CN111135847A - 一种铂负载在介孔材料孔道结构的纳米材料及其制备方法 - Google Patents

一种铂负载在介孔材料孔道结构的纳米材料及其制备方法 Download PDF

Info

Publication number
CN111135847A
CN111135847A CN201911292187.6A CN201911292187A CN111135847A CN 111135847 A CN111135847 A CN 111135847A CN 201911292187 A CN201911292187 A CN 201911292187A CN 111135847 A CN111135847 A CN 111135847A
Authority
CN
China
Prior art keywords
mesoporous material
platinum
loaded
mesoporous
chloroplatinic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911292187.6A
Other languages
English (en)
Inventor
吉海燕
黄济华
许晖
刘津媛
李华明
陈晓军
夏亚芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Wuxi Jiangnan Cable Co Ltd
Original Assignee
Jiangsu University
Wuxi Jiangnan Cable Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University, Wuxi Jiangnan Cable Co Ltd filed Critical Jiangsu University
Priority to CN201911292187.6A priority Critical patent/CN111135847A/zh
Publication of CN111135847A publication Critical patent/CN111135847A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种铂负载在介孔材料孔道结构的纳米材料及其制备方法,属于材料制备领域,其制备方法如下:1)将介孔材料与氯铂酸溶液混合均匀;2)采用砂芯漏斗,进行多次抽滤负载;3)加入硼氢化钠溶液还原氯铂酸,得到超小尺寸铂负载在介孔材料孔道结构的纳米材料。本发明的制备方法可应用于多种介孔材料,且抽滤的方法简单便捷,得到的铂负载在介孔材料孔道内的纳米材料能有效提升孔道内电子浓度,有利于光催化分解水产氢性能的提升。

Description

一种铂负载在介孔材料孔道结构的纳米材料及其制备方法
技术领域
本发明的研究领域集中在材料制备和绿色能源方面,特别涉及一种将铂负载在介孔材料孔道结构的纳米材料及其制备方法,并将其应于光催化分解水产氢。
背景技术
能源和环境作为本世纪的重要议题,关系到人类的可持续发展。氢气,作为二次能源,可观的燃烧性能和绿色清洁的燃烧产物使其具有巨大的应用前景。因此,众多的科研工作者争相开展氢气在燃料电池,电催化,光催化领域的研究。
其中,光催化分解水产氢技术,是指半导体催化剂在可见光的照射下,电子会吸收能量被激发跃迁至导带,空穴留在价带,从而促进电子空穴对的分离,电子会在半导体材料的表面与水发生氧化还原反应,最终产生氢气。
但是传统的半导体催化剂直接在水中的产氢性能不太理想,因此人们引入了助催化剂,帮助受激发跃迁的电子更好地传输到半导体催化剂的表面参与反应。铂(Pt),是目前性能最好的助催化剂,许多铂作助催化剂的研究相继被报道。杨化桂等采用了二氧化钛(TiO2)作为载体,研究Pt/TiO2的光解水产氢的活性位点,并提出产氢的活性位点是在TiO2表面的铂的氧化物。Al-Thabaiti等则采用自组装的方法将铂颗粒原位生长在TiO2纳米管壁中,进一步提升了Pt/TiO2体系的光催化分解水产氢性能。徐群杰等将硫化镉(CdS)作为载体,对铂纳米颗粒的形貌进行了调控,研究其对于光解水产氢性能的影响。Irvine等采用了非金属石墨相氮化碳作为载体,研究了铂纳米颗粒在不同环境下的还原对于Pt/g-C3N4的光解水产氢性能的影响。
事实上,铂作助催化剂对于光催化剂产氢活性的影响关键在于其尺寸和分散性。当单个的铂纳米颗粒分散在载体上时,常常容易发生团聚,且铂的尺寸减小,比表面积增大,表面自由能也急剧增大,使得这种团聚现象愈加严重,甚至导致催化剂失活。人们通常会采用球型,二维薄层,介孔这类比表面积较大的半导体材料做载体,以促进铂纳米颗粒更好的分散。此外,还可以对载体进行表面改性处理,使得铂纳米颗粒能均匀分散在载体上面。聚乙烯吡咯烷酮(PVP)是常见的表面活性剂和稳定剂,能很好的控制铂纳米颗粒的尺寸和分散度,但是局限性在于PVP在后续处理时难以除尽,以至于影响后期的合成或者性能表征。
因此,现阶段研究一种简单的能将铂纳米颗粒均匀分散在介孔半导体材料孔道结构的方法对于光催化分解水产氢领域具有重要的意义。
发明内容
本发明针对现有技术中存在的问题,公开了一种铂负载在介孔材料孔道结构的纳米材料及其制备方法,本发明的通过选择比表面积大的介孔材料做载体,制备得到负载铂的光催化剂,具有优异的光催化分解水产氢性能,并且本发明的制备方法简单有效。
本发明是这样实现的:
一种铂负载在介孔材料孔道结构的纳米材料的制备方法,其特征在于,所述的制备方法如下:
步骤一、称取介孔材料,将其加入到氯铂酸溶液中,超声5-30 min,使其混合均匀;本发明的介孔材料可以为介孔TiO2或者介孔石墨相氮化碳。
步骤二、采用砂芯漏斗,放置滤膜在滤口处,打开真空泵,将上述步骤一中的介孔材料和氯铂酸的混合溶液匀速倒入;
步骤三、回收滤液,再次倒入砂芯漏斗中,重复该步骤十次以上,确保氯铂酸几乎都能被介孔结构所拦截;
步骤四、加入少量去离子水将表层的氯铂酸洗净,抽滤完成后,将过滤物取出并60 ℃干燥7-8 h;
步骤五、将干燥后的介孔材料研磨成粉,加入10-30mL去离子水分散,分散均匀后,加入硼氢化钠溶液,搅拌还原;
步骤六、将还原后的溶液进行离心,分别用去离子水和无水乙醇清洗数次,在60 ℃条件下真空干燥7-8 h,经研磨后得到一种铂负载在介孔材料孔道结构的纳米材料。
进一步,所述的介孔材料的量为100-500 mg,氯铂酸的浓度为0.1-2 mg/mL。
进一步,所述的步骤三中通过控制抽滤的次数来调控铂的负载量,在重复抽滤十次以上,氯铂酸能几乎全部引入。
进一步,所述的步骤五中采用的硼氢化钠溶液是由0.1 M的硼氢化钠和0.5 M的氢氧化钠溶液配制而成,加入量为2-10 mL。
通过一种铂负载在介孔材料孔道结构的纳米材料的制备方法,所述的纳米材料为铂负载在介孔材料孔道结构的纳米材料。
进一步,所述的纳米材料用作光催化制氢领域。
本发明与现有技术的有益效果在于:
本发明的制备方法可应用于多种介孔材料,且抽滤的方法简单便捷,得到的铂负载在介孔材料孔道结构的纳米材料能有效提升孔道内电子浓度,有利于光催化分解水产氢性能的提升;
本发明中由于抽滤压迫氯铂酸溶液通过滤膜,在此过程中,氯铂酸分子会被介孔材料复杂的孔道结构所拦截,能够使铂的前驱体分散在孔道中,经还原后,金属铂作为助催化剂,可以促进介孔材料的光生电子转移至铂表面进行反应,因此采用本发明方法制备的铂负载在介孔材料孔道结构的纳米材料可以使光生电子在有限的空间孔道中浓缩聚集,从而有效促进制氢的反应,提升光催化制氢的性能。
附图说明
图1为本发明制备的一种铂负载在介孔材料孔道结构的纳米材料的TEM图
图2为本发明制备的一种铂负载在介孔材料孔道结构的纳米材料的光催化产氢活性图。
具体实施方式
为使本发明的目的、技术方案及效果更加清楚,明确,以下列举实例对本发明进一步详细说明。应当指出此处所描述的具体实施仅用以解释本发明,并不用于限定本发明。
实施例1
称取100 mg的介孔TiO2, 加入 37mL的去离子水将其分散,随后加入13 mL的氯铂酸溶液(1 mg/mL),超声30 min,将滤膜放置在砂芯漏斗的滤口处,打开真空泵,将混合溶液匀速倒入砂芯漏斗中。待抽干后,将滤液回收,再次倒入漏斗中,如此反复10次。加入少量去离子水洗净表层的氯铂酸,抽滤完成后,将滤后产物放入真空干燥箱中60 ℃干燥7-8 h。干燥后,经轻微研磨,将固体粉末分散在10 mL的去离子水中,加入10 mL的硼氢化钠溶液,搅拌3h进行还原,用去离子水和无水乙醇分别洗净3次,60 ℃干燥7-8 h得到Pt/TiO2。(该实例中得到的Pt/TiO2具有不错的光催化产氢性能,且Pt纳米颗粒尺寸为4-7 nm。但是TiO2的禁带宽度为3.2 eV,相比于非金属相的氮化碳(~2.7 eV),后者更容易受光激发)。具体实例的结果附图如图1~2所示。图1为一种铂负载在介孔材料孔道结构的纳米材料的TEM图;图2为一种铂负载在介孔材料孔道结构的纳米材料的光催化产氢活性图。
实施例2
本实施例中,在实施例1的基础上,改变介孔材料的种类。
称取100 mg的介孔石墨相氮化碳(mpg-C3N4), 加入 41mL的去离子水将其分散,随后加入9 mL的氯铂酸溶液(1 mg/mL),超声20 min,将滤膜放置在砂芯漏斗的滤口处,打开真空泵,将混合溶液匀速倒入砂芯漏斗中。待抽干后,将滤液回收,再次倒入漏斗中,如此反复10次。加入少量去离子水洗净表层的氯铂酸,抽滤完成后,将滤后产物放入真空干燥箱中60 ℃干燥7-8 h。干燥后,经轻微研磨,将固体粉末分散在10 mL的去离子水中,加入10 mL的硼氢化钠溶液,搅拌3 h进行还原,用去离子水和无水乙醇分别洗净3次,60 ℃干燥7-8 h得到Pt/mpg-C3N4。(该实例中得到的Pt/mpg-C3N4相比于实例1更容易受光激发,且Pt纳米颗粒尺寸为3-5nm)
实施例3
本实施例中,在实施例2的基础上,改变氯铂酸溶液的浓度。
称取100 mg的mpg-C3N4, 加入37 mL的去离子水将其分散,随后加入13 mL的氯铂酸溶液(0.2 mg/mL),超声20 min,将滤膜放置在砂芯漏斗的滤口处,打开真空泵,将混合溶液匀速倒入砂芯漏斗中。待抽干后,将滤液回收,再次倒入漏斗中,如此反复10次。加入少量去离子水洗净表层的氯铂酸,抽滤完成后,将滤后产物放入真空干燥箱中60 ℃干燥7-8 h。干燥后,经轻微研磨,将固体粉末分散在10 mL的去离子水中,加入5 mL的硼氢化钠溶液,搅拌3 h进行还原,用去离子水和无水乙醇分别洗净3次,60 ℃干燥7-8 h得到Pt/mpg-C3N4。(该实例中得到的Pt纳米颗粒尺寸为1-3nm,相比于实例2,Pt的尺寸进一步减小。此外,对等量的mpg-C3N4和氯铂酸溶液进行光还原处理,发现采用本发明得到的Pt/mpg-C3N4的光催化产氢活性要高于光还原得到的样品的活性。
以上所述仅是本发明的优选实施方式,应当指出,本发明的实施例中,可以通过改变材料或者其他制备方法中的原料的数值,例如将介孔材料的量称取500 mg,氯铂酸的浓度为0.1-2 mg/mL中的任一浓度,加入去离子水为10-30mL中的任一量,等等数值的取值范围区间,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进,这些改进也应视为本发明的保护范围。

Claims (6)

1.一种铂负载在介孔材料孔道结构的纳米材料的制备方法,其特征在于,所述的制备方法如下:
步骤一、称取介孔材料,将其加入到氯铂酸溶液中,超声5-30 min,使其混合均匀;
步骤二、采用砂芯漏斗,放置滤膜在滤口处,打开真空泵,将上述步骤一中的介孔材料和氯铂酸的混合溶液匀速倒入;
步骤三、回收滤液,再次倒入砂芯漏斗中,重复该步骤十次以上,确保氯铂酸几乎都能被介孔结构所拦截;
步骤四、加入少量去离子水将表层的氯铂酸洗净,抽滤完成后,将过滤物取出并60 ℃干燥7-8 h;
步骤五、将干燥后的介孔材料研磨成粉,加入10-30mL去离子水分散,分散均匀后,加入硼氢化钠溶液,搅拌还原;
步骤六、将还原后的溶液进行离心,分别用去离子水和无水乙醇清洗数次,在60 ℃条件下真空干燥7-8 h,经研磨后得到一种铂负载在介孔材料孔道结构中的纳米材料。
2.根据权利要求1所述的一种铂负载在介孔材料孔道结构的纳米材料的制备方法,其特征在于,所述的介孔材料的量为100-500 mg,氯铂酸的浓度为0.1-2 mg/mL。
3.根据权利要求1所述的一种铂负载在介孔材料孔道结构的纳米材料的制备方法,其特征在于,所述的步骤三中通过控制抽滤的次数来调控铂的负载量,在重复抽滤十次以上,使得氯铂酸全部引入。
4.根据权利要求1所述的一种铂负载在介孔材料孔道结构的纳米材料的制备方法,其特征在于,所述的步骤五中采用的硼氢化钠溶液是由0.1 M的硼氢化钠和0.5 M的氢氧化钠溶液配制而成,加入量为2-10 mL。
5.根据权利要求1~4任一所述的一种铂负载在介孔材料孔道结构的纳米材料的制备方法,所述的纳米材料为负载在介孔材料孔道结构的纳米材料。
6.根据权利要求5所述的一种铂负载在介孔材料孔道结构的纳米材料,所述的纳米材料用作光催化制氢领域。
CN201911292187.6A 2019-12-16 2019-12-16 一种铂负载在介孔材料孔道结构的纳米材料及其制备方法 Pending CN111135847A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911292187.6A CN111135847A (zh) 2019-12-16 2019-12-16 一种铂负载在介孔材料孔道结构的纳米材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911292187.6A CN111135847A (zh) 2019-12-16 2019-12-16 一种铂负载在介孔材料孔道结构的纳米材料及其制备方法

Publications (1)

Publication Number Publication Date
CN111135847A true CN111135847A (zh) 2020-05-12

Family

ID=70518420

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911292187.6A Pending CN111135847A (zh) 2019-12-16 2019-12-16 一种铂负载在介孔材料孔道结构的纳米材料及其制备方法

Country Status (1)

Country Link
CN (1) CN111135847A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115501899A (zh) * 2022-10-17 2022-12-23 中国科学院青岛生物能源与过程研究所 一种制备介孔碳负载的金属氮化物的方法及应用
CN115518634A (zh) * 2022-08-29 2022-12-27 江苏科技大学 一种负载型介孔硅催化剂及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JIHUA HUANG ET AL.,: ""Enhanced photocatalytic H2 evolution by deposition of metal nanoparticles into mesoporous structure of g-C3N4"", 《COLLOIDS AND SURFACES A》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115518634A (zh) * 2022-08-29 2022-12-27 江苏科技大学 一种负载型介孔硅催化剂及其制备方法和应用
CN115501899A (zh) * 2022-10-17 2022-12-23 中国科学院青岛生物能源与过程研究所 一种制备介孔碳负载的金属氮化物的方法及应用

Similar Documents

Publication Publication Date Title
Huang et al. In-situ growth of mesoporous Nb2O5 microspheres on g-C3N4 nanosheets for enhanced photocatalytic H2 evolution under visible light irradiation
CN108927188B (zh) 一种碳酸氧铋光催化剂及其制备方法
Mao et al. Ultrathin Ni (OH) 2 nanosheets: a new strategy for cocatalyst design on CdS surfaces for photocatalytic hydrogen generation
Cai et al. Noble metal sandwich-like TiO2@ Pt@ C3N4 hollow spheres enhance photocatalytic performance
CN107790159B (zh) 一种高选择性催化氧化醇成醛的光催化剂及其制备与应用
US11534739B2 (en) Lignite char supported nano-cobalt composite catalyst and preparation method thereof
CN108786792B (zh) 一种金属/半导体复合光催化剂及其制备与应用
CN103480399A (zh) 一种微纳结构磷酸银基复合可见光催化材料及其制备方法
CN106732527A (zh) 一种铋/钒酸铋复合光催化剂及其制备方法和在光催化降解有机物中的应用
Yang et al. Controlled preparation of Ag–Cu2O nanocorncobs and their enhanced photocatalytic activity under visible light
CN113477270B (zh) 一种铜铁双金属限域氮掺杂碳纳米管复合材料的制备方法
Zhang et al. Self-assembled Au/TiO2/CNTs ternary nanocomposites for photocatalytic applications
Zou et al. Enhanced photocatalytic activity of bismuth oxychloride by in-situ introducing oxygen vacancy
CN109225265B (zh) 一种全固态z型异质结光催化剂的制备方法
CN111135847A (zh) 一种铂负载在介孔材料孔道结构的纳米材料及其制备方法
CN111686770B (zh) 一种金属离子共掺杂BiOBr微球、制备方法及其应用
CN111054419B (zh) 一种用于CO2还原的半导体/g-C3N4光催化剂及其制备方法
CN114522709B (zh) 一种三维多孔石墨相氮化碳/碘氧化铋/银纳米粒子复合光催化剂及其制备方法和应用
CN103157495A (zh) 一种Au/BiOBr0.2I0.8可见光催化剂及其制备方法
CN111841597A (zh) 一种钴负载氮杂氧化石墨烯/介孔薄层氮化碳的复合光催化材料及其制备方法
CN112973744B (zh) 一种光电催化剂及其制备方法
CN107497455A (zh) 一种微量硫表面修饰的超薄钨酸铋纳米片光催化剂的制备方法及其应用
Moniruddin et al. Nanoassembly of perovskite-based photocatalysts in a nanoconfined system for photocatalytic H2 production under visible light
CN102070143B (zh) 一种介孔空心球状碳化钨的制备方法
CN111905770B (zh) 一种SrTiO3/SrSO4/Pt双异质结纳米材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200512