CN111133582B - 具有通过对超晶格退火形成的包埋绝缘层的半导体器件的制造方法 - Google Patents

具有通过对超晶格退火形成的包埋绝缘层的半导体器件的制造方法 Download PDF

Info

Publication number
CN111133582B
CN111133582B CN201880062180.2A CN201880062180A CN111133582B CN 111133582 B CN111133582 B CN 111133582B CN 201880062180 A CN201880062180 A CN 201880062180A CN 111133582 B CN111133582 B CN 111133582B
Authority
CN
China
Prior art keywords
semiconductor
superlattice
forming
monolayer
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201880062180.2A
Other languages
English (en)
Other versions
CN111133582A (zh
Inventor
R·J·米尔斯
R·J·史蒂芬森
K·D·维克斯
N·W·科迪
M·赫塔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atomera Inc
Original Assignee
Atomera Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atomera Inc filed Critical Atomera Inc
Publication of CN111133582A publication Critical patent/CN111133582A/zh
Application granted granted Critical
Publication of CN111133582B publication Critical patent/CN111133582B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • H01L21/02507Alternating layers, e.g. superlattice
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/0245Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02694Controlling the interface between substrate and epitaxial layer, e.g. by ion implantation followed by annealing

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Recrystallisation Techniques (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

一种用于制造半导体器件的方法,可包括在半导体衬底上形成超晶格,所述超晶格包括各自的多个堆叠的层组。每个层组可包括多个堆叠的基础半导体单层,其限定出基础半导体部分,以及约束在相邻基础半导体部分的晶格内的至少一个非半导体单层。另外,来自相对的基础半导体部分的至少一些半导体原子可通过其间的至少一个非半导体单层化学键合在一起。该方法可以进一步包括在超晶格上外延形成半导体层,和对所述超晶格退火以便形成包埋绝缘层,在所述包埋绝缘层中至少一些半导体原子不再通过其间的至少一个非半导体单层化学键合在一起。

Description

具有通过对超晶格退火形成的包埋绝缘层的半导体器件的制 造方法
技术领域
本公开总体上涉及半导体器件,且更具体地,涉及半导体器件的增强材料和制造技术。
背景技术
已经有人提出了增强半导体器件性能的结构和技术,例如通过增强电荷载流子的迁移率。例如,Curr ie等人的美国专利申请第2003/0057416号公开了硅、硅-锗和松弛硅的应变材料层,其还包括原本会导致性能下降的无杂质区域。上部硅层中所产生的双轴应变改变载流子迁移率,从而实现更高速和/或更低功率的器件。Fi tzgera ld等人的公布美国专利申请第2003/0034529号公开了一种也基于类似应变硅技术的CMOS反相器。
Takag i的美国专利US 6,472,685 B2公开了一种半导体器件,其包括夹在硅层之间的硅和碳层,使得第二硅层的导带和价带承受拉伸应变。具有较小有效质量并且已由施加到栅电极的电场所感应的电子被限制在第二硅层中,因此,断言n沟道MOSFET具有较高的迁移率。
I shibashi等人的美国专利US 4,937,204公开了一种超晶格,其中交替且外延地生长多个层,所述多个层少于八个单层且包含部分或二元或二元化合物半导体层。主要电流方向垂直于超晶格的层。
Wang等人的美国专利US 5,357,119公开了S i-Ge短周期超晶格,其具有通过减少超晶格中的合金散射而实现的较高迁移率。沿着这些路线,Candelar ia的美国专利US 5,683,934公开了一种迁移率增强的MOSFET,其包括沟道层,该沟道层包含硅和第二材料的合金,该第二材料以使沟道层处于拉应力下的百分比替位存在于硅晶格中。
Tsu的美国专利US 5,216,262公开了一种量子阱结构,其包含两个阻挡区和夹在阻挡区之间的外延生长半导体薄层。每个阻挡区由厚度通常为2到6个单层的SiO2/Si交替层组成。阻挡区之间夹有厚得多的硅部分。
作者同为Tsu并且由Applied Phys ics and Materials Science &Processing于2000年9月6日在线公布的题为“Phenomena in silicon nanostructure devices”的文章(第391-402页)公开了硅和氧的半导体原子超晶格(SAS)。该Si/O超晶格据公开对硅量子器件和发光器件有用。特别地,构建并测试了绿色电致发光二极管结构。该二极管结构中的电流是竖向的,即垂直于SAS的层。所公开的SAS可以包括被吸附物质(如氧原子和CO分子)隔开的半导体层。超出所吸附的氧单层的硅生长被描述为具有相当低缺陷密度的外延。一种SAS结构包括1.1nm厚的硅部分,其为约八个硅原子层,而另一种结构两倍于该硅厚度。在Physical Review Letters,Vol.89,No.7(2002年8月12日)公布的Luo等人的题为“Chemical Design of Direct-Gap Light-Emitting Silicon”的文章进一步讨论了Tsu的发光SAS结构。
Wang、Tsu和Lofgren的公布国际申请WO 02/103,767 A1公开了薄的硅和氧、碳、氮、磷、锑、砷或氢的阻挡构造块,从而将竖向流过晶格的电流降低超过四个数量级。该绝缘层/阻挡层允许邻接于绝缘层沉积低缺陷外延硅。
Mears等人的公布英国专利申请GB 2,347,520公开了非周期性光子带隙(APBG)结构的原理可适用于电子带隙工程。特别地,该申请公开了:可以调节材料参数(例如,能带最小值的位置、有效质量等)以产生具有期望能带结构特性的新型非周期材料。还公开了其它参数,例如电导率、热导率和介电常数或磁导率也可能被设计于材料中。
此外,Wang等人的美国专利US 6,376,337公开了一种制造半导体器件的绝缘层或阻挡层的方法,该方法包括在硅衬底上沉积硅和至少一种附加元素的层,由此所沉积的层基本上没有缺陷,使得可以在沉积层上沉积基本上没有缺陷的外延硅。作为替代,在硅衬底上吸附一种或多种元素的单层,优选包含氧。夹在外延硅之间的多个绝缘层形成阻挡复合体。
尽管已有这些方法,但对于使用先进半导体加工技术以便在半导体器件中提供绝缘区或绝缘层而言,进一步的增强可能是期望的。
发明概述
一种用于制造半导体器件的方法,可以包括在半导体衬底上形成超晶格,该超晶格包括各自的多个堆叠的层组。每个层组可包含多个堆叠的基础半导体单层,其限定出基础半导体部分,以及约束在相邻基础半导体部分的晶格内的至少一个非半导体单层。此外,来自相对的基础半导体部分的至少一些半导体原子可以通过其间的至少一个非半导体单层化学键合在一起。该方法可进一步包括在超晶格上外延形成半导体层,以及对该超晶格退火从而形成包埋绝缘层,在该包埋绝缘层中至少一些半导体原子不再通过其间的至少一个非半导体单层化学键合在一起。
更特别地,该方法可进一步包括在外延形成的半导体层中形成至少一个有源半导体器件。举例来说,可在800℃至1000℃的温度下于惰性气氛中进行退火,然而也可使用其它温度和气氛。另外,例如,可以用至少2.5×1014原子/cm3的剂量形成该至少一个非半导体单层。此外,举例来说,可以用小于或等于的相邻层组的非半导体单层之间的间距形成该超晶格,然而也可使用更宽的间距。
根据一个示例性实施方案,形成该超晶格可包括在半导体衬底上选择性地形成多个间隔开的超晶格。根据另一示例性实施方案,形成该超晶格可包括形成跨越半导体衬底的连续超晶格。
举例来说,该至少一个非半导体单层可包含氧,并且该半导体单层可包含硅和/或锗。
附图简述
图1是用于根据本发明的半导体器件的超晶格的大幅放大的示意性截面视图。
图2是图1所示超晶格的局部的透视示意原子图。
图3是根据本发明的超晶格的另一实施方案的大幅放大的示意性截面视图。
图4A是现有技术的块体硅和图1-2所示的4/1Si/O超晶格的从γ点(G)计算的能带结构图。
图4B是现有技术的块体硅和图1-2所示的4/1Si/O超晶格的从Z点计算的能带结构图。
图4C是现有技术的块体硅和图3所示的5/1/3/1Si/O超晶格的从γ点和Z点计算的能带结构图。
图5和图6是说明根据示例性实施方案的制造具有包埋绝缘层的半导体器件的方法的示意性截面视图。
图7是根据示例性实施方案的具有包埋绝缘层的半导体器件的制造方法的流程图。
发明详述
现在将在下文中参考附图来更全面地描述本公开,附图中示出了示例性实施方案。然而,可基于本文所述教导实施许多不同的形式,并且不应将本公开解释为局限于所提供的具体示例性实施方案。相反,提供这些实施方案以使本公开更全面和完整,并向本领域技术人员充分传达所公开的概念。同样的附图标记自始至终表示同样的要素,而撇号用以表示不同实施方案中的相似要素。
申请人推理(但不希望受此约束),本文所述的某些超晶格降低载流子的有效质量,这从而导致更高的载流子迁移率。利用文献中的各种定义来说明有效质量。作为有效质量改善的量度,申请人对于电子和空穴分别使用“导电性倒易有效质量张量”,Me -1和Mh -1,对于电子定义为:
并且对于空穴定义为:
其中f是费米-狄拉克分布,EF是费米能量,T是温度,E(k,n)是处在对应于波矢量k和第n能带的状态的电子的能量,下标i和j表示笛卡尔坐标x、y和z,在布里渊区(BZ)上进行积分,并且对于电子和空穴分别在能量高于或低于费米能量的能带上进行求和。
申请人对导电性倒易有效质量张量的定义是,对于导电性倒易有效质量张量的相应分量的较大值,材料的导电率的张量分量较大。申请人再次推理(但不希望受此约束),本文所述的超晶格设定导电性倒易有效质量张量的值,以便增强材料的导电性能,例如通常对于电荷载流子传输的优选方向。合适张量元素的倒逆(inverse)被称为导电性有效质量。换句话说,为了表征半导体材料结构,使用如上所述且在预期的载流子传输方向上计算的电子/空穴的导电性有效质量来辨别改良的材料。
申请人已经确认了用于半导体器件的改良材料或结构。更具体地,申请人已经确认了具有以下能带结构的材料或结构:其电子和/或空穴的合适导电性有效质量显著小于硅的相应值。这些结构除了增强的迁移率特性之外,它们的形成或使用方式使得它们提供有利于用在各种不同类型器件中的压电、热电和/或铁电性能,下文将进一步讨论。
参考图1和2,该材料或结构的形式为超晶格25,超晶格的结构在原子或分子水平上受到控制,并且可使用已知的原子或分子层沉积技术来形成。超晶格25包含以堆叠关系排列的多个层组45a-45n,具体参照图1的横截面示意图可能最好理解。
超晶格25的每个层组45a-45n说明性地包括多个堆叠的基础半导体单层46,其限定出各自的基础半导体部分46a-46n及其上的能带调整层50。为了说明的清楚,能带调整层50在图1中用点划线表示。
能带调整层50说明性地包括一个非半导体单层,其被约束在相邻的基础半导体部分的晶格内。“约束在相邻的基础半导体部分的晶格内”是指来自相对的基础半导体部分46a-46n的至少一些半导体原子通过其间的非半导体单层50化学键合在一起,如图2所示。一般来说,通过如下方式使这种构造成为可能:控制以原子层沉积技术沉积在半导体部分46a-46n上的非半导体材料的量,使得可用的半导体键合位点不会全部(即少于全部或小于100%覆盖率)被与非半导体原子的键占据,下文将进一步讨论。因此,当半导体材料的另外单层46沉积在非半导体单层50之上或上方时,新沉积的半导体原子将占据该非半导体单层下方的半导体原子的剩余空键合位点。
在其它实施方案中,超过一个此类非半导体单层是可能的。应注意的是,本文提及非半导体或半导体单层时,是指如果以块体形成时,用于该单层的材料是非半导体或半导体。即,材料(例如硅)的单个单层展现出的性能,可能不一定与以块体或以相对较厚层形成时其展现的性能相同,这是本领域技术人员将理解的。
申请人推理(但不希望受此约束),能带调整层50和相邻的基础半导体部分46a-46n致使超晶格25在平行层方向上对于电荷载流子具有比原本情况更低的适当导电性有效质量。换一种方式考虑,这个平行方向正交于堆叠方向。能带调整层50还可使超晶格25具有常见的能带结构,同时还有利地充当该超晶格竖直上方和下方的层或区之间的绝缘体。
此外,该超晶格结构还可有利地充当在该超晶格25竖直上方和下方的层之间的掺杂剂和/或材料扩散的阻挡体。这些性质因此可有利地允许超晶格25为高K电介质提供界面,其不仅减少高K材料向沟道区中的扩散,而且其还可有利地减少不希望的散射效应,并改善器件迁移率,这是本领域技术人员将理解的。
还推理,包括超晶格25的半导体器件可基于比原本情况更低的导电性有效质量从而可享有更高的电荷载流子迁移率。在一些实施方案中,并且作为通过本发明实现的能带工程的结果,超晶格25可进一步具有基本上直接的带隙,这对于例如光电器件特别有利。
超晶格25还说明性地包括在上部层组45n上的覆盖层52。该覆盖层52可包含多个基础半导体单层46。该覆盖层52可具有2至100个基础半导体单层,更优选地10至50个单层。
每个基础半导体部分46a-46n可包含选自IV族半导体、III-V族半导体和II-VI族半导体的基础半导体。当然,术语IV族半导体还包括IV-IV族半导体,这是本领域技术人员将理解的。更具体地,基础半导体可包含例如硅和锗中的至少一种。
每个能带调整层50例如可包含选自氧、氮、氟、碳和碳-氧的非半导体。所述非半导体还理想地在沉积下一层期间是热稳定的,从而有利于制造。在其它实施方案中,所述非半导体可以是与给定半导体加工兼容的另一种无机或有机元素或化合物,这是本领域技术人员将理解的。更具体地,基础半导体可包含例如硅和锗中的至少一种。
应注意的是,术语单层是指包括单原子层,也指包括单分子层。还应注意,由单个单层提供的能带调整层50还意指包括其中并非所有可能位点被占据的单层(即少于全部或小于100%的覆盖率)。例如,参考图2的原子图,对于硅作为基础半导体材料并且氧作为能带调整材料,示出了4/1重复结构。在所示的例子中,氧的可能位点仅有一半被占据。
在其它实施方案中和/或对于不同的材料,本领域技术人员将理解,将不一定是这种二分之一占据的情形。实际上,原子沉积领域的技术人员还将理解,即使在该示意图中也可以看出,在给定单层中的个体氧原子没有精确地沿平面排列。举例来说,优选的占据范围是可能的氧位点的约八分之一到二分之一充满,但在某些实施方案中,可以使用其它数字。
硅和氧目前广泛用于传统半导体加工中,因此制造商将能够容易地使用本文所述的这些材料。原子或单层沉积现在也被广泛使用。因此,包括根据本发明的超晶格25的半导体器件易于被采用和实施,这是本领域技术人员将理解的。
据推理(申请人不希望受此约束),对于超晶格而言,例如Si/O超晶格,硅单层的数目应理想地为七个以下,以使超晶格的能带在各处是常见的或在各处是相对均匀的,以实现期望的优点。对于Si/O,图1和图2所示的4/1重复结构已经过建模以表示电子和空穴在X方向上的增强迁移率。例如,电子的计算导电性有效质量(对于块体硅而言是各向同性的)为0.26,并且对于X方向上的4/1SiO超晶格而言其为0.12,从而导致0.46的比值。类似地,块体硅的关于空穴的计算产生0.36的值,并且对于4/1Si/O超晶格的值为0.16,从而导致0.44的比值。
尽管这样的方向择优特征在某些半导体器件中可能是期望的,然而其它器件也可得益于在平行于层组的任何方向上的更均匀的迁移率增加。正如本领域技术人员将理解的,电子和空穴两者的迁移率均增加,或者这些类型的电荷载流子中仅一种的迁移率增加,也可以是有益的。
超晶格25的4/1Si/O实施方案的较低导电性有效质量,可小于原本发生的导电性有效质量的三分之二,且这适用于电子和空穴两者。当然,正如本领域技术人员将理解的,超晶格25还可在其中包含至少一种类型的导电性掺杂剂。
事实上,现在另外参考图3,现在说明根据本发明的具有不同性质的超晶格25'的另一实施方案。在该实施例方案中,说明重复模式3/1/5/1。更具体地,最低的基础半导体部分46a'具有三个单层,并且次最低的基础半导体部分46b'具有五个单层。该模式在整个超晶格25'中重复。能带调整层50'可各自包括单个单层。就包括Si/O的这种超晶格25'而言,电荷载流子迁移率的增强与层平面中的取向无关。图3中的未特别提及的那些其它要素,与上文参考图1所讨论的那些相似,故无需在此进一步讨论。
在一些器件实施方案中,超晶格的所有基础半导体部分的厚度可以是相同数目的单层。在其它实施方案中,至少一些基础半导体部分的厚度可以是不同数目的单层。在另外的实施方案中,所有基础半导体部分的厚度可以是不同数目的单层。
在图4A-4C中,示出了使用密度泛函理论(DFT)计算出的能带结构。在本领域中公知,DFT低估了带隙的绝对值。因此,带隙以上的所有能带可通过适当的“剪刀校正”加以偏移。然而,已知能带的形状是更加可靠的。纵向的能量轴应从此角度来解释。
图4A示出了块体硅(以连续线表示)和图1中所示的4/1Si/O超晶格25(以点线表示)两者的从γ点(G)计算出的能带结构。这些方向是指4/1Si/O结构的晶胞而不是Si的常规晶胞,虽然图中的方向(001)确实对应于Si的常规晶胞的方向(100),并因此显示出Si导带最小值的预期位置。图中的(100)和(010)方向对应于常规Si晶胞的(110)和(-110)方向。本领域技术人员将会理解,图中的Si能带被折叠,以便将它们表示在该4/1Si/O结构的适当倒易晶格方向上。
可以看出,与块体硅(Si)截然不同,该4/1Si/O结构的导带最小值位于γ点,而其价带最小值则出现在方向(001)上的布里渊区的边缘,我们称其为Z点。还可注意到,与Si的导带最小值的曲率相比,该4/1Si/O结构的导带最小值的曲率较大,这是由于附加氧层引入的微扰造成的能带分裂。
图4B示出了块体硅(连续线)和4/1Si/O超晶格25(点线)两者的由Z点计算出的能带结构。该图显示了价带在方向(100)上的增强曲率。
图4C示出了块体硅(连续线)和图3的超晶格25'的5/1/3/1Si/O(点线)两者的由γ点和Z点计算出的能带结构。由于该5/1/3/1Si/O结构的对称性,在方向(100)和(010)上计算的能带结构是等效的。因此,在与所述层平行的平面中,即垂直于堆叠方向(001),导电性有效质量和迁移率预期为各向同性。请注意,在该5/1/3/1Si/O实例中,导带最小值和价带最大值均位于或接近Z点。
尽管增加的曲率指示着减小的有效质量,但可通过导电性倒易有效质量张量计算而进行适当的比较和判别。这导致申请人进一步推论,该5/1/3/1超晶格25'实质上应为直接带隙。本领域技术人员将理解,光学跃迁的适当矩阵元素是区别直接与间接带隙行为的另一指示。
转向图5-6和图7的流程图200,现在说明使用上述技术制造半导体器件130的示例性方法。作为背景说明,目前的绝缘体上硅(SOI)、蓝宝石上硅(SOS)和绝缘体上应变硅(sSOI)方法有许多工艺变化。注氧隔离(SIMOX),或硅晶片键合,是将单晶硅晶片(处理)键合到具有SiO2表面的第二晶片上,在SiO2表面层下方的单晶硅内具有高应力的氢或氦注入区。氧化和注入的硅晶片的顶部(几埃)沿着受应力的氢或氦注入区从其原始晶片分离。剥离的硅成为处理晶片的顶表面。SOI晶片比块体硅晶片有利,因为在SOI上制造的器件可以更好地与相邻器件和晶片块体的亚表面隔离。这减少了将在SOI晶片上实施的晶体管中的寄生效能损失。
然而,当前的SOI技术相对昂贵,因为它们需要额外的制造步骤,并且在某些情况下需要额外的晶片来形成最终的SOI衬底。此外,SIMOX需要相对昂贵的高能量注入,所述高能量注入对硅晶格造成大量损伤,这需要通过高温退火以便修复晶格。晶片键合方法需要额外的晶片和化学机械抛光(CMP)步骤,以使分切过程产生的粗糙表面变得平滑。此外,这些SOI技术可能只能施加在全局范围上,也就是说,整个晶片要么是SOI要么不是SOI。
从框格71处开始,在半导体(例如硅)衬底121上形成与上文所讨论类似的超晶格125。如上文进一步所讨论,超晶格125说明性地包括多个堆叠的层组145a-145d,然而如前所述可在不同的实施方案中使用不同数目的层组。每个组层145a-145d说明性地包括多个堆叠的基础半导体(例如硅)单层,其限定出基础半导体部分146b,以及被约束在相邻基础半导体部分的晶格内的一个或多个非半导体(例如氧)单层150。同样,如上所述,来自相对的基础半导体部分46b的至少一些半导体原子通过其间的非半导体单层150化学键合在一起。
应注意的是,超晶格125可以是在半导体衬底121上选择性地形成的多个横向间隔开的超晶格。即,通过使用选择性外延超晶格生长工艺,可以在晶片上形成局部的SOI区,这不同于同现有SOI技术那样使SOI跨整个晶片。然而,如果需要,超晶格125也可形成为跨越整个半导体衬底121的连续超晶格。
该方法进一步说明性地包括在超晶格125上外延形成半导体层152(例如硅覆盖层)。外延半导体层152可用作有源器件层用于在随后的处理步骤器件用于形成附加电路/器件。在外延沉积半导体层152之后,还可形成天然的硅氧化层159。
根据一个实例方面,可有利地对超晶格125进行退火,使得非半导体单层150的非半导体(例如氧)原子重新定位以形成绝缘层160,由此通过其间的非半导体单层先前化学键合在一起的半导体原子不再化学键合在一起,这将在下面进一步讨论。
更具体地,包埋绝缘层160在衬底121和外延半导体层152之间提供相对薄的绝缘层,这在晶片处理之后将保持单晶。对于该应用,使用硅作为半导体材料并且使用氧作为非半导体材料,例如用于形成单层150的插入氧剂量以及多组硅单层146b之间的间隔,可相对于迁移率增强的形成SOI而予以优化(即对于SOI应用,更小的空间和更高的氧百分比),如下进一步所述。
该示例方法有利地以上述能力将氧单层添加到硅晶格而不干扰外延硅的顺序。举例来说,用于该SOI应用的氧剂量可高于2.5×1014原子/cm3,以提供包埋绝缘层160。一般而言,可能希望在不破坏硅晶格的情况下使用尽可能高的氧剂量(即在超晶格沉积期间不形成SiO2)。换而言之,~2.5×1014原子/cm3以下的剂量可用于上述迁移率增强应用,但在本SOI实施方式中,单层150中有更高的氧原子浓度或覆盖率可能是期望的。
关于插入的氧单层之间的间距,在典型的迁移率增强构造中,超晶格可具有约的间距。对于当前的SOI应用中,期望间距小于/>但更宽的间距(例如,高达约也可用于其它实施方案中)。一般而言,在不会在硅晶格中引入缺陷的情况下,硅单层组146b的厚度应尽可能薄。
举例来说,可在约750℃或更高的温度下于惰性气氛(例如N2、Ar、He等)中进行退火,更优选在约800℃至1000℃的范围内进行。例如,在一些实施方案中,也可根据所使用的温度范围而使用非惰性气氛(例如H2)。退火导致插入的氧单层150亚稳均相分解(decomposespinodial ly)。换言之,氧原子将一起扩散从而形成具有较高氧浓度的氧化物绝缘层160,并在新形成的绝缘体的两侧上具有剥蚀的单晶硅区161。将理解的是,上述示例性退火时间、温度、环境、以及剂量和间距可能根据具体的应用和所用材料而变化。
如上所述,在框格75处,可进行附加的处理步骤以便在外延半导体层152之中或之上形成有源半导体器件(晶体管、二极管等)以提供最终的半导体器件130。本领域技术人员将理解,在其它应用中,半导体器件130可以是由一个制造商制造并由另一制造商进行后续的电路加工的半导体晶片。图7的方法说明性地结束于框格76。
受益于前述说明书和相关附图给出的教导,本领域技术人员将想到本发明的许多修改和其它实施方案。因此,应理解的是,本发明不限于所公开的具体实施方案,并且意图是修改和实施方案包括在所附权利要求书的范围内。

Claims (20)

1.一种制造半导体晶片的方法,包括:
在半导体衬底上形成超晶格,所述超晶格包含各自的多个堆叠的层组,每个层组包含多个堆叠的基础半导体单层,其限定出基础半导体部分,以及约束在相邻基础半导体部分的晶格内的至少一个非半导体单层,来自相对的基础半导体部分的至少一些半导体原子通过其间的至少一个非半导体单层化学键合在一起;
在超晶格上外延形成半导体层;和
对所述超晶格退火以便形成包埋绝缘层,在所述包埋绝缘层中至少一些半导体原子不再通过其间的至少一个非半导体单层化学键合在一起;
其中形成所述至少一个非半导体单层包括用至少2.5×1014原子/cm3的剂量形成所述至少一个非半导体层。
2.根据权利要求1所述的方法,进一步包括在所述外延形成的半导体层中形成至少一个有源半导体器件。
3.根据权利要求1所述的方法,其中退火包括在800℃至1000℃范围内的温度对所述超晶格进行退火。
4.根据权利要求1所述的方法,其中退火包括在惰性气氛中对所述超晶格进行退火。
5.根据权利要求1所述的方法,其中用小于的相邻层组的非半导体单层之间的间距形成所述超晶格。
6.根据权利要求1所述的方法,其中形成所述超晶格包括在所述半导体衬底上选择性地形成多个间隔开的超晶格。
7.根据权利要求1所述的方法,其中形成所述超晶格包括形成跨越所述半导体衬底的连续超晶格。
8.根据权利要求1所述的方法,其中所述至少一个非半导体单层包含氧。
9.根据权利要求1所述的方法,其中所述半导体单层包含硅。
10.根据权利要求1所述的方法,其中所述半导体层包含锗。
11.一种制造半导体晶片的方法,包括:
在半导体衬底上选择性地形成多个间隔开的超晶格,且每个超晶格包含各自的多个堆叠的层组,每个层组包含多个堆叠的基础硅单层,其限定出基础硅部分,以及约束在相邻基础硅部分的晶格内的至少一个氧单层,来自相对的基础硅部分的至少一些硅原子通过其间的至少一个氧单层化学键合在一起;
在超晶格上外延形成半导体层;和
对所述超晶格退火以便形成包埋绝缘层,在所述包埋绝缘层中至少一些硅原子不再通过其间的至少一个氧单层化学键合在一起;
其中形成所述至少一个氧单层包括用至少2.5×1014原子/cm3的剂量形成所述至少一个氧单层。
12.根据权利要求11所述的方法,进一步包括在所述外延形成的半导体层中形成至少一个有源半导体器件。
13.根据权利要求11所述的方法,其中退火包括在800℃至1000℃范围内的温度对所述超晶格进行退火。
14.根据权利要求11所述的方法,其中退火包括在惰性气氛中对所述超晶格进行退火。
15.根据权利要求11所述的方法,其中形成所述超晶格包括用小于或等于的相邻层组的氧单层之间的间距形成所述超晶格。
16.一种用于制造半导体晶片的方法,包括:
形成跨半导体衬底的连续超晶格,所述超晶格包含多个堆叠的层组,每个层组包含多个堆叠的基础硅单层,其限定出基础硅部分,以及约束在相邻基础硅部分的晶格内的至少一个氧单层,来自相对的基础硅部分的至少一些硅原子通过其间的至少一个氧单层化学键合在一起;
在超晶格上外延形成半导体层;和
对所述超晶格退火以便形成包埋绝缘层,在所述包埋绝缘层中至少一些硅原子不再通过其间的至少一个氧单层化学键合在一起;
其中形成所述至少一个氧单层包括用至少2.5×1014原子/cm3的剂量形成所述至少一个氧单层。
17.根据权利要求16所述的方法,进一步包括在所述外延形成的半导体层中形成至少一个有源半导体器件。
18.根据权利要求16所述的方法,其中退火包括在800℃至1000℃范围内的温度对所述超晶格进行退火。
19.根据权利要求16所述的方法,其中退火包括在惰性气氛中对所述超晶格进行退火。
20.根据权利要求16所述的方法,其中形成所述超晶格包括用小于的相邻层组的氧单层之间的间距形成所述超晶格。
CN201880062180.2A 2017-07-31 2018-07-30 具有通过对超晶格退火形成的包埋绝缘层的半导体器件的制造方法 Active CN111133582B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/664,028 2017-07-31
US15/664,028 US10109479B1 (en) 2017-07-31 2017-07-31 Method of making a semiconductor device with a buried insulating layer formed by annealing a superlattice
PCT/US2018/044305 WO2019027868A1 (en) 2017-07-31 2018-07-30 METHOD FOR MANUFACTURING A SEMICONDUCTOR DEVICE WITH A BURST INSULATED INSULATED LAYER OF A SUPER-NETWORK

Publications (2)

Publication Number Publication Date
CN111133582A CN111133582A (zh) 2020-05-08
CN111133582B true CN111133582B (zh) 2023-11-03

Family

ID=63254788

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880062180.2A Active CN111133582B (zh) 2017-07-31 2018-07-30 具有通过对超晶格退火形成的包埋绝缘层的半导体器件的制造方法

Country Status (5)

Country Link
US (1) US10109479B1 (zh)
EP (1) EP3662516A1 (zh)
CN (1) CN111133582B (zh)
TW (1) TWI679708B (zh)
WO (1) WO2019027868A1 (zh)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111937119A (zh) 2018-03-08 2020-11-13 阿托梅拉公司 包括具有超晶格的增强接触结构的半导体器件和相关方法
US10763370B2 (en) 2018-04-12 2020-09-01 Atomera Incorporated Inverted T channel field effect transistor (ITFET) including a superlattice
US11355667B2 (en) 2018-04-12 2022-06-07 Atomera Incorporated Method for making semiconductor device including vertically integrated optical and electronic devices and comprising a superlattice
US20200135489A1 (en) * 2018-10-31 2020-04-30 Atomera Incorporated Method for making a semiconductor device including a superlattice having nitrogen diffused therein
US10847618B2 (en) 2018-11-16 2020-11-24 Atomera Incorporated Semiconductor device including body contact dopant diffusion blocking superlattice having reduced contact resistance
US10593761B1 (en) 2018-11-16 2020-03-17 Atomera Incorporated Method for making a semiconductor device having reduced contact resistance
US10854717B2 (en) 2018-11-16 2020-12-01 Atomera Incorporated Method for making a FINFET including source and drain dopant diffusion blocking superlattices to reduce contact resistance
US10818755B2 (en) 2018-11-16 2020-10-27 Atomera Incorporated Method for making semiconductor device including source/drain dopant diffusion blocking superlattices to reduce contact resistance
US10840335B2 (en) 2018-11-16 2020-11-17 Atomera Incorporated Method for making semiconductor device including body contact dopant diffusion blocking superlattice to reduce contact resistance
US10840336B2 (en) 2018-11-16 2020-11-17 Atomera Incorporated Semiconductor device with metal-semiconductor contacts including oxygen insertion layer to constrain dopants and related methods
US10580866B1 (en) 2018-11-16 2020-03-03 Atomera Incorporated Semiconductor device including source/drain dopant diffusion blocking superlattices to reduce contact resistance
US10580867B1 (en) 2018-11-16 2020-03-03 Atomera Incorporated FINFET including source and drain regions with dopant diffusion blocking superlattice layers to reduce contact resistance
US10840337B2 (en) 2018-11-16 2020-11-17 Atomera Incorporated Method for making a FINFET having reduced contact resistance
US11329154B2 (en) 2019-04-23 2022-05-10 Atomera Incorporated Semiconductor device including a superlattice and an asymmetric channel and related methods
US10937868B2 (en) 2019-07-17 2021-03-02 Atomera Incorporated Method for making semiconductor devices with hyper-abrupt junction region including spaced-apart superlattices
US11183565B2 (en) 2019-07-17 2021-11-23 Atomera Incorporated Semiconductor devices including hyper-abrupt junction region including spaced-apart superlattices and related methods
US10840388B1 (en) 2019-07-17 2020-11-17 Atomera Incorporated Varactor with hyper-abrupt junction region including a superlattice
US10825901B1 (en) 2019-07-17 2020-11-03 Atomera Incorporated Semiconductor devices including hyper-abrupt junction region including a superlattice
US10825902B1 (en) 2019-07-17 2020-11-03 Atomera Incorporated Varactor with hyper-abrupt junction region including spaced-apart superlattices
US10937888B2 (en) 2019-07-17 2021-03-02 Atomera Incorporated Method for making a varactor with a hyper-abrupt junction region including spaced-apart superlattices
US10879357B1 (en) 2019-07-17 2020-12-29 Atomera Incorporated Method for making a semiconductor device having a hyper-abrupt junction region including a superlattice
US10868120B1 (en) 2019-07-17 2020-12-15 Atomera Incorporated Method for making a varactor with hyper-abrupt junction region including a superlattice
US11437487B2 (en) 2020-01-14 2022-09-06 Atomera Incorporated Bipolar junction transistors including emitter-base and base-collector superlattices
US11177351B2 (en) * 2020-02-26 2021-11-16 Atomera Incorporated Semiconductor device including a superlattice with different non-semiconductor material monolayers
US11302823B2 (en) 2020-02-26 2022-04-12 Atomera Incorporated Method for making semiconductor device including a superlattice with different non-semiconductor material monolayers
US11075078B1 (en) 2020-03-06 2021-07-27 Atomera Incorporated Method for making a semiconductor device including a superlattice within a recessed etch
US11469302B2 (en) 2020-06-11 2022-10-11 Atomera Incorporated Semiconductor device including a superlattice and providing reduced gate leakage
US11569368B2 (en) 2020-06-11 2023-01-31 Atomera Incorporated Method for making semiconductor device including a superlattice and providing reduced gate leakage
US11848356B2 (en) * 2020-07-02 2023-12-19 Atomera Incorporated Method for making semiconductor device including superlattice with oxygen and carbon monolayers
EP4295409A1 (en) 2021-03-03 2023-12-27 Atomera Incorporated Radio frequency (rf) semiconductor devices including a ground plane layer having a superlattice and associated methods
US11923418B2 (en) 2021-04-21 2024-03-05 Atomera Incorporated Semiconductor device including a superlattice and enriched silicon 28 epitaxial layer
US11810784B2 (en) 2021-04-21 2023-11-07 Atomera Incorporated Method for making semiconductor device including a superlattice and enriched silicon 28 epitaxial layer
TWI816399B (zh) 2021-05-18 2023-09-21 美商安托梅拉公司 含提供金屬功函數調諧之超晶格之半導體元件及相關方法
US11682712B2 (en) 2021-05-26 2023-06-20 Atomera Incorporated Method for making semiconductor device including superlattice with O18 enriched monolayers
US11728385B2 (en) 2021-05-26 2023-08-15 Atomera Incorporated Semiconductor device including superlattice with O18 enriched monolayers
US11631584B1 (en) 2021-10-28 2023-04-18 Atomera Incorporated Method for making semiconductor device with selective etching of superlattice to define etch stop layer
US11721546B2 (en) 2021-10-28 2023-08-08 Atomera Incorporated Method for making semiconductor device with selective etching of superlattice to accumulate non-semiconductor atoms

Family Cites Families (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61210679A (ja) 1985-03-15 1986-09-18 Sony Corp 半導体装置
US4843439A (en) * 1985-08-28 1989-06-27 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Tailorable infrared sensing device with strain layer superlattice structure
US5216262A (en) 1992-03-02 1993-06-01 Raphael Tsu Quantum well structures useful for semiconductor devices
US5357119A (en) 1993-02-19 1994-10-18 Board Of Regents Of The University Of California Field effect devices having short period superlattice structures using Si and Ge
US5796119A (en) 1993-10-29 1998-08-18 Texas Instruments Incorporated Silicon resonant tunneling
US5561302A (en) 1994-09-26 1996-10-01 Motorola, Inc. Enhanced mobility MOSFET device and method
GB9419757D0 (en) 1994-09-30 1994-11-16 Lynxvale Ltd Wavelength selective filter and laser including it
US6376337B1 (en) 1997-11-10 2002-04-23 Nanodynamics, Inc. Epitaxial SiOx barrier/insulation layer
JP3443343B2 (ja) 1997-12-03 2003-09-02 松下電器産業株式会社 半導体装置
JP2000101513A (ja) 1998-09-18 2000-04-07 Nec Corp 遠隔励起中継器及び遠隔励起中継方法
US6993222B2 (en) 1999-03-05 2006-01-31 Rj Mears, Llc Optical filter device with aperiodically arranged grating elements
GB9905196D0 (en) 1999-03-05 1999-04-28 Fujitsu Telecommunications Eur Aperiodic gratings
GB2385940B (en) 1999-03-05 2003-10-22 Nanovis Llc Aperiodically poled non-linear material
US20020100942A1 (en) 2000-12-04 2002-08-01 Fitzgerald Eugene A. CMOS inverter and integrated circuits utilizing strained silicon surface channel MOSFETs
US20020175347A1 (en) * 2001-05-22 2002-11-28 Motorola, Inc. Hybrid semiconductor input/output structure
WO2003025984A2 (en) 2001-09-21 2003-03-27 Amberwave Systems Corporation Semiconductor structures employing strained material layers with defined impurity gradients and methods for fabricating same
AU2004300982B2 (en) 2003-06-26 2007-10-25 Mears Technologies, Inc. Semiconductor device including MOSFET having band-engineered superlattice
US7045377B2 (en) 2003-06-26 2006-05-16 Rj Mears, Llc Method for making a semiconductor device including a superlattice and adjacent semiconductor layer with doped regions defining a semiconductor junction
US7586116B2 (en) 2003-06-26 2009-09-08 Mears Technologies, Inc. Semiconductor device having a semiconductor-on-insulator configuration and a superlattice
US6897472B2 (en) 2003-06-26 2005-05-24 Rj Mears, Llc Semiconductor device including MOSFET having band-engineered superlattice
US7612366B2 (en) 2003-06-26 2009-11-03 Mears Technologies, Inc. Semiconductor device including a strained superlattice layer above a stress layer
US7531829B2 (en) 2003-06-26 2009-05-12 Mears Technologies, Inc. Semiconductor device including regions of band-engineered semiconductor superlattice to reduce device-on resistance
US7153763B2 (en) 2003-06-26 2006-12-26 Rj Mears, Llc Method for making a semiconductor device including band-engineered superlattice using intermediate annealing
US7202494B2 (en) 2003-06-26 2007-04-10 Rj Mears, Llc FINFET including a superlattice
US7531828B2 (en) 2003-06-26 2009-05-12 Mears Technologies, Inc. Semiconductor device including a strained superlattice between at least one pair of spaced apart stress regions
US7586165B2 (en) 2003-06-26 2009-09-08 Mears Technologies, Inc. Microelectromechanical systems (MEMS) device including a superlattice
US6833294B1 (en) 2003-06-26 2004-12-21 Rj Mears, Llc Method for making semiconductor device including band-engineered superlattice
US7229902B2 (en) 2003-06-26 2007-06-12 Rj Mears, Llc Method for making a semiconductor device including a superlattice with regions defining a semiconductor junction
US7514328B2 (en) 2003-06-26 2009-04-07 Mears Technologies, Inc. Method for making a semiconductor device including shallow trench isolation (STI) regions with a superlattice therebetween
US20070012910A1 (en) 2003-06-26 2007-01-18 Rj Mears, Llc Semiconductor Device Including a Channel with a Non-Semiconductor Layer Monolayer
US7227174B2 (en) 2003-06-26 2007-06-05 Rj Mears, Llc Semiconductor device including a superlattice and adjacent semiconductor layer with doped regions defining a semiconductor junction
US7659539B2 (en) 2003-06-26 2010-02-09 Mears Technologies, Inc. Semiconductor device including a floating gate memory cell with a superlattice channel
US7491587B2 (en) 2003-06-26 2009-02-17 Mears Technologies, Inc. Method for making a semiconductor device having a semiconductor-on-insulator (SOI) configuration and including a superlattice on a thin semiconductor layer
US7045813B2 (en) 2003-06-26 2006-05-16 Rj Mears, Llc Semiconductor device including a superlattice with regions defining a semiconductor junction
US7531850B2 (en) 2003-06-26 2009-05-12 Mears Technologies, Inc. Semiconductor device including a memory cell with a negative differential resistance (NDR) device
US7446002B2 (en) 2003-06-26 2008-11-04 Mears Technologies, Inc. Method for making a semiconductor device comprising a superlattice dielectric interface layer
US20070020833A1 (en) 2003-06-26 2007-01-25 Rj Mears, Llc Method for Making a Semiconductor Device Including a Channel with a Non-Semiconductor Layer Monolayer
US20060220118A1 (en) 2003-06-26 2006-10-05 Rj Mears, Llc Semiconductor device including a dopant blocking superlattice
US7598515B2 (en) 2003-06-26 2009-10-06 Mears Technologies, Inc. Semiconductor device including a strained superlattice and overlying stress layer and related methods
DE112005002319T5 (de) * 2004-09-28 2007-08-23 Sumitomo Chemical Co., Ltd. Gruppe-III-V-Verbindungshalbleiter und Verfahren zur Herstellung desselben
US7148712B1 (en) 2005-06-24 2006-12-12 Oxford Instruments Measurement Systems Llc Probe for use in determining an attribute of a coating on a substrate
US7517702B2 (en) 2005-12-22 2009-04-14 Mears Technologies, Inc. Method for making an electronic device including a poled superlattice having a net electrical dipole moment
US7700447B2 (en) * 2006-02-21 2010-04-20 Mears Technologies, Inc. Method for making a semiconductor device comprising a lattice matching layer
US7625767B2 (en) 2006-03-17 2009-12-01 Mears Technologies, Inc. Methods of making spintronic devices with constrained spintronic dopant
US20080012004A1 (en) 2006-03-17 2008-01-17 Mears Technologies, Inc. Spintronic devices with constrained spintronic dopant
US7781827B2 (en) 2007-01-24 2010-08-24 Mears Technologies, Inc. Semiconductor device with a vertical MOSFET including a superlattice and related methods
US7928425B2 (en) 2007-01-25 2011-04-19 Mears Technologies, Inc. Semiconductor device including a metal-to-semiconductor superlattice interface layer and related methods
US7880161B2 (en) 2007-02-16 2011-02-01 Mears Technologies, Inc. Multiple-wavelength opto-electronic device including a superlattice
US7863066B2 (en) 2007-02-16 2011-01-04 Mears Technologies, Inc. Method for making a multiple-wavelength opto-electronic device including a superlattice
US7812339B2 (en) 2007-04-23 2010-10-12 Mears Technologies, Inc. Method for making a semiconductor device including shallow trench isolation (STI) regions with maskless superlattice deposition following STI formation and related structures
WO2011112574A1 (en) 2010-03-08 2011-09-15 Mears Technologies, Inc Semiconductor device including a superlattice and dopant diffusion retarding implants and related methods
WO2015077580A1 (en) 2013-11-22 2015-05-28 Mears Technologies, Inc. Semiconductor devices including superlattice depletion layer stack and related methods
WO2015077595A1 (en) 2013-11-22 2015-05-28 Mears Technologies, Inc. Vertical semiconductor devices including superlattice punch through stop layer and related methods
US9716147B2 (en) 2014-06-09 2017-07-25 Atomera Incorporated Semiconductor devices with enhanced deterministic doping and related methods
US9722046B2 (en) 2014-11-25 2017-08-01 Atomera Incorporated Semiconductor device including a superlattice and replacement metal gate structure and related methods
WO2016187038A1 (en) 2015-05-15 2016-11-24 Atomera Incorporated Semiconductor devices with superlattice and punch-through stop (pts) layers at different depths and related methods
US9721790B2 (en) 2015-06-02 2017-08-01 Atomera Incorporated Method for making enhanced semiconductor structures in single wafer processing chamber with desired uniformity control
US9558939B1 (en) 2016-01-15 2017-01-31 Atomera Incorporated Methods for making a semiconductor device including atomic layer structures using N2O as an oxygen source

Also Published As

Publication number Publication date
TW201911426A (zh) 2019-03-16
WO2019027868A1 (en) 2019-02-07
CN111133582A (zh) 2020-05-08
TWI679708B (zh) 2019-12-11
US10109479B1 (en) 2018-10-23
EP3662516A1 (en) 2020-06-10

Similar Documents

Publication Publication Date Title
CN111133582B (zh) 具有通过对超晶格退火形成的包埋绝缘层的半导体器件的制造方法
US10084045B2 (en) Semiconductor device including a superlattice and replacement metal gate structure and related methods
TWI694613B (zh) 包含垂直集成的光學與電子元件且包含超晶格之半導體元件及方法
TWI624004B (zh) 包含超晶格空乏層堆疊之半導體元件及其相關方法
US7718996B2 (en) Semiconductor device comprising a lattice matching layer
WO2019199926A1 (en) Device and method for making an inverted t channel field effect transistor (itfet) including a superlattice
WO2008036062A2 (en) Method for making a semiconductor device including band-engineered superlattice using intermediate annealing
WO2008091974A1 (en) Semiconductor device with a vertical mosfet including a superlattice and related methods
EP1941548A1 (en) Semiconductor device including a front side strained superlattice layer and a back side stress layer and associated methods
CN117413341A (zh) 包括超晶格和富集硅28外延层的半导体器件及相关方法
EP1920466A1 (en) Semiconductor device having a semiconductor-on-insulator (soi) configuration and including a superlattice on a thin semiconductor layer and associated methods
US20230411491A1 (en) Methods for making semiconductor devices with superlattice and embedded quantum dots
EP1905092A1 (en) Semiconductor device including a strained superlattice between at least one pair of spaced apart stress regions and associated methods
CN114258594A (zh) 具有包括超晶格的超突变结区域的半导体器件及相关方法
CN114258593A (zh) 具有含隔开的超晶格的超突变结区域的半导体器件及相关方法
CN114270535A (zh) 具有包括超晶格的超突变结区域的变容二极管及相关方法
EP4331016A1 (en) Semiconductor device including a superlattice providing metal work function tuning and associated methods
TW202249280A (zh) 包含超晶格及富集矽28磊晶層之半導體元件及相關方法
CN114270534A (zh) 具有含隔开的超晶格的超突变结区域的变容二极管及相关方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant