NL2025573B1 - Method for controlling path tracking of an autonomous vehicle with input saturation - Google Patents

Method for controlling path tracking of an autonomous vehicle with input saturation Download PDF

Info

Publication number
NL2025573B1
NL2025573B1 NL2025573A NL2025573A NL2025573B1 NL 2025573 B1 NL2025573 B1 NL 2025573B1 NL 2025573 A NL2025573 A NL 2025573A NL 2025573 A NL2025573 A NL 2025573A NL 2025573 B1 NL2025573 B1 NL 2025573B1
Authority
NL
Netherlands
Prior art keywords
denotes
vehicle
formula
indicates
matrix
Prior art date
Application number
NL2025573A
Other languages
Dutch (nl)
Other versions
NL2025573A (en
Inventor
Chen Changfang
Shu Minglei
Liu Ruixia
Yang Yuanyuan
Wei Nuo
Xu Jiyong
Original Assignee
Shandong Computer Science Ct Nat Supercomputer Ct Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Computer Science Ct Nat Supercomputer Ct Jinan filed Critical Shandong Computer Science Ct Nat Supercomputer Ct Jinan
Publication of NL2025573A publication Critical patent/NL2025573A/en
Application granted granted Critical
Publication of NL2025573B1 publication Critical patent/NL2025573B1/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0223Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving speed control of the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18145Cornering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/10Path keeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/06Improving the dynamic response of the control system, e.g. improving the speed of regulation or avoiding hunting or overshoot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0019Control system elements or transfer functions
    • B60W2050/0028Mathematical models, e.g. for simulation
    • B60W2050/0031Mathematical model of the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0019Control system elements or transfer functions
    • B60W2050/0028Mathematical models, e.g. for simulation
    • B60W2050/0031Mathematical model of the vehicle
    • B60W2050/0035Multiple-track, 3D vehicle model, e.g. including roll and pitch conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/14Yaw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2530/00Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
    • B60W2530/20Tyre data

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

A method for controlling path tracking of an autonomous vehicle with input saturation is provided. The robust Hoo path tracking controller is designed to solve the 5 problems such as network delays and input saturation during the control of path tracking of the autonomous vehicle and improve the path tracking performance of the vehicle under extreme driving conditions. The lateral velocity and the yaw rate of the vehicle are adjusted to improve the vehicle steerability and stability as well as achieve path tracking control of the autonomous vehicle. The robust Hoo path tracking control lO gain matrix for the autonomous vehicle can be obtained by solving the linear matrix inequality, which is easy to compute. The uncertainty of the vehicle dynamics model and effects of external disturbances are considered in this path tracking control design, which improves the robustness of the path tracking control algorithm. A static output feedback controller is designed to realize ideal path tracking control as well as 15 significantly cut down the cost of the control system.

Description

-1-
METHOD FOR CONTROLLING PATH TRACKING OF AN AUTONOMOUS VEHICLE WITH INPUT SATURATION
TECHNICAL FIELD The present disclosure relates to the technical field of autonomous vehicles, and more particularly, to a method for controlling vehicle tracking with input saturation.
BACKGROUND With the rapid development of the new generation of information technology and improvements in people's requirements for vehicle safety and comfort, the path tracking control of autonomous vehicles has been an area of concentration in recent years and is widely used in mobile robots and automatic parking systems. Autonomous vehicles contribute to reducing labor intensity, improving driving safety, mitigating the accident, and improving road traffic efficiency. According to statistics from the automobile industry, driven by the goal of relieving road congestion and traffic accidents, most automobiles would be unmanned in the future and expected to dominate road traffic. For autonomous vehicles, one of the basic problems to be solved is to realize the path tracking control of vehicles, and the control goal thereof is achieved by allowing vehicles to track the ideal path and maintaining the steady-state path tracking error (i.e., the lateral offset and heading error) zero.
Path tracking control algorithms for autonomous vehicles include sliding mode control, adaptive control, robust Heo control, neural network control, model predictive control, linear matrix inequation (LMI) optimization control, and Lyapunov-function- based control. Most of these control methods only consider the vehicle steerability and stability. However, the problems of delays and data packet loss inevitably exist during the measurement of vehicle states and signal transmission. Moreover, in practical applications, there are physical limits to the actuator. For example, under extreme driving conditions, the tire force may reach saturation. When the system enters a
2- saturation state, the output of the controller and the input of the controlled object would not match, which greatly reduces the performance of the controller and even destabilizes the closed-loop system. Therefore, the method for realizing the path tracking control of autonomous vehicles with network delays and actuator saturation remains a challenging problem in the industrial and academic fields.
SUMMARY In order to overcome the shortcomings of the prior art, the present disclosure provides a method for controlling vehicle tracking with input saturation, which can realize excellent steering stability and path tracking performance of an autonomous vehicle under an extreme driving condition. The present disclosure adopts the following technical solutions to overcome the above-mentioned technical problems. A method for controlling path tracking of an autonomous vehicle with input saturation includes the following steps: a) establishing a vehicle dynamics model by formula (1): ! FE +F d Vv, = —( + Lv +d, (1) m ‚1 1 (1) j=—(I,F,—LF,)+—AM, +d)
LM I where, V, denotes the first derivative of V,, 7 denotes the first derivative of Y, V, denotes a longitudinal velocity of a center of mass CG of a vehicle, V, denotes a lateral velocity of the center of mass CG of the vehicle, } denotes a yaw rate of the vehicle, 77 denotes the mass of the vehicle, / - denotes a rotational inertia of the vehicle about the Z -axis, d, (£ ) and d 2 (¢ ) both denote unmodeled dynamics, Fy denotes a lateral force of a front tire of the vehicle, and F, denotes a lateral force of a rear tire of the vehicle; an external yaw moment AM ET calculated by formula (2) 2 4 v { . 0 i v AM, = YF [(=1)],c088, +1,sind,1+ > (DLE, 6 i=1 i=3 where, F, denotes a longitudinal force of the /" tire, l f denotes a distance from the center of mass CG of the vehicle to a front axle, / + denotes a distance from the center of mass CG of the vehicle to a rear axle, / + denotes a wheelbase, and 0 f denotes a steering angle of a front wheel, b) establishing a path tracking model by formula (3): & Ve) ¢ / 3) Ss where, l, denotes a horizontal distance between the center of mass CG of the vehicle and a sensor, Y e denotes a lateral offset [, distant from the center of mass CG of the vehicle, and Ó, denotes a heading error; an actual yaw angle @ of the vehicle is calculated by formula (4): $=9+%, (4) where, Ó, denotes a yaw angle of a tangent direction of a reference path relative to a global coordinate system, when the vehicle follows the reference path with a curvature of at the longitudinal velocity V,, 9, =V.0 ref , where Ó, denotes the first derivative of Ó, ; c) establishing a dynamic path tracking model by formula (5): x(t) = Ax(t)+ Bu(t) + d(t) (5)
4e where, X(Z) denotes the first derivative of X(£), X(#) denotes a state , variable, x(t ) = [v,., Vs 9. v,] ‚ 1" denotes a matrix transpose, u(t ) denotes ~ 7 an input variable, u(t) = [ò, AM, ] | and oo Tr d(t) = |, © d,() TV Pe AN ; the system matrix A and the system matrix B are calculated by formula (6); C +C Cl, -Cl | ! Sf Vv, 0 0 my, my, “1 “1 ~ 72 + 72 a= Cl, Cl, Cc A+ CL _ 0 1 0 0 1 [ v.
O i © Cr Cy 0 0 m a B= : 1 0 — 0 0 7 z d) a change in the longitudinal velocity V, of the vehicle is expressed by the formula 1/ Vv, = (1+ A) / Vv. , where A, denotes a time-varying parameter and | A IS 1, V. denotes a nominal value of V, | the system matrix A is expressed as A=A,+AA, where AA=EMF, M =A, and F denotes an identity matrix; A, is calculated by formula (7), and £ is calculated by formula (8);
C,+C, GN Lr ILO 00 MV.
MV, | A, =| — C, 1, ' Cr _ C, 1; Mead 0 0 IV, Iv, (7) 0 1 0 0 1 I Vv, 0 C,+C CI, CI AL rn tt ry v. 0 0 my.
MV, 1 Y TY 2 1 2 rol C ir Cl.
Cl +C I 0 0 Lv, Ly, (8) 0 0 0 0 0 0 Vv. 0 e) establishing a vehicle path tracking control system by formula (9): X(1) = (4, + ADx(1) + Bo(u(®)) + d(1) 9 z(t) = C.x(1) ©) 5 where, C, denotes a fourth-order identity matrix, u(t ) eR” where R” denotes an n-dimensional real space, out) =[o(u (1), o(u,(2)),---, ou, (6))] , U ars it u, (¢) > U max 0 (u, (0) 7 u, (£), if == U arr = u, (f) < Une i=1 2 Rh TU max? if U, (7) < “Ua where, Wimax denotes a maximum value of u, (¢ ) , and U, (¢ ) denotes the i element of U(?) : f) establishing a state feedback path tracking controller by formula (10): u(t) = Kx(t—7(1)) (10) where, T(t ) denotes a delay, T(t ) 7 +7,, T, denotes a transmission
-6- delay of a control signal from the sensor to the controller, 7, denotes a delay of a control signal from the controller to an actuator, and K denotes a control gain matrix to be designed, g) establishing a closed-loop system for controlling the path tracking of the autonomous vehicle by formula (11): (1) = (4, +AA)x(E) + Bo(Kx(t — (1) + d(t)
11 =(£) = Cx(1) (1h) wherein when d(#)=0 | the closed-loop system for controlling the path tracking of the autonomous vehicle established by formula (11) 1s asymptotically stable; when d(t) #0 the robust H „ disturbance suppression performance index }7 is calculated by formula (12); Lr 2f gr | 27 (Dz(Ddt Sy | d" (t)d(t)dt 12) h) calculating positive definite matrices X >0 and Q > 0, general matrices Y, , Y, , and N ; , and the quantity O > 0 to satisfy the linear matrix inequality shown in formula (13), where i =1,2,3;
7e — — — 5 ) ï ~T An En EB, { N, oF XI AC, + =, 2, 0 NM 0 0 0 * tE.
I N, OF 0 0 xk * * vl] 0 0 0 0 Q,= nev <0 * * * * TO 0 0 0 (13) * * * * * 9/7 0 0 x x * ze x * —0f 0 sk sk xk sk % xk % JI u? y _ N ae } . . ma IW <0, i=1,2,...,0 Vai —p X where, * in formula (13) denotes the transposition of the symmetric elements of the matrix, and V 1 denotes a performance index. =, = A,X +XA +N, +N], — : 17 UT 2, =BS(v, YY) N,+N,, _ T TT Sp 7 XA, + N, > _ 7 UT Ep = NN, _ ’ TT Soy = [BS (4, Y,,Y,)] —N;, =,=70-2X ViVi t+ (1 u VO Sk, ,)= : Vin + (1 = V, Vi HY += Hi) Su, Y, > Y, )] = . Hoy Vin + (1 = H, Von where, Vri denotes the i" line of Y. where i=12,..., n.
Vhi denotes the /" line of Y, , where I= L, 2, on: Vi denotes the i element of V ,
-8- where I =1,2,....1 : H, denotes the i™ element of MH ‚ where i=L2,....n.
T denotes an upper bound of delay T(t ) ‚ Pand Una both denote a positive constant, vel, uel’, V = {w eR" :w =lor 0} 1) calculating a gain matrix of the vehicle state feedback controller by formula (14):
_ ~1 K=Yx" 14 and solving the convex optimization problem in formula (15) to obtain the optimal robust H state feedback path tracking controller: min y, st.
Q, <0, X > 0, O0 >0, u (15) YY, Ni=12,3,ò>0 Further, in step a), the lateral force F yr of the front tire of the vehicle and the lateral force F w of the rear tire of the vehicle are calculated by the formulas Fy =2C f a, > Fy = -2C., , where C, denotes a cornering stiffness of the front wheel, C, denotes a cornering stiffness of the rear wheel, a, denotes a cornering angle of the front wheel, CX. denotes a cornering angle of the rear wheel, — 0. — Lr — Yy = Lr — Vy and Fr = 9 » Oy = : Vv, Vv, Vv, Vv Preferably, the curvature fs in step b) is obtained by a global positioning system (GPS) combined with a geographic information system (GIS). Further, after step g), the method further includes the following steps:
29. 7 ‚ 2 C X= } . h2) selecting an output vector J 2 7. 9. > el ‚ and calculating the positive definite matrices X, >0, X,>0, Q>0, general matrices Ve, +, ‚ and N i , and quantity 0>0 to satisfy the linear matrix inequality shown in formula (16), where 1 =1,2.3 Z, 8, Es I No XF' XC! + 5,082, 0 NM 0 0 0 + + 2. I NO 0 0 2 * * * vl 0 0 0 0 y 1 ml < 0 xk * % xk —7 . TO 0 0 0 16)
+k +k +k +k sk —0f 0 0
+k +k +k +k sk +k —0f 0 xk +k x +k xk x +k —7 u? 7 ma hi . a "<0, i=12,..,n Nui -p X where, * in formula (16) denotes the transposition of the symmetric elements of the matrix, and y | denotes the performance index;
-10- =, =A4,X+X4 +N, +N/, S BSV FT) NNT =p = BSV, YY) N, +N,, S= VAT NT =13 = XA, + N, 2 r— A7 AT Ey =—N,—N,, = vv UT ArT ZE, =[BS(4, 1 Y,)] — Ny, E,,=70-2X, X = NX NG +GX GG , U T v _ T Y,=YG JY, =YG ? ViVi + (1 VOY Sw, Yr) = , Vo Vi + (1 V, VV in hy, +1=p)y, S(p,Y, Y= : Ho Vin + (1 H, Vn where, Vi denotes the i" line of Y, where i=12,....n : Vhi denotes the i line of XY, , where i=1L2,...n : V, denotes the i element of V , where i=12,....n : H, denotes the i" element of H ‚ where i=12,....n : where, T denotes the upper bound of delay T({ ) , Pand Umar both denote a positive constant, vel, uel, V = fw eR":w =lor 0} . 12) calculating the gain matrix of the vehicle output feedback controller by formula (17): vv -1 K=rX (17) wherein the column of N, is a basis of a null space of the output matrix €, and
-11- the matrix G is calculated by formula (18): G=Cl+N,L L=NIXCT(C XC (1%) where, Cl = C, | (C,C, | 17! denotes the Moore-Penrose generalized inverse matrix of the matrix C,, and N J denotes the Moore-Penrose generalized inverse matrix of the matrix N,,.
The advantages of the present disclosure are as follows. The robust Hoo path tracking controller is designed to solve the problems such as network delays and input saturation during the control of path tracking of the autonomous vehicle and improve the path tracking performance of the vehicle under extreme driving conditions. The lateral velocity and the yaw rate of the vehicle are adjusted to improve the vehicle steerability and stability as well as achieve path tracking control of the autonomous vehicle. The robust Hoo path tracking control gain matrix for the autonomous vehicle can be obtained by solving the linear matrix inequality, which is easy to compute. The uncertainty of the vehicle dynamics model and effects of external disturbances are considered in this path tracking control design, which improves the robustness of the path tracking control algorithm. A static output feedback controller is designed to realize ideal path tracking control as well as significantly cut down the cost of the control system.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram showing the vehicle dynamics model of the present disclosure; and FIG. 2 1s a schematic diagram showing the vehicle path tracking of the present disclosure.
-12-
DETAILED DESCRIPTION OF THE EMBODIMENTS The present disclosure will be further described hereinafter with reference to FIG. 1 and FIG. 2. A method for controlling path tracking of an autonomous vehicle with input saturation includes the following steps: a) A vehicle dynamics model is established by formula (1), as shown in FIG. 1. 1 al = (FE) vd m . 1 1 1) y=(LF LF, )+—AM_+d,(1) LN: "IJ where, v, denotes the first derivative of Vv, , y denotes the first derrvative of Y, V. denotes a longitudinal velocity of a center of mass CG of a vehicle, V, denotes a lateral velocity of the center of mass CG of the vehicle, 2 denotes a yaw rate of the vehicle, 77? denotes the mass of the vehicle, 1 z denotes a rotational inertia of the vehicle about the Z -axis, d 1 (£ ) and d 2 (1 ) both denote unmodeled dynamics, F yr denotes a lateral force of a front tire of the vehicle, and FE, denotes a lateral force of a rear tire of the vehicle; an external yaw moment AM z IS calculated by formula (2); 2 | 4 : { . o i : AM, => Fl, cosó +1 sing 1+) CDF, 6) i=1 i=3 where, F, denotes a longitudinal force of the /" tire, l f denotes a distance from the center of mass CG of the vehicle to a front axle, / + denotes a distance from the center of mass CG of the vehicle to a rear axle, / + denotes a wheelbase, and 0 f denotes a steering angle of a front wheel; b) A path tracking model is established by formula (3), as shown in FIG. 2.
-13- ¢ Ve) e 0] (8) $ where, [ s denotes a horizontal distance between the center of mass CG of the vehicle and a sensor, y e denotes a lateral offset , distant from the center of mass CG of the vehicle, and 9, denotes a heading error.
An actual yaw angle @ of the vehicle is calculated by formula (4): ¢ = Ó, + Ó, (4) where, ¢, denotes a yaw angle of a tangent direction of a reference path relative to a global coordinate system, when the vehicle follows the reference path with a curvature of Pref at the longitudinal velocity V, , Ó, = vp ref , where Ó, denotes the first derivative of Ó, c) A dynamic path tracking model is established by formula (5).
X(t) = Ax(£) + Bu(t) + d(¢) (5) where, X(#) denotes the first derivative of X(£), X(f) denotes a state 7 variable, X(f)= [v,, V,9,, 3,1 | T denotes a matrix transpose, (1) denotes 7 an input variable, u(t) = [ò, AM] ‚ and 7 d(t) = [a © d,(t) VP AL oop | ‚the system matrix A and the system matrix B are calculated by formula (6),
-14- Cc, +C Cd, Cl dn ALE v‚ 0 0 my, my, } “1 1 ~ 72 -~v 72 gl Cd, Ct, 5 C+ 00 Iv, Iv, 0 1 0 O 1 [ v. 0 | . © m I B= : 1 0 — 0 0 I,
d) A change in the longitudinal velocity V, of the vehicle changes is expressed by the formula 1/ Vv. = (1+ A, )/ V_, where A, denotes a time-varying parameter and | A, |< 1, V. denotes a nominal value of V, ‚the system matrix A is expressedasd =A, + A4, where Ad=EMF, M =A, and F denotes an identity matrix; A, is calculated by formula (7), and £ is calculated by formula (8); CC +C.
CA Cl ee tt Oy, 0 0 MV, MV, . Cl, -Cl, C+, 4, = 44 rr 44 er 0 0 Iv, Iv, (7) 0 1 0 0 1 I Vv, 0 Cc, +C cl, Cl LA L450 0 my, MV, 1 7 p2 + 2 rol Cd, Cl.
Cl +C I 0 0 0 0 0 0 0 0 Vv. 0
-15-
e) In order to complete the task of controlling the path tracking of the autonomous vehicle, the lateral offset y, and the heading error ¢_ of the vehicle should be as small as possible.
Moreover, the lateral stability of the vehicle can be improved by adjusting the lateral velocity and yaw angle.
Further, in consideration of saturation characteristics of the actuator, a vehicle path tracking control system is established by formula (9):
x(t) = (A, + Ax (1) + Bo (u(t) + d(t)
9
=(t) = C,x(1) (9)
where, C, denotes a fourth-order identity matrix, % ({ ) e R" , where R” denotes an n-dimensional real space,
| 7 o(u(t)) = [o(%, (¢ )), o(u, (1)), tS o(u, (¢ ))] > Ua» if u, (1) > U nar o(u,®)=3u), if-u,, <u()<u,, [0 on TU ax > if ú, (7) < “Ux where, Umax denotes a maximum value of U, (¢ ) , and u, (¢ ) denotes the i element of 24(Z)
f) A state feedback path tracking controller is established by formula (10):
u(t) = Kx(t—7(t)) (10) where, T(t ) denotes a delay, in the vehicle path tracking control system based on network control, the vehicle status and control signals generally have varying degrees of delay and packet loss during the transmission process, and T(t ) —=7, +7,, where 7; denotes a transmission delay of a control signal from the sensor to the controller, 7, denotes a delay of a control signal from the controller to the actuator, and K denotes a control gain matrix to be designed.
-16- g) A closed-loop system for controlling the path tracking of the autonomous vehicle is established by formula (11). X(1)=(A4, + AA)x(1) + Bo(Kx(t —7(1))) + d(¢) 11 =(1) = Caf) (1) The goal of controlling the path tracking of the autonomous vehicle is achieved by designing the robust H state/output feedback controller.
When d()=0 the closed-loop system (11) is asymptotically stable.
When d(t) #0 the robust H oo disturbance suppression performance index 1 is calculated by formula (12). 2 (0z()de <7 [dT (Dd(Dd 2 (0)z(0)de < yd" (Wd (dt a h) The robust H state feedback controller and the static output feedback controller are designed to solve the problems of network delay and input saturation during the control of the path tracking of the autonomous vehicle.
When d(t)=0 | the closed-loop system is asymptotically stable and satisfies the given HA disturbance suppression performance index, and the control gain matrix can be obtained by solving the corresponding linear matrix inequality, which is easy to compute.
The positive definite matrices X >0 and Q > 0, general matrices Ye , Y, , and N, , and the quantity Ô> 0 are calculated to satisfy the linear matrix inequality shown in formula (13), where i =1,2.3;
-17- = = = NT \ r ~T An En EB, { N, oF XI AC, + =, 2, 0 NM 0 0 0 * tE.
I N, off 0 0 * * Sy 0 0 0 0 Q,= nev <0 * x x x TO 0 0 0 (13) * * * * *% 9/7 0 0 +k * + * * + 0/7 0 * * xk x* * xk * JI u? y ~ Himax hi . ; 1150, i=L2,...n Voi p X where, * in formula (13) denotes the transposition of the symmetric elements of the matrix, and V 1 denotes a performance index. _ TT 77 Zi =A4A,X+X4, +N, +N, _ 17: IT =p = BS(v.Y,.Y,)-N, +N, 5 =, =XA +N! _ x7 FT 92 = —N, 7 N, > _ T x37 Zs =[BS (1, Ys Yl — N; > ZE =70-2X Viva TU=v)y, Sv.
YY) = : V, J kn + (1 = V, )y hn Het A= U) Vi SY, Y= : Ho Yim + (1 == U ) Vu where, Vri denotes the i* line of Y, where i=12,..., n.: Vhi denotes
-18- the i® line of Y, ‚ where I= 1, 2, on: V, denotes the i element of V , where i=12,...n : LU, denotes the i™ element of ye , where i=12,....n : T denotes the upper bound of delay T(t ) ‚ Pand U,,,. both denote a positive constant, vel, uel’, V = {w eR" :w =lor 0} 1) The gain matrix of the vehicle state feedback controller is calculated by formula (14): _ ~1 K=YX (14) The convex optimization problem in formula (15) is solved to obtain the optimal robust 7 state feedback path tracking controller. min jy, st.
Q,<0,X>0,0>0, (15) 7 . _ X YY, N.,i=123,0>0 Embodiment 1: Preferably, in step a), the lateral force Fy of the front tire of the vehicle and the lateral force EF, of the rear tire of the vehicle are calculated by the formulas by = 2C, a 1 Lk, = -2C.a, , where C, denotes a cornering stiffness of the front wheel, C, denotes a cornering stiffness of the rear wheel, a denotes a cornering angle of the front wheel, CX, denotes a cornering angle of the rear wheel, and JS J > Mp Embodiment 2: the curvature ef in step b) is obtained by a global positioning system (GPS)
-19- combined with a geographic information system (GIS). Embodiment 3: The robust A state feedback controller and the static output feedback controller are designed to solve the problems of network delay and input saturation during the control of the path tracking of the autonomous vehicle.
When d(1)=0 | the closed- loop system is asymptotically stable and satisfies the given H, disturbance suppression performance index, and the control gain matrix can be obtained by solving the corresponding linear matrix inequality, which is easy to compute.
Therefore, after step g), the method further includes the following steps: h2) Since it is difficult to measure the lateral velocity v, of the vehicle by low- cost sensors, in order to diminish the cost of the control system, an output vector 7 =(C,x = : : : y 2 7. 9. ‚Jy A is selected, the static output feedback path tracking controller is designed, and the positive definite matrices X, >0, X,>0, 0>0, general matrices Y. +, , and N i , and quantity 0> 0 are calculated to satisfy the linear matrix inequality shown in formula (16), where i=1,2,3 ; ~ = = Yi . 7 7 HZ, EZ, 1 N, oF XF XC, + 2 E, 0 NM 0 0 0 + + =. I NE 0 0 2 xk xk * vl 0 0 0 0 y 1 mi < 0 * +k +k * T 70 0 0 0 (16) % +k +k +k +k —0f 0 0 +k +k +k +k +k +k —of 0 + xk x xk xk x xk —7
-20- u? y imax hi . 7 A7 <0, i=l2,...n Yi —pP where, * 1n formula (16) denotes the transposition of the symmetric elements of the matrix, and y | denotes the performance index;
= U TU AT A7 vz
HE, =A4,X+X4, +N, +N, ,
= _ CT UN AN WT
—12 = BS(v.Y..Y,)-N, +N, ’
= VAT A7
Ez = AA, +N,
= _ ONT ArT
—22 = —N 2 N 20
= TTT WT
3 = [BS(4, YY, )] —N, >
HE, =TO-24X,
X= Ny X (Ny + GX,G',
U T v _ T
Y, = VG ‚TY, = TG >
Via + (1 u VO) Vi S(11.7,.7,) = Va Ven + (1 = V, Von LV += HM) Vn Su, 1, ,Y,)]= : Hy Vi + (1 H, Von where, Vri denotes the f! line of Y, , where i=l2,...n : Vhi denotes the i line of T, , where i=12,...n : V; denotes the i" element of V ‚ where i=12,...,n : U, denotes the 7! element of H ‚ where i=12,....n ;
where, T denotes the upper bound of delay T(t ) ‚ Pand Umar both denote a positive constant, vel”, uel’, V = fw eR" :w =1lor 0}
21-
12) The gain matrix of the vehicle output feedback controller is calculated by formula (17): 1-1 K=} A (17) The column of N, is a basis of a null space of the output matrix C,, and the matrix G is calculated by formula (18): G=C,+N,L _ NT 7 yl (18) L=N!xclc,xclhy C=C (CC) ized where, Ly 1, ( 2% ) denotes the Moore-Penrose generalized inverse matrix of the matrix C,, and N 0 denotes the Moore-Penrose generalized inverse matrix of the matrix N,.

Claims (1)

27 - Conclusies27 - Conclusions 1. Werkwijze voor het besturen van een padopsporing van een autonoom voertuig met invoerverzadiging, die de volgende stappen omvat: a) het tot stand brengen van een dynamisch model van een voertuig middels formule (1): =F +E d‚( = —V 1 Vy ( yf + ]) Vy + (8) nm . 1 1 (1) j=(LF, LF, )+—AM, +d,(t) LNV a waarbij, V, de eerste afgeleide van V, aanduidt, 7 de eerste afgeleide van 7 aanduidt, V, een longitudinale snelheid van een massazwaartepunt CG van een voertuig aanduidt, V, een laterale snelheid van het massazwaartepunt CG van het voertuig aanduidt, } een giersnelheid van het voertuig aanduidt, #7 de massa van het voertuig aanduidt, / z een rotatietraag van het voertuig om de Z-as aanduidt, d,(t) en d, (7) beide ongemodelleerde dvnamica aanduiden, Fy een laterale kracht van een voorband van het voertuig aanduidt en F+ ‚reen laterale kracht van een achterband van het voertuig aanduidt, waarbij een uitwendig giermoment AM z berekend wordt middels formule (2); 2 4 _ INT a IV AM, => F[(=1)1,cos6, +1; sind 1+ > (-V,F, (3 i=l i=3 waarbij, F “ een longitudinale kracht van de i® band aanduidt, [ f een afstand van het massazwaartepunt CG van het voertuig naar een vooras aanduidt, [ een afstand van het massazwaartepunt CG van het voertuig naar een achteras aanduidt, 1, een wielbasis aanduidt en ò seen stuurhoek van een voorwiel aanduidt;A method for controlling a path finding of an autonomous vehicle with input saturation, comprising the following steps: a) establishing a dynamic model of a vehicle by formula (1): = F + E d, (= - V 1 Vy (yf +]) Vy + (8) nm. 1 1 (1) j = (LF, LF,) + - AM, + d, (t) LNV a where, V, the first derivative of V, 7 indicates the first derivative of 7, V, indicates a longitudinal speed of a center of mass CG of a vehicle, V, indicates a lateral speed of the center of mass CG of the vehicle,} indicates a yaw rate of the vehicle, # 7 indicates the mass of the vehicle, / z denotes a rotational slowdown of the vehicle about the Z axis, d, (t) and d, (7) denote both unmodulated dvnamica, Fy denotes a lateral force of a front tire of the vehicle and F +, reen indicates lateral force of a rear tire of the vehicle, where an external yaw moment AM z is calculated by means of formula (2); 2 4 _ INT a IV AM, => F [(= 1) 1, cos6, +1; sind 1+> (-V, F, (3 i = li = 3 where, F “indicates a longitudinal force of the i® tire, [f indicates a distance from the center of mass CG of the vehicle to a front axle, [a distance from the center of mass CG of the vehicle to a rear axle, 1, indicates a wheelbase and ò indicates a steering angle of a front wheel; -23 - b} het tot stand brengen van een padopsporingsmodel middels formule (3): 4 = Ye JY «eT 3)-23 - b} establishing a path finding model using formula (3): 4 = Ye JY «eT 3) S waarbij, A een horizontale afstand tussen het massazwaartepunt CG van het voertuig en een sensor aanduidt, Ve een laterale verschuiving l op afstand van het massazwaartepunt CG van het voertuig aanduidt en 9, een aankomende fout aanduidt; waarbij een actuele gierhoek ¢ van het voertuig berekend wordt middels formule (4): ¢ = p, + Ó, (4) waarbij, d, een gierhoek van een tangentiële richting van een referentiepad ten opzichte van een globalecoördinatensysteem aanduidt, indien het voertuig het referentiepad volgt met een kromming van ef bij de longitudinale snelheid V, Ó, = Ve Pres , waarbij Ó, de eerste afgeleide van @, aanduidt; c) het tot stand brengen van een dynamisch padopsporingsmodel middels formule (5): X(t) = Ax(t)+ Bu(t) + d(1) (5) waarbij, X(f) de eerste afgeleide van X(#) aanduidt, X(f) een 7 toestandsvariabele aanduidt, x(t) = [v., 7,6, Ve], 7 een 7 matrixtransponering aanduidt, u(t) een invoervariabele, u(t )= [ò, AM ‚1 enS where, A indicates a horizontal distance between the center of mass CG of the vehicle and a sensor, Ve indicates a lateral shift l distant from the center of mass CG of the vehicle and 9, indicates an upcoming fault; where a current yaw angle ¢ of the vehicle is calculated by formula (4): ¢ = p, + Ó, (4) where, d, indicates a yaw angle of a tangential direction of a reference path relative to a global coordinate system, if the vehicle indicates the follows reference path with curvature of ef at the longitudinal velocity V, Ó, = Ve Pres, where Ó indicates the first derivative of @; c) establishing a dynamic path finding model by formula (5): X (t) = Ax (t) + Bu (t) + d (1) (5) where, X (f) is the first derivative of X ( #), X (f) denotes a 7 state variable, x (t) = [v., 7,6, Ve], 7 denotes a 7 matrix transposition, u (t) an input variable, u (t) = [ò, AM, 1 and T d(t) = 4, (t) d, (1) VPs SAN aanduidt; waarbij de systeemmatrix A en de systeemmatrix B berekend worden middels formule (6);T d (t) = 4, (t) d, (1) denotes VPs SAN; wherein the system matrix A and the system matrix B are calculated by formula (6); 24. C,+C, Cl, Cl fr LL Pry 000 my, my. 1 1 + 72 7 72 A Eh CC 0 1 0 0 1 [ v. 0 | . (6) Cc Cy 0 0 m I.24. C, + C, Cl, Cl fr LL Pry 000 my, my. 1 1 + 72 7 72 A Eh CC 0 1 0 0 1 [v. 0 | . (6) Cc Cy 0 0 m I. B= 1 0 — 0 0 I,B = 1 0 - 0 0 I, d) een verandering in de longitudinale snelheid V, van het voertuig uitgedrukt wordt door de formule 1/ Vr =(1+4,)/ Vv, waarbij A, een tijdsvariérende parameter en | A, <1 aanduidt, V, een nominale waarde van V,d) a change in the longitudinal speed V, of the vehicle, is expressed by the formula 1 / Vr = (1 + 4,) / Vv, where A, a time-varying parameter and | A, <1 denotes, V, a nominal value of V, aanduidt, de systeemmatrix A uitgedrukt wordt als 4A=A4 +AA, waarbij AA=EMF, M= A, en F een identiteitsmatrix aanduidt; waarbij A, berekend wordt middels formule (7) en £ berekend wordt middels formule (8); CC +C, Cd Cl + SL gy 0 0 my, mv. “1 “+ “1 72 “1 72 4 Er CHC 4 | 0 1 0 0 1 [ v 0denotes the system matrix A is expressed as 4A = A4 + AA, where AA = EMF, M = A, and F denotes an identity matrix; wherein A 1 is calculated by formula (7) and £ is calculated by formula (8); CC + C, Cd Cl + SL gy 0 0 my, pl. “1“ + “1 72“ 1 72 4 Er CHC 4 | 0 1 0 0 1 [v 0 25. CC, +C, cl CC tT rg 0 0 MV. my, . + Y ~ 32 ~ 72 Fe CC CA, 0 0 Lv, Iv, (8) 0 0 0 0 0 0 Vv. 0 e) het tot stand brengen van een voertuigpadopsporingsbesturingssysteem middels formule (9): (0) = (A, + AD)x(0) + Bo(u()) + dt) u (9) z(t) = Cy x(1) waarbij, C, een vierde-orde identiteitsmatrix aanduidt, u(t) € R”. waarbij R” een n-dimensionale reële ruimte aanduidt, 5 5 5 T out) =[o(u, (1), (4, (6), (u, (1))] , U ax? if U; (1) > Ua o (4, (1)) 7 u, (1), if oo U nae 5 u, (2) S U par i=1 2 Nn TU nere > if ú, ({) < TU ax waarbij, Uimax een maximum waarde van u, (£ ) aanduidt en 4, (¢ ) het i% element van #(?) aanduidt; f) het tot stand brengen van een toestandsterugkoppeling- padopsporingsbesturing middels formule (10): u(t) = Kx(t —7(1)) (10) waarbij, (1) een vertraging aanduidt, 7(1) =T,+7,. 7, een overbrengingsvertraging van een besturingssignaal van de sensor naar de besturing aanduidt, 7; een vertraging van een besturingssignaal van de besturing naar een actuator aanduidt en K een besturingsopbrengstmatrix die ontworpen dient te worden, aanduidt;25. CC, + C, cl CC tT rg 0 0 MV. my,. + Y ~ 32 ~ 72 Fe CC CA, 0 0 Lv, Iv, (8) 0 0 0 0 0 0 Vv. 0 e) establishing a vehicle path tracking control system by formula (9): (0) = (A, + AD) x (0) + Bo (u ()) + dt) u (9) z (t) = Cy x (1) where, C, denotes a fourth order identity matrix, u (t) € R ”. where R ”denotes an n-dimensional real space, 5 5 5 T out) = [o (u, (1), (4, (6), (u, (1))], U ax? if U; ( 1)> Ua o (4, (1)) 7 h, (1), if oo U nae 5 h, (2) SU par i = 1 2 Nn TU nere> if ú, ({) <TU ax where, Uimax denotes a maximum value of u, (£) and 4, (¢) denotes the i% element of # (?); F) establishing a state feedback path trace control by formula (10): u (t) = Kx (t -7 (1)) (10) where, (1) indicates a delay, 7 (1) = T, + 7, 7, indicates a transmission delay of a control signal from the sensor to the controller, 7; delay of a control signal from the controller to an actuator and K indicates a control gain matrix to be designed; -26 - g) het tot stand brengen van een geslotenlussysteem voor het besturen van de padopsporing van het autonome voertuig middels formule (11): X(t) = (A, +AA)x(1) + Bo(Kx(t — (1) + d(£) : 11 =(1) = Cx(1) (th waarbij indien d(1)7=0 , het geslotenlussysteem voor het besturen van de padopsporing van het autonome voertuig dat tot stand gebracht is middels formule (11), asymptotisch stabiel is; indien a(t) #0, de robuuste MH, storingsonderdrukking-prestatie-index ” berekend wordt middels formule (12); (znd <7: | d (0d (td oF (H)z(t)dt <p; , (1)d(t)dt (12) h) het berekenen van positieve eindige matrices X>0 en O>0, algemene matrices Y, , Y,, en N, en de kwantiteit 0>0 om te voldoen aan de lineairematrix-ongelijkheid die getoond is in formule (13), waarbij 1 =1,2,3; _ — _ TF \ Tr ~T ZE, Sp Sy / N, oF AF AC, + =, E, 0 NM, 0 0 0 * «= EZ, IN, oF 0 0 « x x 1 0 0 0 0 Q,= nto vo <0 * * * * TO 0 0 0 (13) * * * * * —0f 0 0 * * * * * * —of 0 * * * * * * * / 2 U. ma Vn |<0, i=12...n Vi -p AX waarbij, * in formule (13) de transpositie van de symmetrische elementen van de matrix aanduidt en J’ 1 een prestatie-index aanduidt,-26 - g) Establish a closed loop system for controlling the path finding of the autonomous vehicle by formula (11): X (t) = (A, + AA) x (1) + Bo (Kx (t - (1) + d (£): 11 = (1) = Cx (1) (th where if d (1) 7 = 0, the closed loop system for controlling the path finding of the autonomous vehicle established by formula (11), is asymptotically stable, if a (t) # 0, the robust MH, interference suppression performance index ”is calculated by formula (12); (znd <7: | d (0d (td oF (H) z (t) dt <p;, (1) d (t) dt (12) h) calculating positive finite matrices X> 0 and O> 0, general matrices Y,, Y ,, and N, and the quantity 0 > 0 to satisfy the linear matrix inequality shown in formula (13), where 1 = 1,2,3; _ - _ TF \ Tr ~ T ZE, Sp Sy / N, oF AF AC, + =, E, 0 NM, 0 0 0 * «= EZ, IN, oF 0 0« xx 1 0 0 0 0 Q, = nto vo <0 * * * * TO 0 0 0 (13) * * * * * —0f 0 0 * * * * * * —or 0 * * * * * * * / 2 U. ma Vn | <0, i = 12 ... n Vi -p AX where, * in formula (13) indicates the transposition of the symmetrical elements of the matrix and J'1 indicates a performance index, -27 - 2, = A,X +XA +N, +N, Ey SBS, Vh) N +N, Eis — XA, +N, = _ UT 22 7 -N 2 N 25 Ey =[BS(4,V)] Ns, zE. =70-2X Viva FLV) S(v, V.Y, ) = : V, y kn + (1 = V, ) y hn thy += H) Vn SY.-27 - 2, = A, X + XA + N, + N, Ey SBS, Vh) N + N, Eis - XA, + N, = _ UT 22 7 -N 2 N 25 Ey = [BS (4, V)] Ns, zE. = 70-2X Viva FLV) S (v, V.Y,) =: V, y kn + (1 = V,) y hn thy + = H) Vn SY. Y= : Hp Via + (1 o U, ) Vin waarbij, Vii de i lijn van Y, aanduidt, waarbij [= L 2, nn: Voi de je lijn van T, aanduidt, waarbij I = L2,...,n, Vi het i element van V aanduidt, waarbij [= 1, 2, nn: HH; het i% element van U aanduidt, waarbij i=12,....n T een bovengrens van vertraging T(Ê) aanduidt, 2 en Ux beide een positieve constante aanduiden, vel, „eV, V = {w eR" :w =lof 0} ; 1) het berekenen van een opbrengstmatrix van de voertuigtoestandterugkoppelingsbesturing middels formule (14): -1 K = YX , (14) en het oplossen van het convexe-optimalisatieprobleem in formule (15) om de optimale robuuste H toestandterugkoppelingspadopsporingsbesturing te verkrijgen:Y =: Hp Via + (1 o U,) Vin where, Vii denotes the i line of Y, where [= L 2, nn: Voi denotes the je line of T, where I = L2, ..., n, Vi denotes the i element of V, where [= 1, 2, nn: HH; denotes the i% element of U, where i = 12, .... n T denotes an upper limit of retardation T (Ê), 2 and Ux both denote a positive constant, vel, "eV, V = {w eR": w = lof 0}; 1) calculating a gain matrix of the vehicle state feedback control by formula (14): -1 K = YX, (14) and solving the convex optimization problem in formula (15) to find the optimal robust H state feedback path tracing control to obtain: 28 - min /, st. 0,<0,X>0,0>0, — : (15) Y,.Y,.N.i=123,0>028 - min /, st. 0, <0, X> 0.0> 0, -: (15) Y, .Y, .N.i = 123.0> 0 2. Werkwijze voor het besturen van een padopsporing van het autonome voertuig met de invoerverzadiging volgens conclusie 1, met het kenmerk dat, in stap a), de laterale kracht F of van de voorband van het voertuig en de laterale kracht F, van de achterband van het voertuig berekend worden middels de formules Fy = 2C rps F, = -2C.a, ‚ waarbij Cy een bochtstijfheid van het voorwiel aanduidt, C, een bochtstijfheid van het achterwiel aanduidt, a, een bochthoek van het voorwiel aanduidt, © een bochthoek van het achterwiel aanduidt, en Ly Vy Ly V a zò La = Vv, Vv, Vv, VyMethod for controlling a path finding of the autonomous vehicle with the input saturation according to claim 1, characterized in that, in step a), the lateral force F or of the front tire of the vehicle and the lateral force F of the rear tire of the vehicle are calculated by the formulas Fy = 2C rps F, = -2C.a, where Cy denotes a bending stiffness of the front wheel, C, denotes a bending stiffness of the rear wheel, a, denotes a bend angle of the front wheel, © a bend angle of the rear wheel, and Ly Vy Ly V a zò La = Vv, Vv, Vv, Vy 3. Werkwijze voor het besturen van de padopsporing van het autonome voertuig met de invoerverzadiging volgens conclusie 1, met het kenmerk dat, the kromming Pros in stap b) verkregen wordt middels een globalepositioneringssysteem (GPS) gecombineerd met een geografische- informatiesysteem (GIS).Method for controlling the path finding of the autonomous vehicle with the input saturation according to claim 1, characterized in that the curvature Pros in step b) is obtained by means of a global positioning system (GPS) combined with a geographic information system (GIS). 4. Werkwijze voor het besturen van de padopsporing van het autonome voertuig met de invoerverzadiging volgens conclusie 1, met het kenmerk dat, na stap g), de werkwijze verder de volgende stappen omvat: =C,x = ! h2) het selecteren van een uitvoervector y 2 7. Pe vel en het berekenen van de positieve eindige matrices X, >0, X,>0, 0 >0, algemeneA method for controlling the path finding of the autonomous vehicle with the input saturation according to claim 1, characterized in that, after step g), the method further comprises the following steps: = C, x =! h2) selecting an output vector y 2 7. Pe sheet and calculating the positive finite matrices X,> 0, X,> 0, 0> 0, general -29. matrices TY, Y,, en N, ‚ en kwantiteit 0>0 om te voldoen aan de Co . ci ed . 2 …i=123 lineairematrixongelijkheid die getoond is in formule (16), waarbij I = 1, 2.3; z ZZ Vo Toxo! 2, 2, BE, [I N, oF XF' XC * EZ, =, 0 N, 0 0 0 x ox 2.0] N, of 0 0 2 * * * vl 0 0 0 0 7 _ <0 * * * * Ti 0 0 0 0 (16) % * * * * —of 0 0 * * * * * * —0f 0 % * * * + % %* —/ 2 — U. oe y . } oe po i=12,....n Vai p X waarbij, * in formule (16) de transpositie van de symmetrische elementen van de matrix aanduidt en Y| de prestatie-index aanduidt;-29. matrices TY, Y, and N, and quantity 0> 0 to satisfy the Co. ci ed. 2 ... i = 123 linear matrix disparity shown in formula (16), where I = 1, 2.3; z ZZ Vo Toxo! 2, 2, BE, [IN, oF XF 'XC * EZ, =, 0 N, 0 0 0 x ox 2.0] N, or 0 0 2 * * * vl 0 0 0 0 7 _ <0 * * * * Ti 0 0 0 0 (16)% * * * * —or 0 0 * * * * * * —0f 0% * * * +%% * - / 2 - U. oe y. } oe po i = 12, .... n Vai p X where, * in formula (16) denotes the transposition of the symmetric elements of the matrix and Y | indicates the performance index; -30 - B, =A4,X+X4 +N +N, ~ vv.-30 - B, = A4, X + X4 + N + N, ~ vv. TT we ONT Ep =BS(r.Y,.Y,)-N+N,, =~ — 7 TT Hy = A4, +N,, a TT Sa = N, u N, > = TTT AT 5, =[BS(4 1, Yl — Ny, Ey = 70 7 2X, X=NX,N, +GX,.G", 7 _ TT _ T Y =YG ‚+ =Y,G » Vin + (1 oM” Yin S(v, Y..Y,) = : > V, Vi + (1 V, Yi Hy Vri + (1 MH Va S(u, YY, )] = : LV + (1 KH, Vo waarbij, Vii de /* lijn van TY aanduidt, waarbij I= 1, 2,..., n, Vi de ide lijn van Y, aanduidt, waarbij I= 1, 2,....n; Vi het i element van V aanduidt, waarbij [= 1, 2, nl: MH, het 7% element van H aanduidt, waarbij i=12,....n waarbij, T de bovengrens van vertraging T(Ê) aanduidt, Den ex beide een positieve constante aanduiden, vel, Helv, = fw € R” : Ww, =1 of 0}; en 12) het berekenen van de opbrengstmatrix van het voertuiguitvoerterugkoppelingsbesturing middels formule (17): — vl K=¥rX (17)TT we ONT Ep = BS (rY, .Y,) - N + N ,, = ~ - 7 TT Hy = A4, + N ,, a TT Sa = N, u N,> = TTT AT 5, = [BS (4 1, Y1 - Ny, Ey = 70 7 2X, X = NX, N, + GX, .G ", 7 _ TT _ TY = YG + = Y, G» Vin + (1 oM "Yin S ( v, Y..Y,) =:> V, Vi + (1 V, Yi Hy Vri + (1 MH Va S (u, YY,)] =: LV + (1 KH, Vo where, Vii de / * line of TY, where I = 1, 2, ..., n, Vi indicates the ith line of Y, where I = 1, 2, .... n; Vi indicates the i element of V, where [ = 1, 2, namely: MH, denotes the 7% element of H, where i = 12, .... n where, T denotes the upper limit of retardation T (Ê), Den ex both denote a positive constant, vel, Helv, = fw € R ”: Ww, = 1 or 0}; and 12) calculating the yield matrix of the vehicle output feedback control using formula (17): - vl K = ¥ rX (17) 231 -231 - waarbij de kolom van N, een basis is van een nulruimte van de uitvoermatrix (’, en de matrix G berekend wordt middels formule (18):where the column of N, is a basis of a zero space of the output matrix (’, and the matrix G is calculated by formula (18): G=Cl+N,LG = Cl + N, L. L=N] XC] (C,XCy)" 9)L = N] XC] (C, XCy) "9) waarbij, C} = C, (CC)! de Moore-Penrose gegeneraliseerde inverse matrix van de matrix C, aanduidt en N ; de Moore-Penrose gegeneraliseerde inverse matrix van de matrix N, aanduidt.where, C} = C, (CC)! denotes the Moore-Penrose generalized inverse matrix of the matrix C, and N; denotes the Moore-Penrose generalized inverse matrix of the matrix N.
NL2025573A 2020-03-04 2020-05-13 Method for controlling path tracking of an autonomous vehicle with input saturation NL2025573B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010145290.4A CN111176302B (en) 2020-03-04 2020-03-04 Input saturation automatic driving automobile path tracking control method

Publications (2)

Publication Number Publication Date
NL2025573A NL2025573A (en) 2021-04-20
NL2025573B1 true NL2025573B1 (en) 2021-04-22

Family

ID=70626139

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2025573A NL2025573B1 (en) 2020-03-04 2020-05-13 Method for controlling path tracking of an autonomous vehicle with input saturation

Country Status (2)

Country Link
CN (1) CN111176302B (en)
NL (1) NL2025573B1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111824146A (en) * 2020-06-19 2020-10-27 武汉理工大学 Path following model prediction control method, system, device and storage medium
CN111959500B (en) * 2020-08-07 2022-11-11 长春工业大学 Automobile path tracking performance improving method based on tire force distribution
CN111897344B (en) * 2020-08-14 2021-11-16 清华大学 Automatic driving automobile path tracking control method considering stability
CN112829766B (en) * 2021-02-07 2022-05-17 西南大学 Adaptive path tracking method based on distributed driving electric vehicle
CN113022567B (en) * 2021-03-03 2022-04-08 南京航空航天大学 Intelligent vehicle path tracking control method based on Popov super-stability
CN113126623B (en) * 2021-04-13 2022-04-12 吉林大学 Adaptive dynamic sliding mode automatic driving vehicle path tracking control method considering input saturation
CN113176733B (en) * 2021-04-27 2023-06-16 广东工业大学 Autonomous vehicle path tracking and stability control method based on switching control
CN113212431A (en) * 2021-06-09 2021-08-06 中国第一汽车股份有限公司 Tracking control method, device, equipment and storage medium
DE102021208814A1 (en) * 2021-08-12 2023-02-16 Continental Autonomous Mobility Germany GmbH Method and system for controlling a vehicle
CN113830088B (en) * 2021-10-08 2023-03-24 中南大学 Intelligent semi-trailer tractor trajectory tracking prediction control method and vehicle
CN114114929B (en) * 2022-01-21 2022-04-29 北京航空航天大学 Unmanned vehicle path tracking method based on LSSVM

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070239350A1 (en) * 2006-04-07 2007-10-11 Zumsteg Philip J Multi-function tracking device with robust asset tracking system
CN102495631B (en) * 2011-12-09 2013-08-21 中国科学院合肥物质科学研究院 Intelligent control method of driverless vehicle tracking desired trajectory
CN106909151A (en) * 2017-01-22 2017-06-30 无锡卡尔曼导航技术有限公司 For the unpiloted path planning of agricultural machinery and its control method
CN106681154B (en) * 2017-03-01 2019-05-21 重庆大学 The electric vehicle self-adapting control method being saturated for uncertain mass center and Unknown worm
CN107490968A (en) * 2017-09-29 2017-12-19 山东省计算中心(国家超级计算济南中心) The adaptive layered of autonomous driving vehicle passs rank path tracking control method
CN107831761B (en) * 2017-10-16 2020-07-17 中国科学院电工研究所 Path tracking control method of intelligent vehicle
CN109358621B (en) * 2018-09-30 2019-05-07 山东省计算中心(国家超级计算济南中心) Autonomous driving vehicle Trajectory Tracking Control method

Also Published As

Publication number Publication date
CN111176302A (en) 2020-05-19
NL2025573A (en) 2021-04-20
CN111176302B (en) 2021-04-20

Similar Documents

Publication Publication Date Title
NL2025573B1 (en) Method for controlling path tracking of an autonomous vehicle with input saturation
US11364895B2 (en) Yaw motion control method for four-wheel distributed vehicle
Hang et al. LPV/H∞ controller design for path tracking of autonomous ground vehicles through four-wheel steering and direct yaw-moment control
Hu et al. Lane keeping control of autonomous vehicles with prescribed performance considering the rollover prevention and input saturation
Guo et al. A computationally efficient path-following control strategy of autonomous electric vehicles with yaw motion stabilization
CN107831761B (en) Path tracking control method of intelligent vehicle
Chaib et al. H/sub/spl infin//, adaptive, PID and fuzzy control: a comparison of controllers for vehicle lane keeping
CN113320542B (en) Tracking control method for automatic driving vehicle
Rodic et al. Sensor-based navigation and integrated control of ambient intelligent wheeled robots with tire-ground interaction uncertainties
Hang et al. Cooperative control framework for human driver and active rear steering system to advance active safety
CN109094644A (en) Active rear steer and direct yaw moment control method under limiting condition
CN111731268A (en) Vehicle rollover prevention control method considering different driver characteristics
Sathishkumar et al. Trajectory control for tire burst vehicle using the standalone and roll interconnected active suspensions with safety-comfort control strategy
Chen et al. Path tracking control of four-wheel independent steering electric vehicles based on optimal control
CN112606843A (en) Intelligent vehicle path tracking control method based on Lyapunov-MPC technology
Mok et al. A post impact stability control for four hub-motor independent-drive electric vehicles
Gianone et al. Design of an active 4WS system with physical uncertainties
Kati et al. Robust lateral control of an A-double combination via H∞ and generalized H2 static output feedback
Boudali et al. Emergency autonomous vehicle guidance under steering loss
CN114834263A (en) Coordination control method and device for steering and torque vector of active front wheel of electric automobile
Bahaghighat et al. Predictive yaw and lateral control in long heavy vehicles combinations
Xiong et al. Nonlinear Model Predictive Path-Following Control with Steering Lag Compensation for Autonomous Vehicles
Penco et al. Control for autonomous vehicles in high dynamics maneuvers: LPV modeling and static feedback controller
Coskun et al. Improved vehicle lateral dynamics with Takagi-Sugeno $\mathscr {H} _ {\infty} $ fuzzy control strategy for emergency maneuvering
Kang et al. Skid steering based driving control of a robotic vehicle with six in-wheel drives

Legal Events

Date Code Title Description
MM Lapsed because of non-payment of the annual fee

Effective date: 20230601