CN107497455A - 一种微量硫表面修饰的超薄钨酸铋纳米片光催化剂的制备方法及其应用 - Google Patents

一种微量硫表面修饰的超薄钨酸铋纳米片光催化剂的制备方法及其应用 Download PDF

Info

Publication number
CN107497455A
CN107497455A CN201710893818.4A CN201710893818A CN107497455A CN 107497455 A CN107497455 A CN 107497455A CN 201710893818 A CN201710893818 A CN 201710893818A CN 107497455 A CN107497455 A CN 107497455A
Authority
CN
China
Prior art keywords
ultra
thin
determination
surface modification
trace sulfur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710893818.4A
Other languages
English (en)
Other versions
CN107497455B (zh
Inventor
刘平
王瑶珠
方志斌
王凯强
高帆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201710893818.4A priority Critical patent/CN107497455B/zh
Publication of CN107497455A publication Critical patent/CN107497455A/zh
Application granted granted Critical
Publication of CN107497455B publication Critical patent/CN107497455B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30
    • B01J35/39
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/68Preparation of compounds containing amino groups bound to a carbon skeleton from amines, by reactions not involving amino groups, e.g. reduction of unsaturated amines, aromatisation, or substitution of the carbon skeleton

Abstract

本发明属于光催化技术领域,具体涉及一种微量硫表面修饰的超薄Bi2WO6纳米片光催化剂的制备方法和应用。本发明室温下将十六烷基三甲基溴化铵加入Bi(NO3)3·5H2O溶液中,得到悬浮液;然后加入Na2WO4·2H2O,搅拌均匀后进行水热反应;所得产物离心洗涤,真空烘干得到超薄Bi2WO6纳米片,然后将其超声分散于乙醇水溶液中,将Na2S·9H2O溶液逐滴加入,室温下搅拌,离心洗涤,干燥,制得微量硫表面修饰的超薄Bi2WO6纳米片光催化剂。本发明制得的光催化剂具有窄化Bi2WO6带隙、宽光谱响应和高光催化性能等优点,制备方法简便、原料成本低、耗能少、可实现规模化制备等优点,属于绿色合成技术。

Description

一种微量硫表面修饰的超薄钨酸铋纳米片光催化剂的制备方 法及其应用
技术领域
本发明属于光催化技术领域,具体涉及一种微量硫表面修饰的超薄Bi2WO6纳米片光催化剂的制备方法和应用。
背景技术
随着我国经济的飞速发展,环境恶化和能源短缺问题也日益凸显。解决这两大问题是我国实现可持续发展、提高人民生活质量和保障国家安全的迫切需要。光催化技术被认为是理想的太阳能转换技术之一,其在水处理、空气净化、分解水制氢、CO2还原以及人工光合成等领域具有潜在优势。
在众多新型光催化材料中,铋系层状光催化材料作为当前光催化研究领域的热点之一,倍受研究者们关注。由于大部分铋系光催化剂的禁带宽度都比较窄,而导价带位置普遍都比较深,因此在光照激发下,大多铋系光催化材料都具有较强的氧化能力。据报道,已有许多种铋系层状化合物被成功制备并运用于产氧或光催化净化水的领域,如Bi2WO6、BiVO4、BiOX(X=Cl、Br、I)等。但是,导带位置深使得大多铋系光催化剂的还原能力很弱。
为了解决这一问题,目前许多工作通过引入新组分构造异质结,如Bi2WO6/Bi2S3Zhang Z, Wang W, Wang L, et al. Enhancement of visible-light photocatalysis by coupling with narrow-band-gap semiconductor: a case study on Bi 2 S 3 /Bi 2 WO 6 [J]. 2012.)等,但是这一策略旨在促进光催化剂的载流子分离,并未改变铋系光催化剂的能带结构。
随着二维纳米片的兴起,超薄铋系光催化剂的研究引起高度重视。Xie等人(Liang L, Lei F, Gao S, et al. Single unit cell bismuth tungstate layers realizing robust solar CO 2 reduction to methanol [J]. Angewandte Chemie International Edition, 2015, 54(47): 13971-13974.)发现将Bi2WO6做成超薄纳米片后,其能带结构会有所改变,从而提升Bi2WO6的还原能力。然而,这会使得Bi2WO6的带隙变宽,光吸收能力减弱。
发明内容
本发明的目的是针对现有技术的不足,提供一种光催化还原能力强的Bi2WO6超薄纳米片,具体思路就是通过微量硫表面修饰超薄Bi2WO6纳米片,并将其应用于还原对硝基苯胺。
为达到上述目的,本发明采用如下技术方案:
所述一种微量硫表面修饰的超薄Bi2WO6纳米片光催化剂;其中硫的质量分数为0.01%~0.07%。具体制备方法包括以下步骤:
(1)制备超薄Bi2WO6纳米片
室温下将十六烷基三甲基溴化铵加入Bi(NO3)3·5H2O溶液中,得到悬浮液;然后加入Na2WO4·2H2O,得到混合液,搅拌均匀,转移到聚四氟乙烯反应釜中,升温至120℃~200℃,保温12~24h;所得产物自然冷却至室温,分别用去离子水、无水乙醇洗涤多次,离心沉淀收集,60~80℃真空烘干;
(2)制备微量硫表面修饰的超薄Bi2WO6纳米片光催化剂
将步骤(1)制得的超薄Bi2WO6纳米片超声分散于乙醇水溶液(体积比1:1)中,然后将Na2S·9H2O溶液逐滴加入,室温下搅拌1~2h,离心分离后用去离子水洗涤,真空干燥,制得微量硫表面修饰的超薄Bi2WO6纳米片光催化剂。
本发明还公开了一种上述的微量硫表面修饰的超薄Bi2WO6纳米片光催化剂在还原对硝基苯胺制取对硝基二苯胺中的应用。本应用包括以下步骤:将所述微量硫表面修饰的超薄Bi2WO6纳米片光催化剂、甲酸铵牺牲剂和对硝基苯胺溶液在避光、氮气气氛下混合;将所述混合液在300W的氙灯光照下进行光催化反应20 min~80 min,完成对硝基苯胺还原成对硝基二苯胺的过程。
本发明的创新点在于:本发明提出的Bi2WO6具有超薄结构,旨在改善块状催化剂光催化还原能力不足的缺点。同时,由于S的轨道能级比O高,因此在Bi2WO6结构中局部引入S原子,利用Bi与S的强相互作用,在不改变Bi2WO6整体层状结构的前提下,使S参与杂化能级构建,这样既窄化了Bi2WO6的带隙,又提高其还原能力。
与现有技术相比,本发明的优点在于:
(1)本发明首次通过利用Bi2WO6和S2-的表面电性不同,在乙醇水溶液中通过静电自组装技术将S引入到多层超薄Bi2WO6纳米片表面,该制备方法具有操作简便、原料成本低、耗能少、可实现规模化制备等优点,属于绿色合成技术;
(2)本发明的微量硫表面修饰的超薄Bi2WO6纳米片光催化剂应用于光还原对硝基苯胺制备对硝基苯二胺中,具有还原效率高、光催化活性好等优点。相同条件下,微量硫表面修饰的超薄 Bi2WO6 纳米片光催化剂在60 min内催化还原了96.4 %对硝基苯胺,而超薄Bi2WO6纳米片光催化剂在60 min内只催化还原了18.8 %。
附图说明
图1为样品的X射线粉末衍射图;BW曲线为实施例1中合成的超薄Bi2WO6纳米片,BW-S曲线为实施例1中合成的微量硫表面修饰的超薄Bi2WO6纳米片。
图2为样品的紫外可见漫反射吸收光谱图,BW曲线为实施例1中合成的超薄Bi2WO6纳米片,BW-S曲线为实施例1中合成的微量硫表面修饰的超薄Bi2WO6纳米片。
图3为样品的 (αhν)1/2 对 (hν) 的曲线图,其中α代表吸收系数,ν代表光频率,h代表普朗克常数,曲线的切线在横坐标上的截距就是带隙,BW曲线为实施例1中合成的超薄Bi2WO6纳米片,BW-S曲线为实施例1中合成的微量硫表面修饰的超薄Bi2WO6纳米片。
图4为实施例1中合成的微量硫表面修饰的超薄Bi2WO6纳米片的场发射扫描电子显微镜图(FE-SEM)。
图5为样品光催化还原对硝基苯胺的速率图;BW曲线为实施例1中合成的超薄Bi2WO6纳米片,BW-S-1曲线为实施例1中合成的微量硫表面修饰的超薄Bi2WO6纳米片,BW-S-2曲线为实施例2中合成的微量硫表面修饰的超薄Bi2WO6纳米片,BW-S-3曲线为实施例3中合成的微量硫表面修饰的超薄Bi2WO6纳米片。
具体实施方式
为了更清楚、完整地描述本发明,下面将结合发明附图,对列举的部分实施例进行具体说明。
实施例1
制备:
第一步:制备超薄Bi2WO6纳米片:
(1)反应前驱液的制备:室温下将1 mmol的Bi(NO3)3·5H2O溶于80 mL 去离子水中,然后将0.5 mmol的十六烷基三甲基溴化铵加入上述硝酸铋溶液,搅拌均匀后,再加入1 mmol的Na2WO4·2H2O,充分搅拌1h,形成反应前驱体溶液;
(2)水热反应:将所得的前驱体溶液转移至100 mL容量的聚四氟乙烯反应釜中,升温至160℃,保温24h;
(3)沉淀的洗涤和收集:所的产物自然冷却至室温,分别用去离子水、无水乙醇洗涤数次,离心收集沉淀,60℃真空烘干即可得超薄Bi2WO6纳米片。
第二步:稀释硫化钠溶液:
将51.6μL 0.0066 M Na2S·9H2O水溶液分散于60 mL乙醇水溶液中(体积比1:1),形成稀释后的硫化钠溶液。
第三步:制备微量硫表面修饰的超薄Bi2WO6纳米片:
将第一步得到的超薄Bi2WO6纳米片超声分散于40 mL乙醇水溶液中(体积比1:1),然后将第二步稀释所得的硫化钠溶液逐滴加入,搅拌2h,将得到的产物离心分离后用去离子水洗涤,60℃真空干燥,得到质量比为0.055 %的微量硫表面修饰的超薄Bi2WO6纳米片(BW-S-1)。
应用
称取40 mg微量硫表面修饰的超薄Bi2WO6纳米片光催化剂和40 mg甲酸铵牺牲剂加入到60 mL,10 mg/L的对硝基苯胺溶液中,通氮气、不断搅拌、在300W氙灯光照下,实现对硝基苯胺的还原。如图5所示,相同条件下,微量硫表面修饰的超薄 Bi2WO6 纳米片光催化剂在60min内催化还原了94.6%对硝基苯胺,而超薄Bi2WO6纳米片光催化剂在60 min内只催化还原了18.8 %。
实施例2
制备:
第一步:制备超薄Bi2WO6纳米片:
(1)反应前驱液的制备:室温下将1 mmol的Bi(NO3)3·5H2O溶于80 mL 去离子水中,然后将0.5 mmol的十六烷基三甲基溴化铵加入上述硝酸铋溶液,搅拌均匀后,再加入1 mmol的Na2WO4·2H2O,充分搅拌1h,形成反应前驱体溶液;
(2)水热反应:将所得的前驱体溶液转移至100 mL容量的聚四氟乙烯反应釜中,升温至160℃,保温24h;
(3)沉淀的洗涤和收集:所的产物自然冷却至室温,分别用去离子水、无水乙醇洗涤数次,离心收集沉淀,60℃真空烘干即可得超薄Bi2WO6纳米片。
第二步:稀释硫化钠溶液:
将38.7μL 0.0066 M Na2S·9H2O水溶液分散于60 mL乙醇水溶液中(体积比1:1),形成稀释后的硫化钠溶液。
第三步:制备微量硫表面修饰的超薄Bi2WO6纳米片:
将第一步得到的超薄Bi2WO6纳米片超声分散于40 mL乙醇水溶液中(体积比1:1),然后将第二步稀释所得的硫化钠溶液逐滴加入,搅拌2h,将得到的产物离心分离后用去离子水洗涤,60℃真空干燥,得到质量比为0.041 %的微量硫表面修饰的超薄Bi2WO6纳米片(BW-S-2)。
应用
称取40 mg微量硫表面修饰的超薄Bi2WO6纳米片光催化剂和40 mg甲酸铵牺牲剂加入到60 mL,10 mg/L的对硝基苯胺溶液中,通氮气、不断搅拌、在300W氙灯光照下,实现对硝基苯胺的还原。如图5所示,相同条件下,微量硫表面修饰的超薄 Bi2WO6 纳米片光催化剂在60min内催化还原了44.9 %对硝基苯胺,而超薄Bi2WO6纳米片光催化剂在60 min内只催化还原了18.8 %。
实施例3
制备
第一步:制备超薄Bi2WO6纳米片:
(1)反应前驱液的制备:室温下将1 mmol的Bi(NO3)3·5H2O溶于80 mL 去离子水中,然后将0.5 mmol的十六烷基三甲基溴化铵加入上述硝酸铋溶液,搅拌均匀后,再加入1 mmol的Na2WO4·2H2O,充分搅拌1h,形成反应前驱体溶液;
(2)水热反应:将所得的前驱体溶液转移至100 mL容量的聚四氟乙烯反应釜中,升温至160℃,保温24h;
(3)沉淀的洗涤和收集:所的产物自然冷却至室温,分别用去离子水、无水乙醇洗涤数次,离心收集沉淀,60℃真空烘干即可得超薄Bi2WO6纳米片。
第二步:稀释硫化钠溶液:
将64.5μL 0.0066 M Na2S·9H2O水溶液分散于60 mL乙醇水溶液中(体积比1:1),形成稀释后的硫化钠溶液。
第三步:制备微量硫表面修饰的超薄Bi2WO6纳米片:
将第一步得到的超薄Bi2WO6纳米片超声分散于40 mL乙醇水溶液中(体积比1:1),然后将第二步稀释所得的硫化钠溶液逐滴加入,搅拌2h,将得到的产物离心分离后用去离子水洗涤,60℃真空干燥,得到质量比为0.069 %的微量硫表面修饰的超薄Bi2WO6纳米片(BW-S-3)。
应用
称取40 mg微量硫表面修饰的超薄Bi2WO6纳米片光催化剂和40 mg甲酸铵牺牲剂加入到60 mL,10 mg/L的对硝基苯胺溶液中,通氮气、不断搅拌、在300W氙灯光照下,实现对硝基苯胺的还原。如图5所示,相同条件下,微量硫表面修饰的超薄 Bi2WO6 纳米片光催化剂在60min内催化还原了85.8 %对硝基苯胺,而超薄Bi2WO6纳米片光催化剂在60 min内只催化还原了18.8 %。
实施例4
将实施例1所得的超薄Bi2WO6纳米片和微量硫表面修饰的超薄Bi2WO6纳米片,分别进行X射线衍射分析,结果如图1。证明本发明提出的表面微量修饰的方法没有改变Bi2WO6晶型。
实施例5
将实施例1所得的超薄Bi2WO6纳米片和微量硫表面修饰的超薄Bi2WO6纳米片,分别进行紫外可见漫反射光谱分析,如图2所示。可以看出微量硫表面修饰的超薄Bi2WO6纳米片的带边发生微小的变化,证明引入的微量硫修饰于超薄Bi2WO6纳米片的表面,而并未进入到Bi2WO6纳米片的晶格中。如图3所示,可以看出微量硫表面修饰后的超薄Bi2WO6纳米片相比修饰前带隙有所窄化。
实施例6
将实施例1所得的微量硫表面修饰的超薄Bi2WO6纳米片进行场发射扫描电子显微镜表征,结果如图4。证明在本发明提出的表面微量修饰过程不会改变原有超薄Bi2WO6纳米片的形貌,纳米片的厚度在10 nm以内。
以上所述仅为本发明的较佳实施例,仅用于说明本发明,不用于限制本发明的范围。在不付出创造性劳动的情况下,依本发明申请专利范围所做的均等变化和修饰,皆应属本发明的涵盖范围。

Claims (9)

1.一种微量硫表面修饰的超薄Bi2WO6纳米片光催化剂的制备方法,其特征在于:利用Bi2WO6和S2-表面电性的不同,在乙醇水溶液中通过自组装将硫修饰在多层超薄Bi2WO6纳米片表面;其制备包括以下两个步骤:
(1)制备超薄Bi2WO6纳米片
室温下将十六烷基三甲基溴化铵加入Bi(NO3)3·5H2O溶液中,得到悬浮液;然后加入Na2WO4·2H2O,得到混合液,搅拌均匀,转移到聚四氟乙烯反应釜中,升温至120℃~200℃,保温12~24h;所得产物自然冷却至室温,分别用去离子水、无水乙醇洗涤多次,离心沉淀收集,60~80℃真空烘干;
(2)制备微量硫表面修饰的超薄Bi2WO6纳米片光催化剂
将步骤(1)制得的超薄Bi2WO6纳米片超声分散于乙醇水溶液中,然后将Na2S·9H2O溶液逐滴加入,室温下搅拌1~2h,离心分离后用去离子水洗涤,真空干燥,制得微量硫表面修饰的超薄Bi2WO6纳米片光催化剂。
2.根据权利要求1所述的微量硫表面修饰的超薄Bi2WO6纳米片光催化剂,其特征在于:所述的将硫修饰在多层超薄Bi2WO6纳米片表面上,硫所占Bi2WO6纳米片的质量分数为0.01%~0.07%。
3.根据权利要求1所述的微量硫表面修饰的超薄Bi2WO6纳米片光催化剂,其特征在于:Bi(NO3)3·5H2O和Na2WO4·2H2O的摩尔比为1∶1。
4.根据权利要求1所述的微量硫表面修饰的超薄Bi2WO6纳米片光催化剂,其特征在于:所述十六烷基三甲基溴化铵与所述Bi(NO3)3·5H2O的摩尔比为 0.1~0.5∶1。
5.根据权利要求1所述的微量硫表面修饰的超薄Bi2WO6纳米片光催化剂,其特征在于:
步骤(2)中超薄Bi2WO6纳米片与乙醇水溶液的体积比为1:1。
6.一种如权利要求1所述方法制备的微量硫表面修饰的超薄Bi2WO6纳米片光催化剂在还原对硝基苯胺制备对硝基二苯胺中的应用,其特征在于:将所述微量硫表面修饰的超薄Bi2WO6纳米片光催化剂、甲酸铵牺牲剂和对硝基苯胺溶液在避光、氮气气氛下混合;将上述混合液在全波段光照下进行光催化反应,完成对硝基苯胺还原成对硝基二苯胺的光催化反应。
7. 根据权利要求6所述的应用,其特征在于:所述微量硫表面修饰的超薄Bi2WO6纳米片光催化剂的添加量为每升对硝基苯胺溶液添加微量硫表面修饰的超薄Bi2WO6纳米片光催化剂0.5 g~1g。
8.根据权利要求6所述的应用,其特征在于:所述甲酸铵牺牲剂的添加量为每升对硝基苯胺溶液添加甲酸铵牺牲剂0.5 g~1g。
9.根据权利要求6所述的应用,其特征在于:对硝基苯胺溶液中对硝基苯胺的初始浓度为10 mg/L~50 mg/L。
CN201710893818.4A 2017-09-28 2017-09-28 一种微量硫表面修饰的超薄钨酸铋纳米片光催化剂的制备方法及其应用 Active CN107497455B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710893818.4A CN107497455B (zh) 2017-09-28 2017-09-28 一种微量硫表面修饰的超薄钨酸铋纳米片光催化剂的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710893818.4A CN107497455B (zh) 2017-09-28 2017-09-28 一种微量硫表面修饰的超薄钨酸铋纳米片光催化剂的制备方法及其应用

Publications (2)

Publication Number Publication Date
CN107497455A true CN107497455A (zh) 2017-12-22
CN107497455B CN107497455B (zh) 2019-07-09

Family

ID=60699946

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710893818.4A Active CN107497455B (zh) 2017-09-28 2017-09-28 一种微量硫表面修饰的超薄钨酸铋纳米片光催化剂的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN107497455B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110882704A (zh) * 2019-11-14 2020-03-17 常州大学 一种棒状硫化镉复合钨酸铋z型异质结光催化材料的制备方法
CN111530487A (zh) * 2020-04-29 2020-08-14 清华大学深圳国际研究生院 一种钨酸铋氮硫共同改性生物炭的制备方法
CN111841575A (zh) * 2020-07-09 2020-10-30 中南大学 一种表面硫修饰的多孔铜基复合催化剂及其制备方法和应用
CN115672353A (zh) * 2022-11-17 2023-02-03 昆明理工大学 一种Bi2S3/Bi2WO6异质结光催化材料及其制备方法与应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009044926A1 (de) * 2009-09-23 2011-03-31 Schott Ag Photokatalysatoreinrichtung
CN102764659A (zh) * 2011-05-06 2012-11-07 中国科学院合肥物质科学研究院 钴修饰的钨酸铋复合光催化剂及其制备方法和用途

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009044926A1 (de) * 2009-09-23 2011-03-31 Schott Ag Photokatalysatoreinrichtung
CN102764659A (zh) * 2011-05-06 2012-11-07 中国科学院合肥物质科学研究院 钴修饰的钨酸铋复合光催化剂及其制备方法和用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TIANYE WANG 等: "One-stepsynthesisofasulfurdopedBi2WO6/Bi2O3 composite with enhanced visible-light photo catalytic activity", 《MATERIALS LETTERS》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110882704A (zh) * 2019-11-14 2020-03-17 常州大学 一种棒状硫化镉复合钨酸铋z型异质结光催化材料的制备方法
CN111530487A (zh) * 2020-04-29 2020-08-14 清华大学深圳国际研究生院 一种钨酸铋氮硫共同改性生物炭的制备方法
CN111841575A (zh) * 2020-07-09 2020-10-30 中南大学 一种表面硫修饰的多孔铜基复合催化剂及其制备方法和应用
CN111841575B (zh) * 2020-07-09 2022-11-22 中南大学 一种表面硫修饰的多孔铜基复合催化剂及其制备方法和应用
CN115672353A (zh) * 2022-11-17 2023-02-03 昆明理工大学 一种Bi2S3/Bi2WO6异质结光催化材料及其制备方法与应用

Also Published As

Publication number Publication date
CN107497455B (zh) 2019-07-09

Similar Documents

Publication Publication Date Title
Zou et al. In-situ construction of sulfur-doped g-C3N4/defective g-C3N4 isotype step-scheme heterojunction for boosting photocatalytic H2 evolution
Yang et al. Highly efficient photocatalytic hydrogen evolution and simultaneous formaldehyde degradation over Z-scheme ZnIn2S4-NiO/BiVO4 hierarchical heterojunction under visible light irradiation
Pan et al. Recent progress in 2D metal-organic framework photocatalysts: synthesis, photocatalytic mechanism and applications
Fang et al. Facile synthesis of anatase/rutile TiO2/g-C3N4 multi-heterostructure for efficient photocatalytic overall water splitting
Zhang et al. Enhanced photocatalytic reduction of CO2 to methanol by ZnO nanoparticles deposited on ZnSe nanosheet
CN105056985B (zh) g‑C3N4/氧化石墨烯/纳米铁可见光响应催化膜
CN102963934B (zh) 钨酸铋量子点及其与石墨烯复合材料的制备方法
CN107497455B (zh) 一种微量硫表面修饰的超薄钨酸铋纳米片光催化剂的制备方法及其应用
Zhu et al. Construction of 2D/2D TiO2/g-C3N4 nanosheet heterostructures with improved photocatalytic activity
Chen et al. Exerting charge transfer to stabilize Au nanoclusters for enhanced photocatalytic performance toward selective oxidation of amines
CN105600828B (zh) 一种多孔纳米CuFe2O4的制备方法
She et al. Facile preparation of mixed-phase CdS and its enhanced photocatalytic selective oxidation of benzyl alcohol under visible light irradiation
CN102407147A (zh) ZnIn2S4-石墨烯复合光催化剂的制备方法与应用
CN107456991A (zh) 一种g‑C3N4量子点负载钨酸铋纳米片光催化剂的制备方法
Huang et al. A S-scheme heterojunction of Co9S8 decorated TiO2 for enhanced photocatalytic H2 evolution
Guo et al. CdS nanoparticles decorated hexagonal Fe2O3 nanosheets with a Z-scheme photogenerated electron transfer path for improved visible-light photocatalytic hydrogen production
CN107670672B (zh) 一种钛酸钡复合硫化镉纳米复合光催化剂及其制备方法
CN102580714A (zh) 一种氧化石墨烯/磷酸银复合可见光催化剂及其制备方法
CN108786792B (zh) 一种金属/半导体复合光催化剂及其制备与应用
CN107282077A (zh) 一种光催化固氮催化剂的制备方法及其应用
Zhang et al. Facile synthesis of a ZnO–BiOI p–n nano-heterojunction with excellent visible-light photocatalytic activity
CN105597787A (zh) 一种单层二硫化钼/超细二氧化钛纳米带异质结构光催化剂及其制备方法
CN108355669B (zh) 一种磁性纳米洋葱碳负载Bi2WO6的光催化剂及其制备方法和应用
Wang et al. 3D network-like rGO-MoSe2 modified g-C3N4 nanosheets with Z-scheme heterojunction: Morphology control, heterojunction construct, and boosted photocatalytic performances
CN105478142A (zh) 一种硫化铟介孔空心微球光催化剂及其制备方法和用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant