi-function tracking device with robust asset tracking system
CN102495631A (zh) * 2011-12-09 2012-06-13 中国科学院合肥物质科学研究院 一种无人驾驶车辆跟踪预定轨迹的智能控制方法
CN106909151A (zh) * 2017-01-22 2017-06-30 无锡卡尔曼导航技术有限公司 用于农机无人驾驶的路径规划及其控制方法
CN106681154A (zh) * 2017-03-01 2017-05-17 重庆大学 针对不确定质心和未知输入饱和的电动车自适应控制方法
CN107490968A (zh) * 2017-09-29 2017-12-19 山东省计算中心(国家超级计算济南中心) 自动驾驶汽车的自适应分层递阶路径跟踪控制方法
CN107831761A (zh) * 2017-10-16 2018-03-23 中国科学院电工研究所 一种智能车的路径跟踪控制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHANGFANG CHEN等: "Hierarchical Control for Path Tracking of Autonomous Vehicles", 《51ST IEEE CONFERENCE ON DECISION AND CONTROL》 *
武星等: "自动导引车路径跟踪和伺服控制的混合运动控制", 《机械工程学报》 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111824146A (zh) * 2020-06-19 2020-10-27 武汉理工大学 一种路径跟随模型预测控制方法、系统、装置及存储介质
CN111959500A (zh) * 2020-08-07 2020-11-20 长春工业大学 一种基于轮胎力分配的汽车路径跟踪性能提升方法
CN111959500B (zh) * 2020-08-07 2022-11-11 长春工业大学 一种基于轮胎力分配的汽车路径跟踪性能提升方法
CN111897344B (zh) * 2020-08-14 2021-11-16 清华大学 一种兼顾稳定性的自动驾驶汽车路径跟踪控制方法
CN111897344A (zh) * 2020-08-14 2020-11-06 清华大学 一种兼顾稳定性的自动驾驶汽车路径跟踪控制方法
CN112829766A (zh) * 2021-02-07 2021-05-25 西南大学 一种基于分布式驱动电动车辆的自适应路径跟踪方法
CN113022567A (zh) * 2021-03-03 2021-06-25 南京航空航天大学 一种基于Popov超稳定性的智能车路径跟踪控制方法
CN113126623A (zh) * 2021-04-13 2021-07-16 吉林大学 一种考虑输入饱和的自适应动态滑模自动驾驶车辆路径跟踪控制方法
CN113176733A (zh) * 2021-04-27 2021-07-27 广东工业大学 一种基于切换控制的自主车辆路径跟踪与稳定性控制方法
CN113176733B (zh) * 2021-04-27 2023-06-16 广东工业大学 一种基于切换控制的自主车辆路径跟踪与稳定性控制方法
CN113212431A (zh) * 2021-06-09 2021-08-06 中国第一汽车股份有限公司 一种跟踪控制方法、装置、设备及存储介质
WO2023016613A1 (de) * 2021-08-12 2023-02-16 Continental Autonomous Mobility Germany GmbH Verfahren und system zur steuerung eines fahrzeugs
CN113830088A (zh) * 2021-10-08 2021-12-24 中南大学 一种智能半挂牵引车轨迹跟踪预测控制方法与车辆
CN114114929A (zh) * 2022-01-21 2022-03-01 北京航空航天大学 一种基于lssvm的无人驾驶车辆路径跟踪方法

Also Published As

Publication number Publication date
NL2025573A (en) 2021-04-20
NL2025573B1 (en) 2021-04-22
CN111176302B (zh) 2021-04-20

Similar Documents

Publication Publication Date Title
CN111176302B (zh) 输入饱和的自动驾驶汽车路径跟踪控制方法
Hang et al. LPV/H∞ controller design for path tracking of autonomous ground vehicles through four-wheel steering and direct yaw-moment control
CN107831761B (zh) 一种智能车的路径跟踪控制方法
CN113320542B (zh) 一种自动驾驶车辆的跟踪控制方法
CN1974297B (zh) 基于预观的车辆横向控制的方法及设备
CN111007722B (zh) 一种四轮转向自动驾驶汽车横向鲁棒容错控制系统及方法
CN108773376B (zh) 一种融合驾驶意图的汽车多目标分层协同控制与优化方法
CN108839652B (zh) 一种车辆失稳可控域的自动驾驶紧急避让系统
Chen et al. Design of lane keeping system using adaptive model predictive control
Xu et al. Model predictive control for lane keeping system in autonomous vehicle
Solmaz et al. A methodology for the design of robust rollover prevention controllers for automotive vehicles: Part 2-Active steering
CN111002976B (zh) 一种基于模糊自适应pid控制的智能车辆抗侧风控制方法
Imine et al. Switched control for reducing impact of vertical forces on road and heavy-vehicle rollover avoidance
CN113009829B (zh) 一种智能网联车队纵横向耦合控制方法
CN113460088A (zh) 基于非线性轮胎和驾驶员模型的无人车路径跟踪控制方法
US20230131835A1 (en) Apparatus for controlling autonomous driving of independent driving electric vehicle and method thereof
CN111352442A (zh) 一种基于鲁棒H infinite控制的牵引式挂车轨迹跟踪方法
CN113848942A (zh) 一种约束导向的智能网联汽车鲁棒换道合流控制方法
CN109849898A (zh) 基于遗传算法混合优化gpc的车辆横摆稳定性控制方法
CN114148403A (zh) 一种线控转向系统多工况稳定性控制方法
Floren et al. An integrated control approach for the combined longitudinal and lateral vehicle following problem
CN114502450A (zh) 机动车辆横向和纵向引导中的死区时间补偿技术
CN111413979A (zh) 一种基于快速模型预测的汽车轨迹跟踪控制方法
Kapania et al. An autonomous lanekeeping system for vehicle path tracking and stability at the limits of handling
Yakub et al. Autonomous ground vehicle of path following control through model predictive control with feed forward controller

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant