CN111167406A - 一种La(OH)3纳米棒/核桃壳生物炭复合材料的制备方法 - Google Patents

一种La(OH)3纳米棒/核桃壳生物炭复合材料的制备方法 Download PDF

Info

Publication number
CN111167406A
CN111167406A CN202010030164.4A CN202010030164A CN111167406A CN 111167406 A CN111167406 A CN 111167406A CN 202010030164 A CN202010030164 A CN 202010030164A CN 111167406 A CN111167406 A CN 111167406A
Authority
CN
China
Prior art keywords
biochar
walnut shell
adsorption
drying
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010030164.4A
Other languages
English (en)
Other versions
CN111167406B (zh
Inventor
王风
罗元
张克强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agro Environmental Protection Institute Ministry of Agriculture
Original Assignee
Agro Environmental Protection Institute Ministry of Agriculture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agro Environmental Protection Institute Ministry of Agriculture filed Critical Agro Environmental Protection Institute Ministry of Agriculture
Priority to CN202010030164.4A priority Critical patent/CN111167406B/zh
Priority to AU2020100394A priority patent/AU2020100394A4/en
Publication of CN111167406A publication Critical patent/CN111167406A/zh
Application granted granted Critical
Publication of CN111167406B publication Critical patent/CN111167406B/zh
Priority to US17/127,717 priority patent/US11633711B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0207Compounds of Sc, Y or Lanthanides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • B01J20/28007Sorbent size or size distribution, e.g. particle size with size in the range 1-100 nanometers, e.g. nanosized particles, nanofibers, nanotubes, nanowires or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28059Surface area, e.g. B.E.T specific surface area being less than 100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28071Pore volume, e.g. total pore volume, mesopore volume, micropore volume being less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28083Pore diameter being in the range 2-50 nm, i.e. mesopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3021Milling, crushing or grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3071Washing or leaching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • B01J20/3236Inorganic material layers containing metal, other than zeolites, e.g. oxides, hydroxides, sulphides or salts
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character
    • B01J2220/4825Polysaccharides or cellulose materials, e.g. starch, chitin, sawdust, wood, straw, cotton
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4875Sorbents characterised by the starting material used for their preparation the starting material being a waste, residue or of undefined composition
    • B01J2220/4881Residues from shells, e.g. eggshells, mollusk shells
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/08Nanoparticles or nanotubes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明涉及一种La(OH)3纳米棒/核桃壳生物炭复合材料(LN‑WB)的制备方法,将核桃壳粉末放入坩埚,在350~450℃马弗炉中热解碳化;热解结束后,将得到的生物炭研磨过筛,然后用去离子水反复洗涤;将洗涤后的生物炭烘干备用;取适量生物炭放入去离子水中形成浊液;采用蠕动泵将LaCl3和NaOH同时滴加入上述浊液;将所得混合物在室温下静置20~30h、洗涤、烘干备用。本发明通过简易的合成工艺成功制备了负载La(OH)3纳米粒子的生物炭复合材料。LN‑WB中La的含量为26.59%,Lanmuir最大吸附能力为75.08mg/g,P/La摩尔比为1.27,与同类La基吸附材料相比具有突出的优势。

Description

一种La(OH)3纳米棒/核桃壳生物炭复合材料的制备方法
技术领域
本发明属于环保领域,涉及水体除磷技术,尤其是一种La(OH)3纳米棒/核桃壳生物炭复合材料的制备方法。
背景技术
磷是一种植物生长的必须元素,但过量的磷排入水体会造成富营养化,引起藻类及其他浮游生物迅速繁殖,水体溶解氧量下降、水质恶化、危害水生态环境。一般认为水体富营养化主要由过多氮磷排放所引起,且磷是主导性因子。在各种物理、化学和生物的除磷方法中,吸附法被认为是一种经济、高效和操作简单的除磷方法。但如何选择合适的吸附材料是其应用的关键。于是,低成本和高吸附性能的磷酸盐吸附材料引起了广泛的研究兴趣。
生物炭是生物质在缺氧条件下通过热解转化得到的富含碳的物质,具有制备简单、来源广泛,成本低廉、吸附磷后可用于土壤改良等特点,因此在生产成本和最终处理方面比工业副产品、天然矿物、黏土和人工合成材料更具有突出的优势。但常规生物炭等电位点通常较低,在溶液中容易显负电,与磷酸根离子之间可形成静电排斥作用,不利于磷的吸附。同时生物炭本身吸附磷的活性位点有限,吸附磷的能力较弱,甚至生物炭会将本身携带的磷素释放至溶液中,导致磷浓度升高。但研究表明La对磷酸盐亲和力强,可与PO4 3-形成稳固的化学键,生成的物质受pH值及氧化还原电位等因素影响小。同时,La还可作为一种稀土肥素,有利于提高作物产量。但是直接将含La试剂应用于磷酸盐脱除时,容易造成La利用率偏低和回收困难的问题。因此,可充分利用生物炭与La的特点,将生物炭作为载体,使La活性组分能均匀负载在生物炭的表面。提高生物炭吸附磷的能力,同时也提高La脱除磷酸盐时的利用效率。
在先前的研究中,生物炭负载La的环节,主要采用将碱滴到含La的溶液中或将La滴到含碱的溶液中。由于制备过程中多采用较高浓度的碱和较高浓度的La溶液,这种方式会造成局部的碱或La含量过高,从而形成大颗粒的La(OH)3,生物炭表面负载的La(OH)3粒子体系不均匀,使材料在吸附磷时造成La的利用效率降低。
发明内容
本发明的目的在于克服现有技术的不足,提供La(OH)3纳米棒/核桃壳吸附材料的制备方法,生物炭吸附能力可提高到75.08mg/g,P/La的摩尔比为1.27。本发明解决技术问题所采用的技术方案是:
一种La(OH)3纳米棒/核桃壳吸附材料的制备方法,步骤如下:
(1)将核桃壳粉末放入坩埚,在350~450℃马弗炉中热解碳化;
(2)热解结束后,将得到的生物炭研磨过筛,然后用去离子水反复洗涤;
(3)将洗涤后的生物炭烘干备用;
(4)取适量生物炭放入去离子水中形成浊液;
(5)采用蠕动泵将LaCl3和NaOH同时滴加入上述浊液;
(6)将所得混合物在室温下静置20~30h、洗涤、烘干备用。
而且,所述的LaCl3溶液浓度为0.3-0.6mol/L,NaOH溶液浓度为1.0-2.0mol/L。
而且,所述的热解碳化时间为1-3h。
而且,步骤(3)的烘干温度为100~110℃。
而且,步骤(4)生物炭的质量百分含量为9%~10%。
而且,步骤(5)LaCl3和NaOH溶液的滴加速度为1.5-2.0mL/min。
本发明的优点和积极效果是:
1、本发明采用热解方法处理核桃壳粉,与水热法和管式炉热解法相比,设计更简单,操作更简便,更容易获得大量生物炭。
2、本发明将La和碱溶液在搅拌状态下滴加在同一容器中。滴加的过程,通过蠕动泵调节滴加速度。采用这种方式可以避免由于碱液局部的浓度过高导致形成的颗粒大小不均匀,金属利用效率低的问题。
3、本发明通过简易的合成工艺成功制备了负载La(OH)3纳米粒子的生物炭复合材料。LN-WB中La的含量为26.59%,Lanmuir最大吸附能力为75.08mg/g,P/La摩尔比为1.27,与同类La基吸附材料相比具有突出的优势。该材料在初始磷溶液pH值3-11范围内磷吸附能力均高于55mg/g,材料中La的回收率高于90%,吸附磷酸盐后,溶液pH值的范围由3-11变为7.4-10.1,使用该材料脱除水体磷酸盐时可不用调节溶液初始pH值。
附图说明
图1为不同条件制备的LN-WB吸附能力对比图;
图2为WB和LN-WB N2吸附-脱附等温线和孔径分布;
图3为WB和LN-WB zeta电位分布;
图4为WB和LN-WB SEM-EDS图;
图5为LN-WB TEM图;
图6为WB和LN-WB FTIR图;
图7为WB和LN-WB XRD图;
图8a为准一级和准二级方程拟合学曲线,
图8b为内扩散方程拟合曲线(反应条件:吸附剂用量1g/L,摇床转速120r/min,温度25℃,反应时间0.17-48h);
图9为等温吸附曲线;
图10为初始溶液pH值对吸附容量的影响。
具体实施方式
下面通过具体实施例对本发明作进一步详述,以下实施例只是描述性的,不是限定性的,不能以此限定本发明的保护范围。
实施例1
一种La(OH)3纳米棒/核桃壳吸附材料的制备方法,步骤如下:
1、生物炭WB的制备
(1)将核桃壳粉末移入坩埚,将坩埚移入箱式马弗炉,然后调节箱式马弗炉的升温速率为5℃/min,热解时间2h,热解终温400℃进行碳化。
(2)热解结束后,待炉内温度低于100℃时,将坩埚取出放冷,将生物炭研磨过60目筛盘。然后将生物炭用去离子反复洗涤3次。
(3)将洗涤后的生物炭样品在105℃的烘箱中烘干备用。
2、LN-WB的制备
(1)准确称量10gWB移入500mL烧杯中,加入100mL去离子水形成浊液。
(2)采用蠕动泵将100mL的LaCl3和NaOH同时滴加入上述浊液,LaCl3溶液浓度为0.5mol/L,NaOH溶液浓度为1.6mol/L,蠕动泵流速约为2min/L。
(3)将所得混合物在室温下静置24h,采用真空抽滤的方式将生物炭用纯水洗涤3次,将所得的样品于80℃烘干备用。
表1生物炭产量和La含量
Figure BDA0002364021570000031
对比例1
与实施例1不同的是:
LN-WB的制备步骤(2)向烧杯中加入100mL0.5mol/L的LaCl3溶液,用玻璃棒剧烈搅拌1-2min,然后向该混合液中滴加100mL1.6mol/L的NaOH,在滴加的过程中,不断用玻璃棒搅拌溶液,使其混合均匀。
对比例2
与对比例1不同的是:热解温度为500℃。
对比例3
与对比例1不同的是:热解温度为600℃。
生物炭吸附磷的试验:
称取0.1gLa(OH)3改性生物炭,磷溶液为100mL,浓度为100mg/L。在摇床中以120转/min,25℃吸附反应48h,取上清液过0.45微米滤膜测定TP浓度,结果如下。
表2吸附力对比
Figure BDA0002364021570000041
采用实施例1的方法制备的生物炭表征如下
1、生物炭理化性质分析
WB和LN-WB的C、H、O、N的含量,BET比表面积、孔容、孔径和等电位点如表2所示。根据表3,在负载La(OH)3后,除O元素含量略微增大,其他元素的含量均降低。O元素含量升高是由于总质量增加,但La(OH)3中O元素含量(25.28%)大于WB中O元素含量引起的。H元素含量降低是由于总质量增加,但La(OH)3中H元素的含量(1.58%)低于WB中H元素含量引起的。而其他元素含量降低仅是由于总质量增加引起。WB和LN-WB对N2吸附-脱附曲线如图2所示。WB的SBET为2.77m2/g,通过BJH计算的孔容为0.0020m3/g,平均孔径为62.796nm。负载La(OH)3后,比表面积为50.6009m2/g,孔容为0.2362m3/g,平均孔径为16.8557nm。负载La(OH)3后生物炭的表面积急剧增加,这可能由于La(OH)3在生物炭表面形成了丰富的微孔体系所引起。此外,WB的等电位点(pHPZC)为4.6,LN-WB的pHPZC为6.03。表明负载La(OH)3能提高原始生物炭的等电位点,WB和LN-WB的Zeta电位随pH增大的变化如图3所示。
表3生物炭比表面、孔径和孔容
Figure BDA0002364021570000042
2、SEM与TEM分析
如图4所示,WB表面光滑,纹理类似于云朵。负载La(OH)3后,WB表面完全被La(OH)3粒子覆盖。图5为LN-WB高分辨率透射电镜图像,La活性组分主要以棒状的形式负载在生物炭表面,并在边缘向空间延伸。在高分辨率的晶格条纹相中,晶面间距d=0.318nm与六方相La(OH)3(PDF#36-1481)的(101)面相对应,结论与XRD分析结果一致。选区电子衍射图为多圆环,表明形成物为多晶物质,衍射环半径可分别与六方相La(OH)3的(100)和(210)晶面相对应。
3、FTIR与XRD分析
图6为WB和LN-WB FTIR图,WB和LN-WB吸收峰有4个部位特征吸收峰有明显差异,如图中椭圆部分所示。第一个椭圆部分波数为3609cm-1处的吸收峰来源于La(OH)3中的O-H伸缩振动。第二个椭圆部分波数为1496cm-1和1380cm-1处的吸收峰来源于CO3 2-中C-O的伸缩振动。第三个椭圆部分波数为852cm-1处的吸收峰来源于La-OH的伸缩振动。第四个椭圆部分波数为648cm-1处的吸收峰来源于La-O的伸缩振动。此外,WB的一些特征吸收峰,3420cm-1归属于H2O中O-H伸缩振动,2924cm-1和2860cm-1归属于C-H伸缩振动,而1600cm-1的特征峰归属于C=O伸缩振动。以上结果分析表明:La(OH)3成功负载在生物炭表面,但是由于样品在空气中制备,部分La(OH)3可能吸收CO2转化为La2(CO3)3。图7为WB和LN-WB XRD图,WB没有特征吸收峰,表明WB为非晶物质。通过jade 6.0对LN-WB吸收峰进行分析,结果表明物相主要为六方相La(OH)3(PDF卡号36-1481),且在晶相中的质量含量约为95%。
4、吸附动力学
WB和LN-WB对磷的吸附容量随时间变化如图8所示,在试验条件下,WB对磷没有吸附能力,反而会释放本身携带的磷至溶液中,在48h后释放量约为0.28mg/g。为研究LN-WB对磷酸盐的动力学吸附特性,采用准一级和准二级动力学方程来模拟LN-WB在不同磷酸盐浓度下对磷酸根的吸附过程,由式(1)和式(2)对试验数据进行拟合,结果如表4所示。在不同磷浓度水平下,准二级动力学的拟合结果均优于准一级动力学,说明LN-WB对磷酸盐的吸附主要受化学吸附过程控制。
为进一步确定试验中实际的控速步骤,采用内扩散方程式(3)对试验数据进行拟合。在不同浓度的磷酸盐水平下,拟合直线反向延长线均没有经过原点,说明内扩散不是唯一速率控制步骤。但可将拟合曲线分为两个部分,说明LN-WB对磷酸盐的吸附是一个多级吸附的过程。LN-WB对所有磷浓度水平的吸附中,k1均大于k2,c1均小于c2,说明第一阶段速率大于第二阶段速率。这种现象可解释为开始阶段浓度差较大,吸附剂表面活性位点较多,而随吸附时间增加,浓度差逐渐减小,吸附剂表面逐渐饱和,吸附剂吸附能力逐渐丧失,吸附速率主要受颗粒内扩散阻力控制。
准一级动力学方程:
Figure BDA0002364021570000051
准二级动力学方程:
Figure BDA0002364021570000061
颗粒内扩散方程:
qt=kdit1/2+c1 (3)
式中:qt为t时刻磷的吸附量,mg/g;qe为吸附平衡时磷的吸附量mg/g;k1为一级速率常数,h-1;k2为二级速率常数,g/mg·h;kdi为颗粒内扩散速率常数,mg/(g·h1/2);ci是颗粒内扩散常数,mg/g。
表4 LN-WB对磷酸盐的吸附动力学参数
Figure BDA0002364021570000062
颗粒内扩散模型
Figure BDA0002364021570000063
5、吸附等温线
为评估LN-WB对磷酸盐的最大吸附能力,采用Langmuir方程对实验数据进行拟合,结果如图9所示。Langmuir方程能较好拟合试验数据,相关系数R2为0.9893,Langmuir最大吸附能力为75.08mg/g,与实测值相接近,表明模型拟合的正确性。为便于与其他La基吸附材料吸附磷能力作比较,表5列举了其他文献中以Langmuir方程拟合得出的最大吸附容量值。从表中可以看出,LN-WB作为磷酸盐的吸附剂具有突出的优势。与同类La改性生物炭材料相比,LN-WB的吸附能力次于La10-MC,但使用相同质量的炭基质,La10-MC的La投加量是LN-WB的两倍,然而La10-MC并未获得LN-WB两倍的吸附能力,说明其La的利用效率低于LN-WB。在La改性生物炭的材料中,La-RHBC9的P/La摩尔比为1.59,略高于LN-WB。但为获得优异的介孔生物炭基质,该材料热解温度为800℃,同时在制备过程中采用CO2对生物炭进行活化。热解高温会导致生物炭产量急剧下降,采用CO2活化也会使生产成本增加。另一方面,LN-WB在制备时,原料与La的质量比与LPC@(OH)3是一样的,但LN-WB的吸附能力却高于LPC@(OH)3。这可能主要由两个原因导致,热解高温有利于生物炭的微孔发展,获得较大比表面积的生物炭。但对于金属负载来说,发达的微孔体系可能并不是有利的,因为在金属负载过程中,沉淀的金属会填充微孔,导致在吸附磷时,金属利用效率降低。其次,LPC@(OH)3的制备采用单滴法,本研究采用双滴法,采用双滴法可以获得更均匀的颗粒体系。但对比La-RHBC9和LPC@(OH)3的研究可发现,当生物炭基质孔隙较发达时,降低La的投加量可获得更高的P/La摩尔比,尽管吸附容量会降低。与其他La基吸附材料相比,LN-WB能获得更高的P/La摩尔比。说明采用生物炭基质负载La(OH)3脱除水体磷酸盐是合理的,在吸附磷时能提高La的利用效率。
Langmuir等温方程:
Figure BDA0002364021570000071
式中:qe为平衡时磷的吸附容量,mg/g;qmax为Langmuir最大吸附容量,mg/g;KL为Langmuir平衡常数,L/mg;ce为平衡时磷的质量浓度,mg/L。
表5 La基吸附材料的吸附能力对比
Figure BDA0002364021570000072
备注:Nd表示未查询到相关数据。
6、pH值对吸附容量的影响
吸附容量随初始磷酸盐溶液pH值增加的变化如图10所示。可以看出初始磷酸盐溶液pH值在3-11范围内,LN-WB对磷酸盐均表现出较高的吸附能力,其吸附容量值均高于55mg-P/g,但当pH值进一步增加至12时,LN-WB对磷酸盐的吸附能力急剧下降,与pH为3时相比,吸附容量值约下降54.97%,与pH为11时相比,吸附容量值约下降47.23%。磷酸盐吸附容量随pH值增加的变化趋势与之前的一些La基吸附材料类似。pH值对吸附的影响一般包含3个方面。首先,pH值会影响吸附剂表面物质的电离,从而影响吸附材料的带电性质。其次,在高pH条件下,–OH会与磷酸根离子竞争吸附材料表面的活性位点。此外,pH值还会影响溶液中磷酸根离子的形态分布。在目前La基吸附材料的研究中,正△pH(△pH=平衡pH-初始pH)已被认为是配体交换机制存在的一种重要现象。当溶液pH值低于吸附剂零电位点时,静电吸引和配体交换将作为La基吸附材料吸附磷酸根的重要机制。当溶液pH值过高时,静电引力将变为静电斥力,配体交换作用也将受到抑制,此时主导吸附的是路易斯酸碱作用,但总的结果是吸附容量会降低。但在本研究中,LN-WB对磷酸根的吸附机制主要是静电吸引和配体交换作用,在高pH下吸附容量降低,是这两种作用被削弱的结果。
以上所述的仅是本发明的优选实施方式,应当指出,对于本领域的普通技术人员来说,在不脱离发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (6)

1.一种La(OH)3纳米棒/核桃壳生物炭复合材料的制备方法,步骤如下:
(1)将核桃壳粉末放入坩埚,在350~450℃马弗炉中热解碳化;
(2)热解结束后,将得到的生物炭研磨过筛,然后用去离子水反复洗涤;
(3)将洗涤后的生物炭烘干备用;
(4)取适量生物炭放入去离子水中形成浊液;
(5)采用蠕动泵将LaCl3和NaOH同时滴加入上述浊液;
(6)将所得混合物在室温下静置20~30h、洗涤、烘干备用。
2.根据权利要求1所述的制备方法,其特征在于:所述的LaCl3溶液浓度为0.3-0.6mol/L,NaOH溶液浓度为1.0-2.0mol/L。
3.根据权利要求1所述的制备方法,其特征在于:所述的热解碳化时间为1-3h。
4.根据权利要求1所述的制备方法,其特征在于:步骤(3)的烘干温度为100~110℃。
5.根据权利要求1所述的制备方法,其特征在于:步骤(4)生物炭的质量百分含量为9%~10%。
6.根据权利要求1所述的制备方法,其特征在于:步骤(5)LaCl3和NaOH蠕动泵的滴加速度为1.5-2.0mL/min。
CN202010030164.4A 2020-01-13 2020-01-13 一种La(OH)3纳米棒/核桃壳生物炭复合材料的制备方法 Active CN111167406B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202010030164.4A CN111167406B (zh) 2020-01-13 2020-01-13 一种La(OH)3纳米棒/核桃壳生物炭复合材料的制备方法
AU2020100394A AU2020100394A4 (en) 2020-01-13 2020-03-16 Preparation method of la(oh)3 nanorod/walnut shell biochar composite material
US17/127,717 US11633711B2 (en) 2020-01-13 2020-12-18 Preparation method of La(OH)3 nanorod coated walnut shell biochar composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010030164.4A CN111167406B (zh) 2020-01-13 2020-01-13 一种La(OH)3纳米棒/核桃壳生物炭复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN111167406A true CN111167406A (zh) 2020-05-19
CN111167406B CN111167406B (zh) 2020-09-29

Family

ID=70166613

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010030164.4A Active CN111167406B (zh) 2020-01-13 2020-01-13 一种La(OH)3纳米棒/核桃壳生物炭复合材料的制备方法

Country Status (3)

Country Link
US (1) US11633711B2 (zh)
CN (1) CN111167406B (zh)
AU (1) AU2020100394A4 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112058233A (zh) * 2020-09-22 2020-12-11 东北农业大学 一种氢氧化镧修饰的磁性多孔生物炭的制备方法及应用
CN113491999A (zh) * 2021-07-15 2021-10-12 哈尔滨工业大学 一种镧改性活性炭吸附材料的制备方法
CN113856628A (zh) * 2021-11-02 2021-12-31 华南农业大学 一种高效回收及脱附磷的金属修饰生物炭及其制备方法与应用
CN114653341A (zh) * 2022-04-12 2022-06-24 四川文理学院 一种改性茶渣生物炭、制备方法及其应用
CN115106083A (zh) * 2022-06-28 2022-09-27 浙江工业大学 一种无定形Cu2O/生物质碳催化剂的原位合成方法及应用

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111589416A (zh) * 2020-05-18 2020-08-28 农业农村部环境保护科研监测所 一种镧改性生物炭及其制备方法和应用
CN113145073A (zh) * 2021-04-23 2021-07-23 桂林理工大学 二次碳化镧改性污泥生物炭的制备方法及其应用
CN113262791B (zh) * 2021-04-29 2022-04-12 中国环境科学研究院 氧化铈改性的仿生催化剂制备方法
CN113750964B (zh) * 2021-09-24 2022-09-13 哈尔滨工业大学 一种载镧石墨烯气凝胶磷吸附剂的制备方法
CN113908811A (zh) * 2021-10-29 2022-01-11 兰溪市欧翔新材料有限公司 一种污水除磷的生物质炭材料的制备方法
CN114247426B (zh) * 2021-12-10 2024-02-20 有研资源环境技术研究院(北京)有限公司 生物炭负载天然含铁矿物磁性吸附剂及其制备方法和应用
CN114887589A (zh) * 2022-05-13 2022-08-12 西北大学 一种氧自掺杂/高比表面积生物质多孔碳及应用
CN115739019A (zh) * 2022-11-17 2023-03-07 武汉大学 一种基于高毒性剩余污泥的功能化生物炭及其制备方法和其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102247804A (zh) * 2011-05-20 2011-11-23 上海大学 负载有氢氧化镧的活性炭纤维除磷剂的制备方法
CN105289521A (zh) * 2015-10-30 2016-02-03 无锡市新都环保科技有限公司 表面改性松针负载氢氧化镧除磷吸附剂的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106219544B (zh) * 2016-07-15 2018-09-28 宋玉琴 含镧的木质活性炭的制备方法
CN109759017A (zh) * 2019-03-06 2019-05-17 重庆文理学院 一种改性核桃壳生物炭的制备方法
CN110652963A (zh) * 2019-11-01 2020-01-07 广州大学 一种碳酸镧修饰的共热解污泥生物炭及其制备方法和应用
CN111450819B (zh) * 2020-04-27 2020-12-04 成都信息工程大学 生物炭改性钒酸铋催化剂、制备方法及其应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102247804A (zh) * 2011-05-20 2011-11-23 上海大学 负载有氢氧化镧的活性炭纤维除磷剂的制备方法
CN105289521A (zh) * 2015-10-30 2016-02-03 无锡市新都环保科技有限公司 表面改性松针负载氢氧化镧除磷吸附剂的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
许润等: "氢氧化镧改性介孔稻壳生物炭除磷性能", 《环境科学》 *
魏文德: "《有机化工原料大全》", 31 January 1989 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112058233A (zh) * 2020-09-22 2020-12-11 东北农业大学 一种氢氧化镧修饰的磁性多孔生物炭的制备方法及应用
CN113491999A (zh) * 2021-07-15 2021-10-12 哈尔滨工业大学 一种镧改性活性炭吸附材料的制备方法
CN113856628A (zh) * 2021-11-02 2021-12-31 华南农业大学 一种高效回收及脱附磷的金属修饰生物炭及其制备方法与应用
CN114653341A (zh) * 2022-04-12 2022-06-24 四川文理学院 一种改性茶渣生物炭、制备方法及其应用
CN115106083A (zh) * 2022-06-28 2022-09-27 浙江工业大学 一种无定形Cu2O/生物质碳催化剂的原位合成方法及应用

Also Published As

Publication number Publication date
US20210213415A1 (en) 2021-07-15
CN111167406B (zh) 2020-09-29
AU2020100394A4 (en) 2020-04-16
US11633711B2 (en) 2023-04-25

Similar Documents

Publication Publication Date Title
CN111167406B (zh) 一种La(OH)3纳米棒/核桃壳生物炭复合材料的制备方法
CN108212080B (zh) 一种复合改性秸秆活性颗粒炭吸附材料的制备方法及应用
CN111203180B (zh) 一种磁性生物炭复合吸附剂及其制备方法和应用
Wang et al. Fabrication of bean dreg-derived carbon with high adsorption for methylene blue: Effect of hydrothermal pretreatment and pyrolysis process
Deng et al. Comparative study on characteristics and mechanism of phosphate adsorption on Mg/Al modified biochar
CN111871376A (zh) 一种共价有机框架多孔纳米复合材料的制备及应用
CN110193342A (zh) 一种改性凹凸棒土吸附剂及其制备方法
Rahman et al. Waste palm shell converted to high efficient activated carbon by chemical activation method and its adsorption capacity tested by water filtration
CN114177891A (zh) 一种生物炭复合金属有机框架吸附材料的制备方法
CN109967033A (zh) 一种改性稻壳生物质炭及其制备方法
CN109304141A (zh) 一种用于吸附挥发性有机污染物的硅藻土/分子筛复合材料的制备方法
CN115845791B (zh) 一种Ca/La基钙钛矿吸附材料的制备方法及用途
CN113117644A (zh) 一种改性香椿子水热炭的制备方法及其应用
CN109289814A (zh) 一种用于吸附废水中抗生素的磁性碳气凝胶及其制备方法
CN113457622A (zh) 一种铝锰复合改性生物炭的制备及其在磷去除方面的应用
CN107413314B (zh) 一种去除废水中铬的方法
CN110342487B (zh) 一种聚多巴胺改性mof衍生碳分子筛的制备方法
CN112755959B (zh) 一种改性生物炭材料及其制备方法和应用
CN115501858A (zh) 磁性硫氮掺杂生物炭复合材料及其制备方法和在共吸附抗生素与重金属离子中的应用
Zhang et al. Effective adsorptive removal of sulfamethoxazole (SMX) from aqueous solution by ZIF-8 derived adsorbent ZC-0.5
CN114471466B (zh) 氨基修饰玉米芯衍生的氮掺杂纳米零价铁/生物炭及其制备方法与应用
CN115228439A (zh) 一种改性碳基层状双金属氢氧化物复合材料的制备及应用
CN114950353A (zh) 高活性位点二硫化钼/碳纳米纤维气凝胶吸附剂及其制备方法
Xiong et al. Activated carbon developed from amygdalus pedunculata shell for cephalexin removal: kinetics and equilibrium study
CN112520737A (zh) 壳聚糖基分层多孔碳材料的制备方法和在回收镓中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20200519

Assignee: Foshan Aiweidun Technology Co.,Ltd.

Assignor: AGRO-ENVIRONMENTAL PROTECTION INSTITUTE, MINISTRY OF AGRICULTURE

Contract record no.: X2023980032289

Denomination of invention: A preparation method of La (OH) 3 nanorod/walnut shell biochar composite

Granted publication date: 20200929

License type: Common License

Record date: 20230216

EE01 Entry into force of recordation of patent licensing contract